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Grading

1

2

3

Your PRINTED name is:

Please circle your recitation:

R01 T 9 2-132 S. Kleiman 2-278 3-4996 kleiman

R02 T 10 2-132 S. Kleiman 2-278 3-4996 kleiman

R03 T 11 2-132 S. Sam 2-487 3-7826 ssam

R04 T 12 2-132 Y. Zhang 2-487 3-7826 yanzhang

R05 T 1 2-132 V. Vertesi 2-233 3-2689 18.06

R06 T 2 2-131 V. Vertesi 2-233 3-2689 18.06



1 (30 pts.)

In the following six problems produce a real 2 × 2 matrix with the desired properties, or

argue concisely, simply, and convincingly that no example can exist.

(a) (5 pts.) A 2× 2 symmetric, positive de�nite, Markov Matrix.

(b) (5 pts.) A 2× 2 symmetric, negative de�nite (i.e., negative eigenvalues), Markov Matrix.

(c) (5 pts.) A 2× 2 symmetric, Markov Matrix with one positive and one negative eigenvalue.
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(d) (5 pts.) A 2× 2 matrix 6= 3I whose only eigenvalue is the double eigenvalue 3.

(e) (5 pts.) A 2 × 2 symmetric matrix 6= 3I whose only eigenvalue is the double eigenvalue 3.

(Note the word �symmetric� in problem (e).)

(f) (5 pts.) A 2× 2 non-symmetric matrix with eigenvalues 1 and −1.
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2 (35 pts.)

Let

A = −


1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4


(Note the minus sign in the de�nition of A.)

(a) (15 pts.) Write down a valid SVD for A. (No partial credit for this one so be careful.)
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(b) (20 pts.) The 4 × 4 matrix eAt = I + f(t)A. Find the scalar function f(t) in simplest possible

form. (Hint: the power series is one way; eigendecomposition is another.)
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3 (35 pts.)

(a) (15 pts.) The matrix A has independent columns. The matrix C is square, diagonal, and has

positive entries. Why is the matrix K = ATCA positive de�nite? You can use any of

the basic tests for positive de�niteness.
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(b) (20 pts.) If a diagonalizable matrix A has orthonormal eigenvectors and real eigenvalues must

it be symmetric? (Brie�y why or give a counterexample)
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18.06 Fall 2010 Exam 3 Solutions

(1) (a)

(

1 0
0 1

)

(b) No example exists. There are many ways to see this.
First way: Negative definite means that all upper left submatrices have negative determinant.
In particular, the (1, 1) entry needs to be negative, but this violates the definition of Markov.
Second way: Since the trace is the sum of the eigenvalues, all negative eigenvalues implies
that the trace is negative. But the diagonal entries are nonnegative by the Markov property,
which is another violation.
Third way: A Markov matrix always has 1 as an eigenvalue. All eigenvalues of negative
definite are negative.

(c)

(

0 1
1 0

)

. Really, any matrix of the form

(

a 1− a
1− a a

)

where 1/2 > a ≥ 0 would do: then

the trace would be < 1 and since the trace is the sum of the eigenvalues and we know that one
of the eigenvalues is 1, this means the other one has to be negative.

(d) Take a Jordan block:

(

3 1
0 3

)

.

(e) The answer we were looking for: all symmetric real matrices are diagonalizable. So if A is
symmetric and has 3 as both of its eigenvalues, then its Jordan normal form is 3I, and A is
similar to 3I. But the only matrix that is similar to 3I is 3I itself, which means A would have
to be 3I. Hence no example exists.

Another approach people tried but usually didn’t fully justify: write the matrix as

(

a b
b c

)

.

The trace is the sum of the eigenvalues and hence 6, and the determinant is the product of the
eigenvalues and hence 9. So a + c = 6 and ac− b2 = 9. Since b2 ≥ 0, we get ac ≥ 9. The way
to maximize ac subject to a+ c = 6 is to set a = c = 3. This can be justified with elementary
calculus or citing the arithmetic-mean/geometric-mean inequality (AM-GM) but not many
people really explained clearly why this was true. Anyway, this means that a = c = 3 and
b = 0, but then A = 3I again.

(f)

(

1 1
0 −1

)

(2) (a) A is clearly rank 1, so a reduced SVD like we saw in class is the easiest:

A = UΣV T =









1/2
1/2
1/2
1/2









(

1
)









−1/2
−1/2
−1/2
−1/2









T

(b) Answer 1: Notice that A2 = −A, so eAt = I + A(t − t2/2 + t3/3! − t4/4! + · · · ). Thus
f(t) = 1− e−t.
Answer 2: The eigenvalues of the symmetric rank 1 matrix A are −1, 0, 0, 0. In matrix

language Λ =









−1
0

0
0









and eΛt − I =









e−t − 1
0

0
0









= (1− e−t)Λ.

If A = QΛQT , then eAt − I = Q(eΛt − I)QT = (1 − e−t)QΛQT = (1 − e−t)A giving the same
answer f(t) = 1− e−t.

(3) (a) Again, there are many ways to do this.
First way: rememaber that a symmetric matrix is positive definite if and only if it can be
written as RTR where R has linearly independent columns. In our case, let c1, . . . , cn be the
diagonal entries of C and let B be the diagonal matrix with diagonal entries

√
c1, . . . ,

√
cn

(take the positive square roots). Then C = BTB and so K = ATBTBA = (BA)T (BA) so we
1



2

take R = BA. Since A has linearly independent columns and B is invertible (because the ci
are nonzero numbers), we conclude that BA also has linearly independent columns.
Second way: Use the energy definition. Let x be a nonzero vector. We have to show that
xTKx > 0. First, since A has linearly independent columns, this means that its null space
is 0, so Ax 6= 0. Set y = Ax. Since C is diagonal and has positive diagonal entries, it is
positive definite (this follows from the eigenvalue definition, or the submatrices definition, for
example). So yTCy > 0, but yTCy = xTKx, so we’re done.

(b) True, since A is diagonalizable with real eigenvalues, we can write A = SΛS−1 where Λ
has real entries and the columns of S are some eigenvectors. Since we also know that A
has orthonormal eigenvectors, we may choose these for S, and hence S−1 = ST . But then
A = SΛST and AT = (ST )TΛTST . But (ST )T = S for any matrix S, and ΛT = Λ because it
is diagonal and square. So A = AT and A is symmetric.
Remark: Some people said that Hermitian matrices (topic not covered) are diagonalizable
with orthonormal eigenvectors and have real eigenvalues but are not symmetric in general.
This is true, and technically did not violate the directions of the problem since it did not
specify that A has to have real entries, so received full credit.



18.06 Quiz 3 Solutions May 8, 2010 Profes-
sor Strang

Your PRINTED name is: 1.

Your recitation number is 2.

3.

1. (40 points) Suppose u is a unit vector in Rn, so uTu = 1. This problem is about the n by n

symmetric matrix H = I − 2u uT .

(a) Show directly that H2 = I. Since H = HT , we now know that H is not only

symmetric but also .

Solution Explicitly, we find H2 = (I − 2uuT )2 = I2 − 4uuT + 4uuuTuuT (2 points):

since uTu = 1, H2 = I (3 points). Since H = HT , we also have HTH = 1, implying

that H is an orthogonal (or unitary) matrix.

(b) One eigenvector of H is u itself. Find the corresponding eigenvalue.

Solution Since Hu = (I − 2uuT )u = u− 2uuTu = u− 2u = −u, λ = −1.

(c) If v is any vector perpendicular to u, show that v is an eigenvector of H and find the

eigenvalue. With all these eigenvectors v, that eigenvalue must be repeated how many

times? Is H diagonalizable? Why or why not?

Solution For any vector v orthogonal to u (i.e. uTv = 0), we haveHv = (I−2uuT )v =

v − 2uuTv = v, so the associated λ is 1. The orthogonal complement to the space

spanned by u has dimension n−1, so there is a basis of (n−1) orthonormal eigenvectors

with this eigenvalue. Adding in the eigenvector u, we find that H is diagonalizable.

(d) Find the diagonal entries H11 and Hii in terms of u1, . . . , un. Add up H11 + . . . + Hnn and

separately add up the eigenvalues of H.

Solution Since ith diagonal entry of uuT is u2
i , the i diagonal entry of H is Hii = 1−2u2

i

(3 points). Summing these together gives
∑n

i=1Hii = n − 2
∑n

i=1 u
2
i = n − 2 (3 points).

Adding up the eigenvalues of H also gives
∑
λi = (1)− 1 + (n− 1)(1) = n− 2 (4 points).

1



2. (30 points) Suppose A is a positive definite symmetric n by n matrix.

(a) How do you know that A−1 is also positive definite? (We know A−1 is symmetric. I just

had an e-mail from the International Monetary Fund with this question.)

Solution Since a matrix is positive-definite if and only if all its eigenvalues are positive

(5 points), and since the eigenvalues of A−1 are simply the inverses of the eigenvalues

of A, A−1 is also positive definite (the inverse of a positive number is positive) (5

points).

(b) Suppose Q is any orthogonal n by n matrix. How do you know that Q AQT = Q AQ−1

is positive definite? Write down which test you are using.

Solution Using the energy text (xTAx > 0 for nonzero x), we find that xTQAQTx =

(QTx)TA(QTx) > 0 for all nonzero x as well (since Q is invertible). Using the positive

eigenvalue test, since A is similar to QAQ−1 and similar matrices have the same

eigenvalues, QAQ−1 also has all positive eigenvalues. (5 points for test, 5 points for

application)

(c) Show that the block matrix

B =

 A A

A A


is positive semidefinite. How do you know B is not positive definite?

Solution First, since B is singular, it cannot be positive definite (it has eigenvalues

of 0). However, the pivots of B are the pivots of A in the first n rows followed by 0s

in the remaining rows, so by the pivot test, B is still semi-definite. Similarly, the first

n upper-left determinants of B are the same as those of A, while the remaining ones

are 0s, giving another proof. Finally, given a nonzero vector

u =

 x

y


where x and y are vectors in Rn, one has uTBu = (x+y)TA(x+y) which is nonnegative

(and zero when x+ y = 0).



3. (30 points) This question is about the matrix

A =

 0 −1

4 0


.

(a) Find its eigenvalues and eigenvectors.

Write the vector u(0) =

 2

0

 as a combination of those eigenvectors.

Solution Since det(A − λI) = λ2 + 4, the eigenvalues are 2i,−2i (4 points). Two

associated eigenvectors are [1 − 2i]T , [1 2i]T , though there are many other choices

(4 points). u(0) is just the sum of these two vectors (2 points).

(b) Solve the equation
du

dt
= Au starting with the same vector u(0) at time t = 0.

In other words: the solution u(t) is what combination of the eigenvectors of A?

Solution One simply adds in factors of eλt to each term, giving

u(t) = e2it

 1

−2i

 + e−2it

 1

2i



(c) Find the 3 matrices in the Singular Value Decomposition A = U Σ V T in two steps.

–First, compute V and Σ using the matrix ATA.

–Second, find the (orthonormal) columns of U.

Solution Note that ATA = V ΣTUTUΣV T = V Σ2V T , so the diagonal entries of Σ

are simply the positive roots of the eigenvalues of

ATA =

 0 4

−1 0


 0 −1

4 0

 =

 16 0

0 1


i.e. σ1 = 4, σ2 = 1. Since ATA is already diagonal, V is the identity matrix. The

columns of U should satisfy Au1 = σ1v1, Au2 = σ2v2: by inspection, one obtains

u1 =

 0

1

 , u2 =

 −1

0

 , U =

 0 −1

1 0





18.06 Professor Edelman Quiz 3 December 5, 2011

Your PRINTED name is:

Grading

1

2

3

4

Please circle your recitation:

1 T 9 2-132 Kestutis Cesnavicius 2-089 2-1195 kestutis

2 T 10 2-132 Niels Moeller 2-588 3-4110 moller

3 T 10 2-146 Kestutis Cesnavicius 2-089 2-1195 kestutis

4 T 11 2-132 Niels Moeller 2-588 3-4110 moller

5 T 12 2-132 Yan Zhang 2-487 3-4083 yanzhang

6 T 1 2-132 Taedong Yun 2-342 3-7578 tedyun



1 (24 pts.)

Let A =


.5 0 0

.5 .9 0

0 .1 1

 .

1. (4 pts) True or False: The matrix A is Markov.

True. Markov matrices have columns that sum to 1 and have non-

negative entries. The answer of false applies to what is known as

�Positive Markov Matrices.�

2. (6 pts) Find a vector x 6= 0 and a scalar λ such that ATx = λx.

The obvious choice is (1,1,1) with λ =1 as this is the column sum

property. Also easy to see is (1,0,0) with λ = 0.5.

2



3. (4 pts) True or False: The matrix A is diagonalizable. (Explain brie�y.)

True. The three eigenvalues, on the diagonal, are distinct.

4. (4 pts) True or False: One singular value of A is σ = 0. (Explain brie�y.)

False. The matrix is nonsingular, since it has no zero eigenvalues.

Nonsingular square matrices have all n singular values positive.

5. (6 pts) Find the three diagonal entries of eAt as functions of t.

They are et, e0.5t, e0.9t .
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2 (30 pts.)

1. (5 pts) An orthogonal matrix Q satis�es QTQ = QQT = I. What are the n singular

values of Q?

They are all 1. The singular values are the positive square roots of

the eigenvalues of QQT = QTQ = I.

2. (10 pts) Let A =


1

−2

3

 . Find an SVD, meaning A = UΣV T , where U

and V are orthogonal, and Σ =


σ1

σ2

σ3

 is diagonal with σ1 ≥ σ2 ≥ σ3 ≥

0. (Be sure that the factorization is correct and satisi�es all stated requirements.)

A =


1

−1

1




3

2

1




1

1

1

 . The singular values

are in decreasing order and are positive. One can compute AATand

ATA, but easier to rig the permutation matrices and correct the sign.

5



3. (15 pts) The 2 × 2 matrix A = σ1u1v
T
1 + σ2u2v

T
2 , where σ1 > σ2 > 0 and both u1, u2

and v1, v2 are orthonormal bases for R2.

The set of all vectors x with ‖x‖ = 1 describes a circle in the plane. What shape

best describes the set of all vectors Ax with ‖x‖ = 1? Draw a general picture of that

set labeling all the relevant quantities σ1, σ2, u1, u2 and v1, v2. (Hint: Why are u1, u2

relevant and v1, v2 not relevant?)

The svd rotates (or re�ects) the circle with V T , scales to an ellipse

with axes in the coordinate directions through Σ, and then a rotated

ellipse with axes in the direction u1and u2 after U is applied. The Σ

scales the x and y axes by σ1and σ2 respectively, and σ1 is the longer

of the two.

6
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3 (16 pts.)

1. (6 pts) Let x 6= 0 be a vector in R3. How many eigenvalues of A = xxT are positive?

zero? negative? (Explain your answer.) (Hint: What is the rank?)

A is symmetric pos semide�nite and rank 1, so there are 1 positive,

2 zero, and no negative eigenvalues.

2. (6 pts) a) What are the possible eigenvalues of a projection matrix?

0 and 1 (Since P 2 = P, λ2 = λ.)

b) True or False: every projection matrix is diagonalizable.

True, every projection matrix is symmetric, hence diagonalizable.

3. (4 pts) True or False: If every eigenvalue of A is 0, then A is similar to the zero matrix.

False. A Jordan block with zero eigenvalues is not similar to the zero

matrix for n > 1.

8
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4 (30 pts.)

Consider the matrix A =


x 1 1

1 1 1

1 1 1

 with parameter x in the (1,1) position.

1. (10 pts) Specify all numbers x, if any, for which A is positive de�nite. (Explain brie�y.)

No x, the matrix is clearly singular with two equal rows and two equal

columns.

2. (10 pts) Specify all numbers x, if any, for which eA is positive de�nite. (Explain brie�y.)

The eigenvalues of eA are the exponentials of the eigenvalues of the

matrix A. Since A is symmetric the eigenvalues are real, and thus ex-

ponentials are positive. A symmetric matrix with positive eigenvalues

is positive de�nite.

10



3. (10 pts) Find an x, if any, for which 4I − A is positive de�nite. (Explain brie�y.)

One can take any x < 3. The easiest choice is x = 1. With this guess

the matrix has two eigenvalues 0 and one eigenvalue 3 both less than

4, so 4 − λ > 0 for all three eigenvalues. Systematically, one can

consider the three upper left determinants of 4I −A which are 4− x,

11− 3x, and 24− 8x. They are all positive if and only if x < 3.

11
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18.06 Professor Edelman Quiz 3 December 3, 2012

Grading

1

2

3

4

Your PRINTED name is:

Please circle your recitation:

1 T 9 2-132 Andrey Grinshpun 2-349 3-7578 agrinshp

2 T 10 2-132 Rosalie Belanger-Rioux 2-331 3-5029 robr

3 T 10 2-146 Andrey Grinshpun 2-349 3-7578 agrinshp

4 T 11 2-132 Rosalie Belanger-Rioux 2-331 3-5029 robr

5 T 12 2-132 Geo�roy Horel 2-490 3-4094 ghorel

6 T 1 2-132 Tiankai Liu 2-491 3-4091 tiankai

7 T 2 2-132 Tiankai Liu 2-491 3-4091 tiankai



1 (16 pts.)

a) (4 pts.) Suppose C is n × n and positive de�nite. If A is n ×m and M = ATCA is not

positive de�nite, �nd the smallest eigenvalue of M. (Explain brie�y.)

Solution. The smallest eigenvalue of M is 0.

The problem only asks for brief explanations, but to help students understand the material

better, I will give lengthy ones.

First of all, note that MT = ATCTA = ATCA = M , so M is symmetric. That implies that

all the eigenvalues of M are real. (Otherwise, the question wouldn't even make sense; what

would the �smallest� of a set of complex numbers mean?)

Since we are assuming that M is not positive de�nite, at least one of its eigenvalues must

be nonpositive. So, to solve the problem, we just have to explain why M cannot have any

negative eigenvalues. The explanation is that M is positive semide�nite. That's the

buzzword we were looking for.

Why is M positive semide�nite? Well, note that, since C is positive de�nite, we know that

for every vector y in Rn

yTCy > 0,

with equality if and only if y is the zero vector. Then, for any vector x in Rm, we may set

y = Ax, and see that

xTMx = xTATCAx = (Ax)TC(Ax) > 0. (*)

Since M is symmetric, the fact that xTMx is always non-negative means that M is positive

semide�nite. Such a matrix never has negative eigenvalues. Why? Well, if M did have a

negative eigenvalue, say λ < 0, with a corresponding eigenvector v 6= 0, then

vTMv = vT (λv) = λvTv = λ‖v‖2 < 0,

which would contradict (∗) above, which is supposed to hold for every x in Rm.

2



Remark: Some students wrote that M is similar to C, but this is totally false. In the given

problem, if m 6= n, then M and C don't even have the same dimensions, so they cannot

possibly be similar. (Remember that two n× n matrices A and B are similar if there is an

invertible n × n matrix M such that A = M−1BM , which isn't usually the same thing as

MTBM , unless M is an orthogonal matrix.)

b) (12 pts.) If A is symmetric, which of these four matrices are necessarily positive de�nite?

A3, (A2 + I)−1, A+ I, eA. (Explain brie�y.)

Solution. The answer is that (A2 + I)−1 and eA have to be positive de�nite, but A3 and

A+ I don't.

The key is to use the QΛQ−1 factorization. Let me remind you what that is. Since A

is symmetric, there is an orthonormal basis of Rn (if A is an n × n matrix) consisting of

eigenvectors q1, q2, . . . , qn of A, and the corresponding eigenvalues λ1, λ2, . . . , λn are all real.

Form an n× n matrix Q whose columns are these n eigenvectors q1, q2, . . . , qn, and let Λ be

a diagonal n× n matrix whose diagonal entries λ1, λ2, . . . , λn, so that A = QΛQ−1. (In case

you're wondering, it would also be correct to write A = QΛQT . Since Q is an orthogonal

matrix, Q−1 = QT .)

Note that all four matrices we are asked to discuss are symmetric. So the question of positive

de�niteness is just a question about the positivity of their eigenvalues.

• A3 = (QΛQ−1)3 = QΛ3Q−1, so A3 is similar to Λ3, and these two matrices have

the same eigenvalues. But Λ3 is just the diagonal matrix whose diagonal entries are

λ1
3, λ2

3, . . . , λn
3. Do these numbers all have to be positive? Of course not. For

example, we could have A = Λ = 0, the zero matrix. Then A3 = Λ3 = 0, which isn't

positive de�nite.

3



• Before we discuss (A2 +I)−1, let's check that this actually makes sense, i.e., that A2 +I

is really invertible. Well,

A2 + I = (QΛQ−1)2 + I = Q(Λ2 + I)Q−1.

Now Λ2 + I is a diagonal matrix whose diagonal entries λ1
2 + 1, λ2

2 + 1, . . . , λn
2 + 1

are all nonzero, so Λ2 + I really is invertible. Then A2 + I, which is similar to Λ2 + I,

must also be invertible, and in fact we can write down its inverse:

(A2 + I)−1 = Q(Λ2 + 1)−1Q−1.

Now (A2 + I)−1 is similar to (Λ2 + 1)−1, and these two matrices have the same

eigenvalues, namely (λ1
2 + 1)−1, (λ2

2 + 1)−1, . . . , (λn
2 + 1)−1. These eigenvalues are

all positive, because (λ2 + 1)−1 > 0 for any real number λ. So (A2 + I)−1 is positive

de�nite.

• A+ I = Q(Λ + I)Q−1, so A+ I is similar to Λ + I, and these two matrices have the

same eigenvalues, namely λ1 + 1, λ2 + 1, . . . , λn + 1. Do these numbers all have to be

positive? Of course not. For example, we could have A = −I. Then A+ I = 0, which

isn't positive de�nite.

• Finally, we have eA. Note that

eA = eQΛQ−1

=
∞∑
k=0

1

k!
(QΛQ−1)k =

∞∑
k=0

1

k!
QΛkQ−1 = Q

(
∞∑
k=0

1

k!
Λk

)
Q−1 = QeΛQ−1,

so eA is similar to eΛ. But eΛ is just the diagonal matrix with diagonal entries

eλ1 , eλ2 , . . . , eλn , which are all positive, because eλ > 0 for all real λ. So the eigenvalues

of eA are all positive, and eA must be positive de�nite.

You see, diagonalization allows us to reduce a problem about matrices to a problem about

real numbers. The general philosophy is this: If A is similar to a diagonal matrix to Λ, then

often some expression1 in A is similar to the same expression in Λ, and the expression in

1Here I mean a polynomial (e.g., A3 or A + I; think of I as being akin to the constant 1), a rational

function (e.g., (A2 + I)−1), or a convergent power series (e.g., eA) in the variable A alone. We do not allow

expressions involving AT in addition to A, or anything more complicated than that.

4



Λ can be computed just by plugging in the diagonal entries one by one. So the question

basically comes to this: which of the functions λ3, (λ2 +1)−1, λ+1, eλ is everywhere positive

(i.e., positive for all real λ)? Of course, your solution should explain why it comes to this.

Remarks: (i) Some students thought that A must itself be positive de�nite. Some even

wrote a �proof� that all symmetric matrices are positive de�nite! Please disabuse yourself

of this notion. Positive de�nite matrices (at least the ones with real entries) are required

to be symmetric, but there are lots of symmetric matrices that aren't positive de�nite: for

example, 0 and −I. (ii) Some students discussed only the matrices that are necessarily

positive de�nite, and didn't write anything at all about A3 and I +A. A complete solution

should convince people that it is correct. And in order to convince people that �(A2 + I)−1

and eA� is the correct answer, one should explain both why these two matrices are necessarily

positive de�nite, and why the other two aren't.

5



2 (30 pts.)

Let A =


0 1 1

0 0 1

0 0 0

 .

a) (6 pts.) What are the eigenvalues of A ? (Explain brie�y.)

This matrix is upper triangular. For such a matrix, the determinant is the product of the

diagonal entries. Using this observation, if we try to compute |A − xI|, we �nd −x3. This

implies that the only eigenvalue is 0 with multiplicity 3.

b) (6 pts.) What is the rank of A?

It is clear that the last two columns of A are pivot columns. Therefore, the rank is 2.

c) (6 pts.) What are the singular values of A?

The singular values of A are the square roots of the eigenvalues of ATA.

ATA =


0 0 0

0 1 1

0 1 2


We have |xI − ATA| = x((x− 1)(x− 2)− 1) = x(x2 − 3x+ 1)

The roots are 0, 3+
√

5
2

, 3−
√

5
2

. Therefore, the singular values of A are 0,
√

3+
√

5
2

and
√

3−
√

5
2

.
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d) (6 pts.) What is the Jordan form of A? (Explain brie�y.)

In general, the Jordan form has zeroes everywhere except on the diagonal where you put the

eigenvalues on the second diagonal where you have 1 and 0. Note that the matrix A as it is

is not in Jordan normal form because you have a 1 in the upper right corner. There are 3

possibilities for what the Jordan form can be. One with two ones over the diagonal and two

with one one and one zero. To determine which is the actual Jordan form, you can look at

the rank. We know that A has rank 2 and the Jordan form is similar to A so it must have

rank 2 as well. Therefore, the only possibility is :
0 1 0

0 0 1

0 0 0



e) (6 pts.) Compute in simplest form etA.

We can use the series expression for etA. In general this is an in�nite sum which is unpleasant

but in this particular case, the powers of A quickly become zero. Indeed, we have :

A2 =


0 0 1

0 0 0

0 0 0



A3 = 0

Therefore, we have :

etA = I + tA+
t2

2
A2 =


1 t t+ t2/2

0 1 t

0 0 1



7



3 (28 pts.)

We are told that A is 2×2, symmetric, and Markov and one of the real eigenvalues is y with

−1 < y < 1.

a) (7 pts.) What is this matrix A in terms of y?

We have a symmetric matrix, hence A =

 a b

b c

. Also, it is Markov, so we want a+b = 1

and b+ c = 1, with all entries non-negative. So a = c and we have A =

 a b

b a

.

Now, we want the eigenvalues of this matrix to be y and 1 (recall that Markow matrices

ALWAYS have 1 as an eigenvalue, with the all-ones vector as the corresponding eigenvector).

But we know the eigenvalues of A satisfy det(A−λI) = 0, or (a−λ)2−b2 = 0 or a−λ = ±b.

So λ1 = a + b = 1 and λ2 = a − b = y (since b ≥ 0). Using a + b = 1 into a − b = y we

get 2a − 1 = y or a = (y + 1)/2, and then b = 1 − a = (1 − y)/2. So we have found our

symmetric Markov matrix with eigenvalues 1 and y: A =

 (1 + y)/2 (1− y)/2

(1− y)/2 (1 + y)/2

.

b) (7 pts.) Compute the eigenvectors of A.

An easy way to �nd the eigenvector corresponding to the eigenvalue 1 is to recall we have

a symmetric Markov matrix, so columns add to 1 but rows too, hence the constant vector

will be an eigenvector. So for λ1 = 1 we have v1 = (1/2 1/2)T . And for λ2 = y, we �nd

a vector in the nullspace of A − yI =

 (1− y)/2 (1− y)/2

(1− y)/2 (1− y)/2

. This is easy, we �nd

v2 = (1/2 − 1/2)T .

8



c) (7 pts.) What is A2012 in simplest form?

We have now diagonalized A: A = SΛS−1, where columns of S are the eigenvectors and Λ

is a diagonal matrix with 1 and y. So we have

A2012 =

 1/2 1/2

1/2 −1/2

 1 0

0 y

2012

1

−1/2

 −1/2 −1/2

−1/2 1/2


so that

A2012 =

 (1 + y2012)/2 (1− y2012)/2

(1− y2012)/2 (1 + y2012)/2


d) (7 pts.) What is limn→∞A

n in simplest form? (Explain Brie�y.)

From the above, and the fact that −1 < y < 1, we can see clearly that

lim
n→∞

An =

 1/2 1/2

1/2 1/2

 .

Another way to reason: we know the steady-state is the eigenvector of the dominating

eigenvalue, in this case λ1 = 1 and so v1 = (1/2 1/2)T . But we are asking for the matrix

which will give us this steady-state, no matter what probability vector we start with. And

so its column space has to be along the line of v1, and no bigger. But there is only one vector

proportional to v1 which could also be a column of a Markov matrix, i.e. whose entries sum

to 1. So both columns of the answer have to be v1. (You could also use the fact that the

answer should be symmetric too.)

9



4 (26 pts.)

a) (5 pts.) P is a three by three permutation matrix. List all the possible values of a singular

value. (Explain brie�y.)

A permutation matrix satis�es P TP = I which has all ones as eigenvalues, so all the singular

values of P are
√

1 = 1.

b) (9 pts.) P is a three by three permutation matrix. List all the possible values of an

eigenvalue. (Explain brie�y.)

We will do part (c) �rst.

c) (12 pts.) There are six 3 × 3 permutation matrices. Which are similar to each other?

(Explain brie�y.)

Let's list the six matrices. There is the identity matrix:


1 0 0

0 1 0

0 0 1

 .

There are the three transposition matrices:


0 1 0

1 0 0

0 0 1

 ,


1 0 0

0 0 1

0 1 0

 ,


0 0 1

0 1 0

1 0 0

 .

There are the two three-cycles:
0 0 1

1 0 0

0 1 0

 ,


0 1 0

0 0 1

1 0 0

 .

If two matrices have di�erent traces, then they must have di�erent eigenvalues and so are

not similar. The trace of the identity is 3, the trace of the transpositions is 1, and the trace

of the three cycles is 0.
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We �rst show that all of the transpositions are similar to each other. Every permutation

matrix P satis�es

P


1

1

1

 =


1

1

1


so they all have eigenvalue λ1 = 1. Note that each of the transposition matrices has a �xed

point and so has a standard basis vector as an eigenvector with eigenvalue λ2 = 1. For

example, 
0 1 0

1 0 0

0 0 1




0

0

1

 =


0

0

1

 .

Since they all have trace 1, their �nal eigenvalue λ3 must be −1 so that λ1 + λ2 + λ3 = 1.

Thus we have shown that the transposition matrices all have the eigenvalue 1 repeated twice

with two linearly independent eigenvectors as well as the eigenvalue −1. Therefore, they are

similar as each of their Jordan canonical forms must be
1 0 0

0 1 0

0 0 −1

 .

Finally, we show the two three-cycles are similar to each other. As before, they have eigen-

value λ1 = 1 corresponding to the all ones vector. Their other two eigenvalues must satisfy

λ1 + λ2 + λ3 = 0. Then λ2 + λ3 = −1. However, we must have that |λ2| = |λ3| = 1 since the

permutation matrices are orthonormal. Note that if λ2, λ3 were real then they must each be

1 or −1 and it is impossible to have λ2 + λ3 = −1. Therefore, they are complex and must

satisfy λ2 = λ3. Then their real parts are the same and must add to −1, so they each have

real part −1/2. Using that |λ2| = |λ3| = 1, we get that one of λ2, λ3 must be 1/2+i
√

3/2 and

the other must be 1/2− i
√

3/2. Therefore, the three cycles both have the same eigenvalues,

namely the three di�erent cubed roots of 1 in the complex plane, and so are similar.

Returning to part (b) of the problem, we have shown that the possible eigenvalues are the

square roots of 1 and the cubed roots of 1.
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18.06 Professor Strang Quiz 3 – Solutions May 7th, 2012

Grading

1

2

3

Your PRINTED name is:

Please circle your recitation:

r01 T 11 4-159 Ailsa Keating ailsa

r02 T 11 36-153 Rune Haugseng haugseng

r03 T 12 4-159 Jennifer Park jmypark

r04 T 12 36-153 Rune Haugseng haugseng

r05 T 1 4-153 Dimiter Ostrev ostrev

r06 T 1 4-159 Uhi Rinn Suh ursuh

r07 T 1 66-144 Ailsa Keating ailsa

r08 T 2 66-144 Niels Martin Moller moller

r09 T 2 4-153 Dimiter Ostrev ostrev

r10 ESG Gabrielle Stoy gstoy



1 (33 pts.)

Suppose an n×n matrix A has n independent eigenvectors x1, . . . , xn. Then you could write

the solution to du
dt

= Au in three ways:

u(t) = eAtu(0), or

u(t) = SeΛtS−1u(0), or

u(t) = c1e
λ1tx1 + . . .+ cne

λntxn.

Here, S = [x1 | x2 | . . . | xn].

(a) From the definition of the exponential of a matrix, show why eAt is the same as SeΛtS−1.

Solution. Recall that A = SΛS−1, and Aktk = SΛktkS−1. Then, definition of the expo-

nential:

exp(At) =
∞∑
k=0

Aktk

k!
= S

(
∞∑
k=0

Λktk

k!

)
S−1 = SeΛtS−1.

�

(b) How do you find c1, . . . , cn from u(0) and S?

Solution. Since e0 = 1, we see that

u(0) = c1x1 + . . .+ cnxn = S


c1

...

cn

 ,
where we used the definition of the matrix product. Thus the answer is:


c1

...

cn

 = S−1u(0).

�
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(c) For this specific equation, write u(t) in any one of the (added: latter two of the) three

forms, using numbers not symbols: You can choose which form.

du

dt
=

 1 2

−1 4

u, starting from u(0) =

4

3

 .
Solution. We diagonalize A and get:

A =

2 1

1 1

2 0

0 3

 1 −1

−1 2

 .
Thus c =

1

2

, so for the second form

u(t) =

2 1

1 1

2 0

0 3

 1 −1

−1 2

4

3

 =

2 1

1 1

e2t 0

0 e3t

1

2

 ,
while in the third form:

u(t) = e2t

2

1

+ 2e3t

1

1

 .
�
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2 (30 pts.)

This question is about the real matrix

A =

1 c

1 −1

 , for c ∈ R.

(a) - Find the eigenvalues of A, depending on c.

- For which values of c does A have real eigenvalues?

Solution. Since 0 = trA = λ1 + λ2, we see that λ2 = −λ1.

Also, −1− c = detA = −λ2
1. Thus,

λ = ±
√

1 + c.

Therefore,

the eigenvalues are real precisely when c ≥ −1.

�
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(b) - For one particular value of c, convince me that A is similar to both the matrix

B =

2 0

0 −2

 ,
and to the matrix

C =

2 2

0 −2

 .
- Don’t forget to say which value c this happens for.

Solution. If two matrices are similar, then they do have the same eigenvalues (those are

2,−2 for both B and C). Here we must therefore have 0 = trA and −1 − c = detA =

−4. We see that this happens precisely when c = 3, where we check that indeed the

eigenvalues are 2,−2. However, this does not guarantee that they are similar - and hence

is not convincing.

Convincing: The eigenvalues 2,−2 are different, so both A, B and C are diagonalizable,

with the same diagonal matrix (for example to Λ = B!). Therefore A, B and C are all

similar when c = 3. �
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(c) For one particular value of c, convince me that A cannot be diagonalized. It is not similar

to a diagonal matrix Λ, when c has that value.

- Which value c?

- Why not?

Solution. As we saw above, trA = 0, so regardless of c the eigenvalues come in pairs

λ2 = −λ1. This means that whenever λ1 6= 0, we have two different eigenvalues, and

hence A is diagonalizable (not what we’re after).

Thus we need λ1 = λ2 = 0, a repeated eigenvalue, which happens when c = −1 (so

detA = 0) as the only suspect – does it work?

Convincing: For c = −1, we have N(A− 0 · I) = span


1

1


With only a 1-dimensional space of eigenvectors for the matrix, we are convinced that

A is not diagonalizable for c = −1. �
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3 (37 pts.)

(a) Suppose A is an n× n symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn.

- What is the largest number real number c that can be subtracted from the diagonal

entries of A, so that A− cI is positive semidefinite?

- Why?

Solution. - We first realize that: If A is symmetric, then A− cI is also symmetric, since

in general (A+B)T = AT +BT (simple, but very important to check!).

- Then we realize that the eigenvalues of A − cI are λ1 − c ≤ λ2 − c ≤ . . . ≤ λn − c.

Therefore:

c = λ1 is the largest that can ensure positive semidefiniteness (and it does).

�
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(b) Suppose B is a matrix with independent columns.

- What is the nullspace N(B)?

- Show that A = BTB is positive definite. Start by saying what that means about xTAx.

Solution. - Then Bx = 0 only has the zero solution, so N(B) = {0}.

- Again, we start by observing that AT = A is symmetric. Then we recall what positive

definite means (the "energy" test):

xTAx > 0 whenever x 6= 0.

Thus, we see here (by definition the inner product property of the transpose of a matrix):

xTAx = xT (BT (Bx)) = (Bx)T (Bx) = ‖Bx‖2 ≥ 0.

So A = BTB is positive semidefinite. But finally, the equality ‖Bx‖2 = 0, only happens

when Bx = 0 which by N(B) = {0} means x = 0. �
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(c) This matrix A has rank r = 1:

A =

1 1

2 2

 .
- Find its largest singular value σ from ATA.

- From its column space and row space, respectively, find unit vectors u and v so that

Av = σu, and A = uσvT .

- From the nullspaces of A and AT put numbers into the full SVD (Singular Value

Decomposition) of A:

A =


| |

u . . .

| |



σ 0

0 . . .



| |

v . . .

| |


T

.

Solution. We compute:

ATA =

5 5

5 5

 .
Thus the two eigenvalues are λ1 = 0 and λ2 = 10, and σ =

√
10. For v, we find a vector

in N(ATA− 10I), and normalize to unit length:

v =

1/
√

2

1/
√

2

 .
Then we find u using

u =
Av

σ
=

1/
√

5

2/
√

5

 .
Since we have the orthogonal sums of subspaces R2 = Rm = c(A) ⊕ N(AT ) and also

R2 = Rn = c(AT ) ⊕ N(A), we need to find one unit vector from each of N(A) and

N(AT ) and augment to v and u, respectively:

v2 =

 1
√

2

−1
√

2

 ∈ N(A),

u2 =

−2/
√

5

1/
√

5

 ∈ N(AT ),
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Thus, we finally see the full SVD:

A = UΣV T =

1/
√

5 −2
√

5

2/
√

5 1/
√

5

√10 0

0 0

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

T .
We remember, as a final check, to verify that the square matrices U and V both contain

orthonormal bases of R2 as they should:

UUT = I2,

V V T = I2.

�
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18.06 Professor Edelman Quiz 3 December 4, 2013

Grading

1

2

3

Your PRINTED name is:

Please circle your recitation:

1 T 9 Dan Harris E17-401G 3-7775 dmh

2 T 10 Dan Harris E17-401G 3-7775 dmh

3 T 10 Tanya Khovanova E18-420 4-1459 tanya

4 T 11 Tanya Khovanova E18-420 4-1459 tanya

5 T 12 Saul Glasman E18-301H 3-4091 sglasman

6 T 1 Alex Dubbs 32-G580 3-6770 dubbs

7 T 2 Alex Dubbs 32-G580 3-6770 dubbs
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1 (32 pts.) (2 points each)

There are sixteen 2×2 matrices whose entries are either 0 or 1. For each of the sixteen, write

down the two singular values. Time saving hint: if you really understand singular values,

then there is really no need to compute AAT or ATA, but it is okay if you must.

3



This page intentionally blank.

4



This page intentionally blank.

5



This page intentionally blank.

6



2 (30 pts.) (3 points each: Please circle true or false, and either way, explain briefly.)

a) If A and B are invertible, then so is (A+B)/2. True? False? (Explain briefly).

b) If A and B are Markov, then so is (A+B)/2. True? False? (Explain briefly).

c) If A and B are positive definite, then so is (A+B)/2. True? False? (Explain briefly).

d) If A and B are diagonalizable, then so is (A+B)/2. True? False? (Explain briefly).

e) If A and B are rank 1, then so is (A+B)/2. True? False? (Explain briefly).

7



f) If A is symmetric then so is eA. True? False? (Explain briefly).

g) If A is Markov then so is eA. True? False? (Explain briefly).

h) If A is symmetric, then eA is positive definite. True? False? (Explain briefly).

i) If A is singular, then so is eA. True? False? (Explain briefly).

j) If A is orthogonal, then so is eA. True? False? (Explain briefly).
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3 (38 pts.)

Let A =

 −1 1

1 −1

.
a) (10 pts.) Find a nonzero solution y(t) in R2 to dy/dt = Ay that is independent of t, in

other words, y(t) is a constant vector in R2. (Hint: why would a vector in the nullspace of

A have this property?)

b) (10 pts.) Show that eAt is Markov for every value of t ≥ 0.

9



c) (10 pts.) What is the limit of eAt as t→∞?

d) (8 pts.) What is the steady state vector of the Markov matrix eA ?

10













18.06 Quiz 3 Professor Strang May 10, 2013

Please PRINT your name 1.

2.

Please Circle Your Recitation: 3.

r1 T 10 36-156 Russell Hewett r7 T 1 36-144 Vinoth Nandakumar

r2 T 11 36-153 Russell Hewett r8 T 1 24-307 Aaron Potechin

r3 T 11 24-407 John Lesieutre r9 T 2 24-307 Aaron Potechin

r4 T 12 36-153 Stephen Curran r10 T 2 36-144 Vinoth Nandakumar

r5 T 12 24-407 John Lesieutre r11 T 3 36-144 Jennifer Park

r6 T 1 36-153 Stephen Curran

(1) (40 pts)

In all of this problem, the 3 by 3 matrix A has eigenvalues λ1, λ2, λ3 with independent

eigenvectors x1, x2, x3.

(a) What are the trace of A and the determinant of A?

(b) Suppose: λ1 = λ2. Choose the true statement from 1, 2, 3:

1. A can be diagonalized. Why?

2. A can not be diagonalized. Why?

3. I need more information to decide. Why?

(c) From the eigenvalues and eigenvectors, how could you find the matrix A? Give a

formula for A and explain each part carefully.

(d) Suppose λ1 = 2 and λ2 = 5 and x1 = (1, 1, 1) and x2 = (1, -2, 1). Choose λ3 and x3

so that A is symmetric positive semidefinite but not positive definite.

1





(2) (30 pts.)

Suppose A has eigenvalues 1,
1

3
,
1

2
and its eigenvectors are the columns of S:

S =




1 0 0

3 1 0

1 1 1


 with S−1 =




1 0 0

−3 1 0

1 −1 1




(a) What are the eigenvalues and eigenvectors of A−1?

(b) What is the general solution (with 3 arbitrary constants c1, c2, c3) to the differential

equation du/dt = Au? Not enough to write eAt. Use the c’s.

(c) Start with the vector u = (1, 4, 3) from adding up the three eigenvectors:

u = x1 + x2 + x3. Think about the vector v = Aku for VERY large powers k.

What is the limit of v as k → ∞ ?





(3) (30 pts.)

(a) For a really large number N, will this matrix be positive definite? Show why or why

not.

A =




2 4 3

4 N 1

3 1 4


 .

(b) Suppose: A is positive definite symmetric

Q is orthogonal (same size as A)

B is QT AQ = Q−1AQ

Show that: 1. B is also symmetric.

2. B is also positive definite.

(c) If the SVD of A is UΣV T , how do you find the orthogonal V and the diagonal Σ

from the matrix A ?





Math 18.06, Spring 2013
Problem Set #Exam 3
May 14, 2013

Problem 1. In all of this problem, the 3 by 3 matrix A has eigenvalues λ1, λ2, λ3 with
independent eigenvectors x1, x2, x3.

a) What are the trace of A and the determinant of A?

The trace of A is λ1 + λ2 + λ3 and the determinant is λ1λ2λ3.

b) Suppose: λ1 = λ2. Choose the true statement from 1, 2, 3:

1. A can be diagonalized.

2. A can not be diagonalized.

3. I need more information to decide.

(1) is the correct option, because we know that there exists a full set of independent eigen-
vectors.

c) From the eigenvalues and eigenvectors, how could you find the matrix A? Give a formula
for A and explain each part carefully.

We can recover A using A = SΛS−1, where S is a matrix whose columns are x1, x2, x3, and
Λ is a diagonal matrix whose diagonal entries are λ1, λ2, λ3.

d) Suppose λ1 = 2 and λ2 = 5 and x1 = (1, 1, 1) and x2 = (1,−2, 1). Choose λ3 and x3 so
that A is symmetric positive semidefinite but not positive definite.

If we want A to be symmetric, the third eigenvector x3 had better be orthogonal to the other
two. The quick way to find a vector orthogonal to two given ones in R3 is via cross product:
x3 = x1 × x2 = (3, 0,−3).

Alternately, you can use elimination: x3 should be in the nullspace of

A =

[
1 1 1
1 −2 1

]
You could also just notice the first and last entries match and guess the answer from that.
Either way, x3 should be a multiple of (1, 0,−1).

As for the eigenvalue, to get a matrix that’s positive semidefinite but not positive definite,
we need to use λ3 = 0.

It doesn’t actually ask you to compute A, but here’s one that works:

A =

1 1 1
1 −2 0
1 1 −1

2 0 0
0 5 0
0 0 0

1 1 1
1 −2 0
1 1 −1

−1

=
1

2

 3 −2 3
−2 8 −2
3 −2 3





Problem 2. Suppose A has eigenvalues 1, 1/3, 1/2 and its eigenvectors are the columns of
S:

S =

1 0 0
3 1 0
1 1 1

 with S−1 =

 1 0 0
−3 1 0
1 −1 1


a) What are the eigenvalues and eigenvectors of A−1?

The eigenvectors of A−1 are the same as those of A. Its eigenvalues are the inverses of those
of A: 1, 3, and 2.

b) What is the general solution (with 3 arbitrary constants c1, c2, c3) to the differential equa-
tion du/dt = Au? Not enough to write eAt. Use the c’s.

The general solution is

u(t) = c1e
λ1tx1 + c2e

λ2tx2 + c3e
λ3tx3

= c1e
t

1
3
1

+ c2e
t/3

0
1
1

+ c3e
t/2

0
0
1


c) Start with the vector u = (1, 4, 3) from adding up the three eigenvectors: u = x1 +x2 +x3.
Think about the vector v = Aku for VERY large powers k. What is the limit of v as k →∞?

We have

Aku = Ak(x1 + x2 + x3) = λk1x1 + λk2x2 + λk3x3 = x1 +

(
1

3

)k
x2 +

(
1

2

)k
x3.

When k is very large, the two rightmost terms both go to 0, while the first one is an
unchanging x1. The limit v is therefore equal to x1.



Problem 3. a) For a really large number N , will this matrix be positive definite? Show why
or why not.

A =

2 4 3
4 N 1
3 1 4


The easiest test to use here is going to be to check whether the upper-left determinants are
positive.

1× 1: This is 2, which is always greater than 0.

2× 2: This is 2N − 16, which is greater than 0 if N is really large (in particular if N > 8).

3× 3: Use the method of your choice to compute the determinant of A, in terms of N . By
the (not so) big formula, it’s

detA = 8N + 12 + 12− 2− 64− 9N = −42−N.

This is going to be very negative if N is really large. So the matrix will not be positive
definite.

b)
Suppose: A is positive definite symmetric

Q is orthogonal (same size as A)
B is QTAQ = Q−1AQ.

Show that: B is also symmetric.
B is also positive definite.

First we show that B is symmetric. This means we need to check BT = B. Using what
we’re told,

BT = (QTAQ)T = QTAT (QT )T = QTAQ = B,

Note that in the next-to-last step we used the fact that A itself is symmetric (AT = A).

For positive definiteness, one way is to use the energy test. If x is any nonzero vector, then

xTBx = xT (QTAQ)x = (Qx)TA(Qx) = yTAy,

where y = Qx. We know that y is nonzero, because Q is orthogonal and therefore has no
nullspace.

Another approach is via eigenvalues. We know that B = Q−1AQ, so B is similar to A. That
means that they have the same eigenvalues. Since A is positive definite, its eigenvalues are
all positive, so those of B are as well.

A third approach: A is positive definite, so A = RTR for some R with independent columns.
Then B = QTRTRQ = (RQ)T (RQ). RQ is a matrix with independent columns, since Q is
orthogonal. So B is positive definite.

c) If the SVD of A is UΣV T , how do you find the orthogonal V and the diagonal Σ from the
matrix A?

First compute the matrix ATA. Find the eigenvalues and eigenvectors. The first r columns
of V should be length 1 eigenvectors of ATA, corresponding to nonzero eigenvalues, arranged



in order of decreasing eigenvalue. (A small complication: if there is a repeated eigenvalue,
make sure to pick orthogonal eigenvectors for that eigenvalue). The diagonal entries of Σ
should be square roots of the eigenvalues of ATA, again in decreasing order.

The remaining columns of V should be an orthonormal basis for the nullspace of ATA (which
is the same thing as the nullspace of A). This will give enough columns for V to be a square
matrix. The other diagonal entries of Σ should be 0.
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Each problem is 25 points, and each of its five parts (a)–(e) is 5 points.

In all problems, write all details of your solutions. Just giving an answer is not enough to

get a full credit. Explain how you obtained the answer.



Problem 1. Let A =

0 1

1 0

.

(a) Find the eigenvalues λ1 and λ2 of A.

(b) Solve the initial value problem du/dt = Au , u(0) =

 1

−1

.

(c) Find a diagonal matrix which is similar to the matrix A.

(d) Find the singular values σ1 and σ2 of A.

(e) Is the matrix A positive definite?



Problem 2. True or false? If your answer is “true”, explain why. If your answer is “false”,

give a counterexample.

(a) Every positive definite matrix is nonsingular.

(b) If A is an n×n matrix with real eigenvalues and with n linearly independent eigenvectors

which are orthogonal to each other, then A is symmetric.

(c) If a matrix B is similar to A, then B has the same eigenvectors as A.

(d) Any symmetric matrix is similar to a diagonal matrix.

(e) Any matrix which is similar to a diagonal matrix is symmetric.



Problem 3. (a–c) Consider the matrix A =


2 t 0

t 2 t

0 t 2

 that depends on a parameter t.

(a) Find all values of t, for which the matrix A has 3 nonzero eigenvalues.

(b) Find all values of t, for which the matrix A has 3 positive eigenvalues.

(c) Find all values of t, for which the matrix A has 3 negative eigenvalues.

(d) Find a singular value decomposition B = UΣV T for the matrix B =

1 0 1

1 0 1

.

(e) Find orthonormal bases of the 4 fundamental subspaces of the matrix B from part (d).



Problem 4. (a–d) Consider the following operations on the space of quadratic polyno-

mials f(x) = ax2 + bx+ c. Which of them are linear transformations?

If they are linear transformations, find their matrices in the basis 1, x, x2.

If they are not linear transformations, explain it using the definition of linear transformation.

(a) T1(f) = f(x)− f(1).

(b) T2(f) = f(x)− 1.

(c) T3(f) = x− f(1).

(d) T4(f) = x2f(1/x).

(e) The linear transformation R : R2 → R2 is the reflection with respect to the line x+y = 0.

Find the matrix of R in the standard basis of R2.



If needed, you can use this extra sheet for your calculations.



If needed, you can use this extra sheet for your calculations.



Exam Solutions

Problem 1

Let A =

(
0 1
1 0

)
.

(a) Find the eigenvalues λ1 and λ2 of A.

(b) Solve the initial value problem du/dt = Au, u(0) = (1,−1)T .

(c) Find a diagonal matrix which is similar to the matrix A.

(d) Find the singular values σ1 and σ2 of A.

(e) Is the matrix A positive definite?

Solutions:

(a) det(xI −A) = x2 − 1 has roots λ1 = 1 and λ2 = −1.

(b) u(t) = (e−t,−e−t)T .

(c) Let Q =

(
1 1
1 −1

)
/
√

2. Then Q is orthogonal and A = QΛQ−1, where Λ =

(
1 0
0 −1

)
.

(d) Let U = QΛ and V = Q. U and V are orthogonal, A = UIV T is a singular value decomposition
of A, and we see that the singular values are σ1 = |λ1| = 1 and σ2 = |λ2| = 1.

(e) No, since λ2 = −1 < 0.

1



Problem 2

True or false? If your answer is “true”, explain why. If your answer is “false”, give a counterexample.

(a) Every positive definite matrix is nonsingular.

(b) If A is an n×n matrix with real eigenvalues and with n linearly independent eigenvectors which
are orthogonal to each other, then A is symmetric.

(c) If a matrix B is similar to A, then B has the same eigenvectors as A.

(d) Any symmetric matrix is similar to a diagonal matrix.

(e) Any matrix which is similar to a diagonal matrix is symmetric.

Solutions:

(a) True: if A is singular, then there exists a nonzero x with Ax = 0; thus xTAx = 0, and A is not
positive definite.

(b) True: if the given eigenvectors are v1, . . . , vn, and their eigenvalues are λ1, . . . , λn, respectively,
then A = QΛQT , where

Q =

(
v1/|v1|

∣∣∣∣ · · · ∣∣∣∣vn/|vn|) and Λ = diag(λ1, . . . , λn);

thus, AT = (QΛQT )T = (QT )TΛTQT = QΛQT = A.

(c) False: we saw in 1) that

(
0 1
1 0

)
has eigenvectors (1, 1)T and (1,−1)T ; we also saw that it is

similar to

(
1 0
0 −1

)
, which has eigenvectors (1, 0)T and (0, 1)T .

(d) True: this is the QΛQT = QΛQ−1 decomposition.

(e) False:

(
0 1
0 1

)
has distinct eigenvalues 0 and 1, and so it is similar to a diagonal matrix, but

it is not symmetric.

2



Problem 3

Let A =

2 t 0
t 2 t
0 t 2


(a) Find all values of t, for which the matrix A has 3 nonzero eigenvalues.

(b) Find all values of t, for which the matrix A has 3 positive eigenvalues.

(c) Find all values of t, for which the matrix A has 3 negative eigenvalues.

(d) Find a singular value decomposition B = UΣV T for the matrix B =

(
1 0 1
1 0 1

)
.

(e) Find orthonormal bases of the 4 fundamental subspaces of the matrix B from part (d).

Solutions:

(a) A has 3 nonzero eigenvalues whenever detA = 8− 4t2 is nonzero, i.e. whenever t 6= ±
√

2.

(b) Since 2 > 0, A has 3 positive eigenvalues whenever detA = 8 − 4t2 and det

(
2 t
t 2

)
= 4 − t2

are positive, i.e. whenever −
√

2 < t <
√

2.

(c) Since trA = 6 > 0, there are no values of t for which A has 3 negative eigenvalues.

(d) Use http://web.mit.edu/18.06/www/Fall14/Recitation10_Michael.pdf algorithm.

(a) BBT =

(
2 2
2 2

)
has orthonormal eigenvectors u1 = (1, 1)T /

√
2 and u2 = (1,−1)/

√
2 with

eigenvalues λ1 = 4 and λ2 = 0.

(b) σ1 =
√
λ1 = 2 and v1 = BTu1/2 = (1, 0, 1)T /

√
2.

(c) We can choose v2 = (1, 0,−1)/
√

2 and v3 = (0, 1, 0), since they give an orthonormal basis
for N(BTB) = N(B).

(d) This gives B = UΣV T where

U =

(
1 1
1 −1

)
/
√

2, Σ =

(
2 0 0
0 0 0

)
, and V =

1 1 0

0 0
√

2
1 −1 0

 /
√

2.

(e) C(B) =

〈
(1, 1)T /

√
2

〉
, N(B) =

〈
(1, 0,−1)T /

√
2, (0, 1, 0)T

〉
,

C(BT ) =

〈
(1, 0, 1)T /

√
2

〉
, N(BT ) =

〈
(1,−1)T /

√
2

〉
.

3



Problem 4

Consider the following operations on the space of quadratic polynomials f(x) = ax2 + bx + c.
Which of them are linear transformations? If they are linear transformations, find their matrices
in the basis 1, x, x2. If they are not linear transformations, explain it using the definition of linear
transformation.

(a) T1(f) = f(x)− f(1).

(b) T2(f) = f(x)− 1.

(c) T3(f) = x− f(1).

(d) T4(f) = x2f(1/x).

(e) The linear transformation R : R2 −→ R2 is the reflection with respect to the line x + y = 0.
Find the matrix of R in the standard basis of R2.

Solutions:

(a) T1 is linear. Its matrix is

0 −1 −1
0 1 0
0 0 1

.

(b) T2 is not linear because T2(0) = −1 6= 0.

(c) T3 is not linear because T3(0) = x 6= 0.

(d) T4 is linear. Its matrix is

0 0 1
0 1 0
1 0 0

.

(e)

(
0 −1
−1 0

)
.

4
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1. (28 points) This question is about the differential equation

dy

dt
= Ay =

[
5 2
8 5

]
y with y(0) =

[
1
0

]
(a) Find an eigenvalue matrix Λ and an eigenvector matrix S so that A =

SΛS−1. Compute the matrix exponential etA by using etΛ.

(b) Find y(t) as a combination of the eigenvectors of A that has the
correct value y(0) at t = 0.

2



2. (a) (24 points) Suppose a symmetric n by n matrix S has eigenvalues λ1 >
λ2 > . . . > λn and orthonormal eigenvectors q1, . . . , qn.

If x = c1q1 + c2q2 + · · · + cnqn show that xTx = c2
1 + · · · + c2

n and
xTSx = λ1c

2
1 + · · · + λnc

2
n.

(b) What is the largest possible value of R(x) = xTSx
xTx for nonzero x ?

Describe a vector x that gives this maximum value for this ratio R(x)?

3



3. (24 points)

(a) Show that the matrix S = ATA is positive semidefinite, for any matrix
A. Which test will you use and how will you show it is passed?

(b) If A is 3 by 4, show that ATA is not positive definite.

4



4. (24 points)

(a) Show that none of the singular values of A are larger than 3.

A =

 1 1 1
0 1 1
0 0 1

 .
(b) Why does B = AQ have the same singular values as A? (Q is an orthog-

onal matrix.)

5
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1. (28 points) This question is about the differential equation

dy

dt
= Ay =

[
5 2
8 5

]
y with y(0) =

[
1
0

]
(a) Find an eigenvalue matrix Λ and an eigenvector matrix S so that A =

SΛS−1. Compute the matrix exponential etA by using etΛ.

(b) Find y(t) as a combination of the eigenvectors of A that has the
correct value y(0) at t = 0.

Solutions:

(a) det(A − λI) = 0 ⇔ λ2 − 10λ + 9 = 0. Eigenvalues λ1 = 1

and λ2 = 9. The eigenvector associated to λ1 is v1 =

(
1
−2

)
and the eigenvector associated to λ2 is v2 =

(
1
2

)
. The matrix

S =

(
1 1
−2 2

)
and S−1 = 1

4

(
2 −1
2 1

)
. Finally, etA = SetΛS−1 =(

1
2e
t + 1

2e
9t −1

4e
t + 1

4e
9t

−et + e9t −1
2e
t + 1

2e
9t

)
.

(b) y(0) =

(
1
0

)
= a

(
1
−2

)
+ b

(
1
2

)
. This implies that a = 1

2 and

b = 1
2 . Hence, y(t) = aeλ1tv1 + beλ2tv2 = 1

2e
t

(
1
−2

)
+ 1

2e
9t

(
1
2

)
.

2



2. (a) (24 points) Suppose a symmetric n by n matrix S has eigenvalues λ1 >
λ2 > . . . > λn and orthonormal eigenvectors q1, . . . , qn.

If x = c1q1 + c2q2 + · · · + cnqn show that xTx = c2
1 + · · · + c2

n and
xTSx = λ1c

2
1 + · · ·+ λnc

2
n.

(b) What is the largest possible value of R(x) = xTSx
xTx for nonzero x ?

Describe a vector x that gives this maximum value for this ratio R(x)?

Solutions:

(a) Since the eigenvectors are orthonormal, one has xTx = (c1q1 + · · ·+
cnqn)

T (c1q1 + · · ·+ cnqn) = c2
1q
T
1 q1 + · · ·+ c2

nq
T
n qn = c2

1 + · · ·+ c2
n.

On the other hand, xTSx = (c1q1 + · · ·+cnqn)
TS(c1q1 + · · ·+cnqn) =

(c1q1+· · ·+cnqn)T (λ1c1q1+· · ·+λncnqn) = λ1c
2
1q
T
1 q1+· · ·+λnc2

nq
T
n qn =

λ1c
2
1 + · · ·+ λnc

2
n.

(b) Using (a), R(X) = λ1c
2
1+···+λnc2n
c1+···+cn . Since λ1 > λ2 > · · · > λn, R(X)

is maximal when c2 = · · · = cn = 0 and c1 6= 0. In this case the
largest value of R(x) is λ1 and the associated vector x is any non-zero
multiple of q1.

3



3. (24 points)

(a) Show that the matrix S = ATA is positive semidefinite, for any matrix
A. Which test will you use and how will you show it is passed?

(b) If A is 3 by 4, show that ATA is not positive definite.

Solutions:

(a) Energy test. For every vector x we have xTSx = xTATAx =
(Ax)T (Ax) = ||Ax||2 ≥ 0. Hence, S is positive semidefinite.

(b) Since A is 3×4, one has dim(C(A)) ≤ 3 and dim(N(A)) ≥ 1. Hence,
there exists a non-zero vector v such that Av = 0. As a consequence,
ATA is not positive definite.

4



4. (24 points)

(a) Show that none of the singular values of A are larger than 3.

A =

 1 1 1
0 1 1
0 0 1

 .
(b) Why does B = AQ have the same singular values as A? (Q is an orthog-

onal matrix.)

Solutions:

(a) ATA =

 1 1 1
1 2 2
1 2 3

. Hence, tr(ATA) = 6. However, ATA is posi-

tive semidefinite, therefore all the eigenvalues are nonnegative. This
implies that 0 ≤ λi ≤ 6 and hence that σi ≤

√
6 ≤ 3.

(b) Since BTB = QTATAQ, the matrixes BTB and ATA are similar.
This implies that they have the same eingenvalues and therefore
that B and A have the same singular values σi =

√
λi.

5
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1. (33 points)

(a) Suppose A has the eigenvalues λ1 = 1, λ2 = 0, λ3 = −1 with eigen-
vectors x1,x2,x3 in the columns of this S =

[
x1 x2 x3

]
:

S =

 −1 1 1
0 −1 1
0 0 −1

 .
What are the eigenvalues and eigenvectors of the matrix B = A9+I?

(b) How could you find that matrix B = A9 + I using the eigenvectors
in S and the eigenvalues 1, 0,−1?

(c) Give a reason why the matrix B does have or doesn’t have each of
these properties:

i. B is invertible

ii. B is symmetric

iii. trace = B11 +B22 +B33 = 3.

2



2. (33 points)

(a) Show that λ1 = 0 is an eigenvalue of A and find an eigenvector x1

with that zero eigenvalue:

A =

 −2 1 1
1 −2 1
1 1 −2


(b) Find the other eigenvalues λ2 and λ3 of this symmetric matrix. Does

A have two more independent eigenvectors x2 and x3? Give a reason
why or why not. (Not required to find x2 and x3.)

(c) Suppose
du

dt
= Au starts from u(0) =

 1
2
3

 .
Explain why this u(t) approaches a steady state u(∞) as t → ∞.
You can use the general formula u(t) = c1e

λ1tx1 + c2e
λ2tx2 + c3e

λ3tx3

or eAt = SeΛtS−1 without putting in all eigenvectors. Find that
steady state u(∞).

3



3. (34 points)

(a) If C is any symmetric matrix, show that eC is a positive definite
matrix. We can see that eC is symmetric — which test will you use
to show that eC is positive definite?

(b) A is a 3 by 3 matrix. Suppose v1,v2,v3 are orthonormal eigenvec-
tors (with eigenvalues 1, 2, 3) of the symmetric matrix ATA. Show
that Av1, Av2, Av3 are orthogonal by rewriting and simplifying
(Avi)

T (Avj).

(c) For the 3 by 3 matrix A in part (b), find three matrices U,Σ, V that
go into the Singular Value Decomposition A = UΣV T .

(d) True or False: If A is any symmetric 4 by 4 matrix and M is any
invertible 4 by 4 matrix, then B = M−1AM is also symmetric. Give
a reason for true or false.
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Exam 3 Solutions

Question 1

(a) A = Sdiag(1, 0,−1)S−1. Thus B = A9+ I = S(diag(1, 0,−1)9+ I)S−1 = Sdiag(2, 1, 0)S−1. So
B has eigenvalues λ1 = 2, λ2 = 1 and λ3 = 0 and the same eigenvectors as A.

(b) Write A = Sdiag(1, 0,−1)S−1 and multiply to give B = Sdiag(2, 1, 0)S−1.

(c) (i) B has 0 as an eigenvalue and so cannot be invertible.

(ii) B has distinct eigenvalues, with eigenvectors which are not orthogonal, and so it cannot
be symmetric. (The point about distinct eigenvalues is not needed for full credit.)

(iii) True: the trace of B is the sum of the eigenvalues, 2 + 1 + 0 = 3.

Question 2

(a) A(1, 1, 1)T = 0 and so x1 = (1, 1, 1)T is an eigenvector with eigenvalue λ1 = 0.

(b) Each of the columns of A+ 3I is (1, 1, 1)T and so it is rank 1. In particular, the null space of
A+ 3I has dimension 2 and so the other eigenvalues are λ2 = −3 = λ3.

(c) u(t) = c1e0tx1+c2e−3tx2+c3e−3tx3 −→ u(∞) = c1x1 as t −→ ∞. We just need to find c1. But
u(0) = c1x1 + c2x2 + c3x3 = (1, 2, 3)T . Since x1 is orthogonal to x2 and x3 we see, by dotting
with x1, that c1x1 · x1 = (1, 2, 3)T · x1. Remembering that x1 = (1, 1, 1)T we obtain 3c1 = 6 so
that c1 = 2 and u(∞) = (2, 2, 2)T .

Question 3

(a) We can write C = QΛQT for some orthogonal matrix Q and some diagonal matrix Λ. Then
eC = QeΛQT , which immediately shows that eC is symmetric. If Λ = diag(λ1, . . . , λn), then
eΛ = diag(eλ1 , . . . , eλn) so that each eigenvalue of eC is of the form eλ. In particular, it is
positive, so that eC is positive definite.

(b) (Avi)·(Avj) = (Avi)T (Avj) = vTi (A
TA)vj = jvTi vj = jvi ·vj . Since v1, v2 and v3 are orthogonal,

we see that (Avi) · (Avj) = 0 when i �= j, i.e. Av1, Av2 and Av3 are orthogonal.

(c) V = (v1|v2|v3), Σ = diag(1,
√
2,
√
3), and U = (Av1|Av2√

2
|Av3√

3
).

(d) False. Take A =





0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 and M =





1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



. Then M−1AM =





0 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



.

In fact, any diagonal A with distinct eigenvalues, together with any M with nonorthogonal
columns, will provide a counterexample.

Almost full credit for correctly saying false, e.g. just a rewording that says less about M . An
unsymmetric B can be similar to a symmetric (diagonal) Λ as in question 1.
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