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Suppose we draw one of the digits 
0,1, ... , 9. How does a human rec­

ognize which digit it is? That neuroscience 
question is not answered here. How can a 
computer recognize which digit it is? This 
is a machine learning question. Probably 
both answers begin with the same idea: 
leamfrom examples. 

So we start with M different images (the 
training set). An image is a set of p small 
pixels - or a vector v = (Vi"'" V

p
)' The 

component Vi tells us the "grayscale" of the 
ith pixel in the image: how dark or light it 
is. We now have M images, each with p 
features: M vectors v in p-dimensional 
space. For every v in that training set, we 
know the digit it represents. 

In a way, we know a function. We have 
M inputs in RP, each with an output from ° to 9. But we don't have a "rnle." We are 
helpless with a new input. Machine learn­
ing proposes to create a rule that succeeds 
on (most of) the training images. But "suc­
ceed" means much more than that: the rule 
should give the correct digit for a much 
wider set of test images, taken from the 
same population. This essential requirement 
is called generalization. 

What form shall the rule take? Here 
we meet the fundamental question. Our 
first answer might be: F(v) could be a 
linear function from RP to RIO (a 10 by 
p matrix). The 10 outputs would be prob­
abilities of the numbers 0 to 9. We would 
have lOp entries and M training samples 
to get mostly right. 

The difficulty is that linearity is far too 
limited. Artistically, two Os could make 
an 8. I and 0 could combine into a hand­
written 9 or possibly a 6. Images don't 
add. Recognizing faces instead of numbers 
requires a great many pixels - and the 
input-output rule is nowhere near linear. 

Artificial intelligence languished for a 
generation, waiting for new ideas. There is 
no claim that the absolute best class of func­
tions has now been found. That class needs 
to allow a great many parameters (called 
weights). And it must remain feasible to 
compute all those weights (in a reasonable 
time) from knowledge of the training set. 

The choice that has succeeded beyond 
expectation-and has transformed shallow 
learning into deep learning-is continuous 
piecewise linear (CPL) functions. Linear 
for simplicity, continuous to model an 
unknown but reasonable rule, and piecewise 
to achieve the nonlinearity that is an abso­
lute requirement for real images and data. 

This leaves the crucial question of com­
putability. What parameters will quickly 
describe a large family of CPL functions? 
Linear finite elements start with a triangu­
lar mesh. But specifying many individual 
nodes in RP is expensive. It will be better 
if those nodes are the intersections of a 
smaller number of lines (or hyperplanes). 
Please note that a regular grid is too simple. 

Figure I is a first construction of a 
piecewise linear function of the data vec­
tor v. Choose a matrix A and vector b. 
Then set to 0 (this is the nonlinear step) 
all negative components of A v + b. Then 
multiply by a matrix C to produce the out­
put w=F(v)=C(Av+b)+. That vector 
(A v + b) + forms a "hidden layer" between 
the input v and the output w. 

The nonlinear function called 
ReLU(x)=x+ = max (x, 0) was ongl­
nally smoothed into a logistic curve like 
1/ (1 + e-X

). It was reasonable to think 
that continuous derivatives would help 
in optimizing the weights A, b, C. That 
proved to be wrong. 

The graph of each component of 
(Av+b) has two half-planes (one is flat, 
from th/ Os where A v+ b is negative). 
If A is q by p, the input space RP is 

(Avh [(Av + bhJ+ 

pq + 2q = 20 weights 

C[Av+bJ+ =W 

r{ 4,3) = 15 linear pieces 
in w = F(v) 

(Av)q 

Figure 1. Neural net construction of a piecewise linear function of the data vector v. 

sliced by q hyperplanes into r pieces. We 
can count those pieces! This measures the 
"expressivity" of the overall function F( v). 
The formula from combinatorics is 

This number gives an impression of the 
graph of F. But our function is not yet 
sufficiently expressive, and one more idea 
is needed. 

Here is the indispensable ingredient in 
the learning function F. The best way 
to create complex functions from simple 
functions is by composition. Each F; is 
linear (or affine) followed by the nonlinear 
ReLU : F;(v) = (AiV + bJ+. Theircom­
position is F(v) = FL(F;,j .. r;(F;(v)))). 
We now have L -1 hidden layers before 
the final output layer. The network becomes 
deeper as L increases. That depth can grow 
quickly for convolutional nets (with banded 
Toeplitz matrices A). 

The great optimization problem of deep 
learning is to compute weights Ai and bi 
that will make the outputs F(v) nearly cor­
rect - close to the digit w( v) that the image 
v represents. This problem of minimizing 

some measure of F( v) - w( v) is solved by 
following a gradient downhill. The gradient 
of this complicated function is computed 
by back propagation: the workhorse of deep 
learning that executes the chain rule. 

A historic competition in 2012 was to 
identify the 1.2 million images collected in 
ImageNet. The breakthrough neural network 
in AlexNet had 60 miIlion weights in eight 
layers. Its accuracy (after five days of sto­
chastic gradient descent) cut in half the next 
best error rate. Deep learning had arrived. 

Our goal here was to identify continu­
ous piecewise linear functions as power­
ful approximators. That family is also 
convenient-closed under addition and 
maximization and composition. The magic 
is that the learning function F(Ap b

i
, v) 

gives accurate results on images v that F 
has never seen. 

This article is published with very light edits. 
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