
The Functions of Deep Learning
By Gilbert Strang

Suppose we draw one of the digits
0,1, ... , 9. How does a human rec­

ognize which digit it is? That neuroscience
question is not answered here. How can a
computer recognize which digit it is? This
is a machine learning question. Probably
both answers begin with the same idea:
leamfrom examples.

So we start with M different images (the
training set). An image is a set of p small
pixels - or a vector v = (Vi"'" V

p
)' The

component Vi tells us the "grayscale" of the
ith pixel in the image: how dark or light it
is. We now have M images, each with p
features: M vectors v in p-dimensional
space. For every v in that training set, we
know the digit it represents.

In a way, we know a function. We have
M inputs in RP, each with an output from ° to 9. But we don't have a "rnle." We are
helpless with a new input. Machine learn­
ing proposes to create a rule that succeeds
on (most of) the training images. But "suc­
ceed" means much more than that: the rule
should give the correct digit for a much
wider set of test images, taken from the
same population. This essential requirement
is called generalization.

What form shall the rule take? Here
we meet the fundamental question. Our
first answer might be: F(v) could be a
linear function from RP to RIO (a 10 by
p matrix). The 10 outputs would be prob­
abilities of the numbers 0 to 9. We would
have lOp entries and M training samples
to get mostly right.

The difficulty is that linearity is far too
limited. Artistically, two Os could make
an 8. I and 0 could combine into a hand­
written 9 or possibly a 6. Images don't
add. Recognizing faces instead of numbers
requires a great many pixels - and the
input-output rule is nowhere near linear.

Artificial intelligence languished for a
generation, waiting for new ideas. There is
no claim that the absolute best class of func­
tions has now been found. That class needs
to allow a great many parameters (called
weights). And it must remain feasible to
compute all those weights (in a reasonable
time) from knowledge of the training set.

The choice that has succeeded beyond
expectation-and has transformed shallow
learning into deep learning-is continuous
piecewise linear (CPL) functions. Linear
for simplicity, continuous to model an
unknown but reasonable rule, and piecewise
to achieve the nonlinearity that is an abso­
lute requirement for real images and data.

This leaves the crucial question of com­
putability. What parameters will quickly
describe a large family of CPL functions?
Linear finite elements start with a triangu­
lar mesh. But specifying many individual
nodes in RP is expensive. It will be better
if those nodes are the intersections of a
smaller number of lines (or hyperplanes).
Please note that a regular grid is too simple.

Figure I is a first construction of a
piecewise linear function of the data vec­
tor v. Choose a matrix A and vector b.
Then set to 0 (this is the nonlinear step)
all negative components of A v + b. Then
multiply by a matrix C to produce the out­
put w=F(v)=C(Av+b)+. That vector
(A v + b) + forms a "hidden layer" between
the input v and the output w.

The nonlinear function called
ReLU(x)=x+ = max (x, 0) was ongl­
nally smoothed into a logistic curve like
1/ (1 + e-X

). It was reasonable to think
that continuous derivatives would help
in optimizing the weights A, b, C. That
proved to be wrong.

The graph of each component of
(Av+b) has two half-planes (one is flat,
from th/ Os where A v+ b is negative).
If A is q by p, the input space RP is

(Avh [(Av + bhJ+

pq + 2q = 20 weights

C[Av+bJ+ =W

r{ 4,3) = 15 linear pieces
in w = F(v)

(Av)q

Figure 1. Neural net construction of a piecewise linear function of the data vector v.

sliced by q hyperplanes into r pieces. We
can count those pieces! This measures the
"expressivity" of the overall function F(v).
The formula from combinatorics is

This number gives an impression of the
graph of F. But our function is not yet
sufficiently expressive, and one more idea
is needed.

Here is the indispensable ingredient in
the learning function F. The best way
to create complex functions from simple
functions is by composition. Each F; is
linear (or affine) followed by the nonlinear
ReLU : F;(v) = (AiV + bJ+. Theircom­
position is F(v) = FL(F;,j .. r;(F;(v)))).
We now have L -1 hidden layers before
the final output layer. The network becomes
deeper as L increases. That depth can grow
quickly for convolutional nets (with banded
Toeplitz matrices A).

The great optimization problem of deep
learning is to compute weights Ai and bi
that will make the outputs F(v) nearly cor­
rect - close to the digit w(v) that the image
v represents. This problem of minimizing

some measure of F(v) - w(v) is solved by
following a gradient downhill. The gradient
of this complicated function is computed
by back propagation: the workhorse of deep
learning that executes the chain rule.

A historic competition in 2012 was to
identify the 1.2 million images collected in
ImageNet. The breakthrough neural network
in AlexNet had 60 miIlion weights in eight
layers. Its accuracy (after five days of sto­
chastic gradient descent) cut in half the next
best error rate. Deep learning had arrived.

Our goal here was to identify continu­
ous piecewise linear functions as power­
ful approximators. That family is also
convenient-closed under addition and
maximization and composition. The magic
is that the learning function F(Ap b

i
, v)

gives accurate results on images v that F
has never seen.

This article is published with very light edits.

Gilbert Strang teaches linear algebra at
the Massachusetts Institute of Technology.
A description of the January 2019 textbook
Linear Algebra and Learning from Data is
available at math. mit. edullearningfromdata.

