
FUNCTIONS OF DIFFERENCE MATRICES ARE
TOEPLITZ PLUS HANKEL

GILBERT STRANG AND SHEV MACNAMARA

Abstract. When the heat equation and wave equation are approximated by ut = −Ku and
utt = −Ku (discrete in space), the solution operators involve e−Kt,

√
K, cos(

√
Kt) and sinc(

√
Kt).

They produce diffusion on graphs and waves on graphs. We compute these four matrices and find
accurate approximations with a variety of boundary conditions. On the whole line the matrices are
Toeplitz (shift-invariant). On an interval they have a Hankel part (anti-shift-invariant). Our favorite
matrix K is Toeplitz from Dirichlet conditions, but we show why Hankel also appears in the solution.
Any symmetric choice of the four corner entries of K leads to Toeplitz plus Hankel in all functions
f(K).

The whole paper is based on diagonalizing symmetric matrices, replacing sums by integrals, and
computing Fourier coefficients.
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1. Introduction. In teaching numerical methods for partial differential equa-
tions, we begin with the heat equation and the wave equation. Our model problems
are on an interval 0 ≤ x ≤ 1 with zero boundary conditions. The second derivative
uxx is replaced by second differences at the mesh points x = h, 2h, . . . , Nh. The
second difference matrix with 1,−2, 1 on its diagonals is denoted by −K:

Heat equation
∂

∂t
u =

∂2

∂x2
u becomes

d

dt
u = −K

h2
u

(1.1)

Wave equation
∂2

∂t2
u =

∂2

∂x2
u becomes

d2

dt2
u = −K

h2
u.

Time remains continuous. We are choosing signs so that K is positive definite, cor-

responding to − d2

dx2
. Constant diagonals in K reflect constant coefficients in the

differential equations. So K is an N ×N tridiagonal Toeplitz matrix:

K =


2 -1
-1 2 -1

. . .
. . .

. . .

-1 2 -1
-1 2

 h =
1

N + 1
.

Finite differences and linear finite elements both produce this well-loved matrix. Its
pivots and multipliers in K = LDLT , its eigenvalues and eigenvectors in K = V ΛV T ,
all are explicitly known — this is the central example in teaching computational
science [14]. The model problems (1.1) reflect the reality of modern numerical analysis,
that we often discretize in space and solve ordinary differential equations in time. In
solving the time-dependent problem, accuracy can be monitored and increased at will.
So the semi-discrete approximations (1.1) are the crucial steps.

Solutions to (1.1) involve exponentials of matrices:

Heat equation: u(t) = e−Kt/h
2

u(0) Wave equation: u(t) = cos
(√

Kt/h
)
u(0).
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2 Toeplitz plus Hankel

Those symbols are easy to write, but we realized that we did not know the actual
structure of the matrix exponentials. This paper is about that structure, and the
unexpected appearance of Bessel functions.

A small note: Our study began with eA and not e−K . We had a simple graph
(a line of nodes) with adjacency matrix A = 2I − K. Then eA counts the walks
between nodes in the graph, weighted by their lengths. (An always counts the walks
of length n, weighted by 1/n! in eA.) This measure of communicability on a graph
was introduced by Estrada, Hatano, Benzi and Higham [2, 3, 4]. Since A differs from
−K only by 2I, their exponentials differ only by a factor e2 and we can study both
at once.

2. Toeplitz and Hankel Matrices. A very particular feature is that functions
of K are Toeplitz + Hankel : the entries are constant along each diagonal plus constant
along each antidiagonal. The Toeplitz part dominates, reflecting the shift invariance
of the differential equation itself. (With no boundaries, a shift in the initial function
u(0) produces the same shift in u(t) at all times.) The Hankel part represents a shift
in the opposite direction! That part must be caused by the boundaries, and we will
try to explain it.

Toeplitz


b a
c b a

c b a
c b




0 0
1 0
0 1
0 0

 =


a
b a
c b

c

 forward shift

Hankel


a b

a b c
a b c
b c




0 0
1 0
0 1
0 0

 =


a

a b
b c
c

 backward shift

It is the eigenvectors of K (discrete sines) that produce Toeplitz plus Hankel matrices
for all matrix functions f(K).

We begin with the symmetric matrix
√
K, the square root of the discrete Lapla-

cian. On the whole line this is a doubly infinite Toeplitz matrix with neat coefficients;
its entries must be familiar but they were new to us. On a half line (singly infinite)
or an interval,

√
K has a Hankel part.

The matrix exponential e−K comes next. The function e−z is everywhere analytic,
and our Bessel approximation is super-exponentially accurate. The Toeplitz part
comes from the fundamental solution to the heat equation on an infinite interval. The
Hankel part comes from the old idea of placing “image” sources across the endpoints
x = 0 and x = 1, to cancel the actual source at those boundaries. Thus the boundary
conditions are responsible for the Hankel part.

The wave equation utt = uxx has solutions u(x, t) = f(x − t) + g(x + t). These
waves are Toeplitz, boundary reflections bring in Hankel. Their form in the discrete

case comes from ei
√
Kt/h or better from the real matrix function cos(

√
Kt/h). The

other matrix that appears in this second order problem (multiplying initial velocity)
is sinc(

√
Kt/h). This could give a starting point to consider waves on graphs, a topic

that deserves more attention (see [6] for an edge Laplacian).
In all these examples, we want to go beyond a line of nodes. First step: the matrix

K2 of size N2 comes from the usual five-point approximation to the two-dimensional
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Laplacian − ∂2

∂x2 − ∂2

∂y2 on a square grid. We are combining K in the x-direction

with K in the y-direction. No surprise that e−K2 and cos(
√
K2) are accessible. The

difficult goal, not attempted here, will be more general graphs, which have become
the fundamental framework for models in discrete applied mathematics.

In referring to K or K2 as a “graph Laplacian” we are not quite accurate. The
correct choice is a singular matrix B or B2 with zero row sums:

B =


1 -1
-1 2 -1

. . .
. . .

. . .

-1 2 -1
-1 1

 = (degree matrix)− (adjacency matrix).

This corresponds to Neumann boundary conditions du
dx

(0) = 0 and du
dx

(1) = 0. The
eigenvectors of B are discrete cosines instead of discrete sines. Those vectors v retain
the crucial property that vvT is Toeplitz plus Hankel. Therefore functions of B have
this T +H property. (B itself equals K minus a Hankel matrix with 1s in the corners.
This is far from ensuring that functions of B are T + H ; that is decided by the
eigenvectors.)

The complete graph with edges between all pairs of nodes is particularly simple.
The Laplacian matrix L has N − 1 as diagonal entries and −1 everywhere else. Then
L2 = NL. So

√
L is simply L/

√
N .

Finally we consider the one-way wave equation ut = ux and the centered first
difference matrix F :

F =


0 1
-1 0 1

. . .
. . .

. . .

-1 0 1
-1 0

 .

First come the eigenvalues (pure imaginary). Then the eigenvectors lead to “alternat-
ing Hankel” matrices that are new to us. The exact solution is u0(x+ t). The Taylor

series for that shift is exactly exp(t d
dx

). But with those alternating signs, the matrix

exponential of F shows only weak convergence for the semi-discrete ut = Fu/2h. The
convergence to a shift operator looks terrible until you test it for a smooth u0.

We have certainly not exhausted the subject of this paper.

A big encouragement to the authors— and we hope to the readers —is the elemen-
tary nature of the mathematics used here. We are working with known eigenvalues
and eigenvectors. Every function f(K) has eigenvalues f(λ), with the same eigenvec-
tors. As N → ∞, sums approach integrals and the matrices are computed exactly.
The steps for

√
K are (3.2) to (3.7), and there are two different limits:

1. Singly infinite f(K∞) is Toeplitz plus Hankel. Rows and columns
are numbered from 1 to ∞. In the continuous problem, the right endpoint
x = 1 moves to infinity, leaving one boundary point.

2. Doubly infinite f(K∞,∞) is purely Toeplitz. Rows and columns are
numbered from −∞ to ∞. The left endpoint x = 0 moves to minus infinity,
leaving no boundary.
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In both cases bandedness is lost and the square root (for example) is full. We can
report the numbers that appear on every row of the doubly infinite matrix

√
K∞,∞,

and go unchanged down all of its diagonals. Each row contains

. . .
−1

5× 7

−1

3× 5

−1

1× 3
1
−1

1× 3

−1

3× 5

−1

5× 7
. . . all multiplied by

4

π
. (2.1)

Surely this matrix has been seen somewhere. For the finite and singly infinite matrices,
with boundaries, the same numbers go down antidiagonals in the Hankel part. A
useful general rule is that circulants grow into doubly infinite Toeplitz matrices, while
the properties of TN +HN extend to the singly infinite T∞ +H∞.

The analysis of a Toeplitz matrix (with entries tj on diagonal j) is always con-
nected to its symbol

∑
tje

ijθ. To find T−1 or eT , work with the symbol. For our
−1, 2,−1 matrix K the symbol is 2− 2 cos θ. The values of this symbol (the interval
from 0 to 4) locate the eigenvalues of K in equation (3.3).

Functions of banded matrices are often approximately banded in the sense of fast
decay away from the diagonal, as in the nice examples of Iserles [9] and of Benzi and
Razouk [1]. More generally Higham has explained beautifully the subject of matrix
functions [8], and contour integrals are successful in computing functions (including
the square root) of a matrix times a vector [19, 7]. We focus on the very special
space of Toeplitz plus Hankel matrices. Previous work on those matrices includes
connections to Fredholm integral equations and spectral properties [17, 5].

3. The square root of K. If K did not have special eigenvalues and eigen-

vectors, our computations could not go very far. The matrix corresponds to − d2

dx2

with zero (Dirichlet) boundary conditions at x = 0 and x = 1. For this differential
operator we know that the eigenfunctions are sines:

− d2

dx2
sin(kπx) = k2π2 sin(kπx). (3.1)

The unit eigenvectors vk in the discrete case just sample the first N sine functions at
the mesh points x = h, 2h, . . . , Nh:

Eigenvectors vk =

√
2

N + 1
(sin(kπh), sin(2kπh), . . . , sin(Nkπh))T . (3.2)

Since K is symmetric, the vk are orthogonal. Then Kvk = λkvk:

Eigenvalues λk = 2− 2 cos(kπh), k = 1, . . . , N. (3.3)

For small h those eigenvalues are close to k2π2h2. After division by h2 = (∆x)2 our
matrix gives a second difference quotient. Then linear algebra produces K from the
eigenvalues in Λ and the eigenvectors in the columns of V :

Spectral theorem K = V ΛV T =

N∑
1

λkvkv
T
k . (3.4)

Diagonalization has separated K into a sum of rank one symmetric matrices. (We are
also seeing the Singular Value Decomposition, since K is symmetric positive definite.)
From (3.2), the entries of K, and any function f(K), satisfy

Matrix function f(K)m,n =
2

N + 1

N∑
k=1

f(λk) sin(mkπh) sin(nkπh).
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The crucial point is that
√
K has the same eigenvectors vk with

√
λk as the

eigenvalues. A half-angle identity gives that square root:√
λk =

√
2− 2 cos(θk) = 2 sin(

θk
2

) with θk = kπh =
kπ

N + 1
. (3.5)

Now the product of sines yields the splitting we hoped for, into Toeplitz plus Hankel:

(√
K
)
m,n

=
2

N + 1

N∑
k=1

2 sin(
θk
2

) sin(mθk) sin(nθk)

=
2

N + 1

N∑
k=1

sin(
θk
2

)
(

cos((m− n)θk)− cos((m+ n)θk)
)
. (3.6)

The dependence on m − n, which is constant down each diagonal of
√
K, signals

Toeplitz. The dependence on m+ n, constant down every antidiagonal, signals Han-
kel. The sum over N terms is closely approximated, and much improved, when it is
replaced by an integral (the limit as N →∞):(√

K
)
m,n
≈ 2

π

∫ π

0

sin(
θ

2
)
(

cos((m− n)θ)− cos((m+ n)θ)
)

dθ. (3.7)

Now we see that the crucial numbers are the Fourier cosine coefficients of sin( θ2 ). So
we must consider the periodic even function f(θ) on [−π, π] :

f(θ) = | sin(
θ

2
)|. (3.8)

This changes slope from − 1
2 to 1

2 at θ = 0. That discontinuity in slope means 1/p2

decay in the pth Fourier coefficient. For this half-angle function f(θ), the integrals in
(3.7) are easily computed:

ap =
2

π

∫ π

0

sin(
θ

2
) cos(pθ)dθ

=
1

π

∫ π

0

(
sin(

1 + 2p

2
θ) + sin(

1− 2p

2
θ)
)

dθ

=
2

π
(

1

1 + 2p
+

1

1− 2p
) =

4

π

1

(1− 2p)(1 + 2p)
. (3.9)

The denominators 1 × 3 and 3 × 5 and 5 × 7 enter the infinite square root matrix
that was anticipated in equation (2.1). And the sum of entries is zero along a row
(. . . , a1, a0, a1, . . . ) of

√
K∞,∞:

a0 + 2a1 + 2a2 + · · · = 4

π

(
1 + (

1

3
− 1

1
) + (

1

5
− 1

3
) + · · ·

)
= 0. (3.10)

The doubly infinite matrix is singular and purely Toeplitz, with the all-ones vector in
its null space. (The function f(θ) = | sin( θ2 )|) touches zero at θ = 0, where (3.10) adds
up its cosine series.) This corresponds to the fact that, with no boundaries, constant
functions are in the null space of the second derivative and its positive square root.
We are seeing, in one dimension, the square root (2.1) of the discrete Laplacian.

We cannot expect such perfection in the finite case, for the N ×N matrix
√
KN .

It becomes important to include the Hankel part HN , together with the Toeplitz part
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Fig. 3.1. Left: The approximation of
√
KN by am−n−am+n, with ap from (3.9), and aliasing

(3.12). We observe second-order accuracy (the dotted line has reference slope −2). Right: The
approximation of exp(−KN ) via (4.4) and aliasing. The dotted line is Weideman’s estimate of
exponential accuracy (!) for a periodic integral [18]. We used MATLAB’s sqrtm and expm as
reference solutions. Both graphs show the largest error among the entries of the matrix.

TN from equation (3.6). The approximate square root (still using the integral in (3.7)
and not the sum) has entries am−n− am+n. MATLAB confirms that the first rows of√
K∞ = T +H are

4

π
times

(
1 − 1

3 − 1
15 − 1

35 . . .
− 1

3 1 − 1
3 − 1

15 . . .

)
+

(
1
15

1
35

1
63

1
99 . . .

1
35

1
63

1
99

1
143 . . .

)
One important point:

√
KN is symmetric across its main antidiagonal as well

as its main diagonal (thus centrosymmetric). This is because high frequency cosines
agree with low frequency cosines at the N sample points θk (this is aliasing):

cos
( pπ

N + 1

)
= cos

( (2N + 2− p)π
N + 1

)
. (3.11)

Then the entries am+n of the Hankel part of the exact
√
KN are reflected across the

antidiagonal, where m + n = N + 1. The lower frequency gives an integral closer to
the sum from 1 to N . Therefore we choose the Hankel part of the approximation to
be

Hm,n =

{
−am+n if m+ n ≤ N + 1

−a2N+2−m−n otherwise.
(3.12)

Figure 3.1 shows the largest error among the entries of
√
KN .

Note 1 The square root of | d2

dx2
| corresponds to multiplication (in transform space)

by the absolute value |θ|. Its trigonometric analog in our discrete case is multiplication
by 2| sin θ

2 |. They are compared in Figure 3.2.

Note 2 By a remarkable chance, the integral a0 of | sin θ
2 | is the first example

chosen by Weideman [18] to illustrate the distance from the Riemann sum (the trape-
zoidal rule) with N terms. That distance depends on the decay rate 1/p2 of the
Fourier coefficients ap.
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Fig. 3.2. For small θ, 2 sin(θ/2) and sinc(2 sin(θ/2)) are close to θ and sinc(θ).

For this example, Weideman pointed out that Mathematica will give an explicit
expression for the sums in (3.6):

(
√
K)m,n =

1

2

1

N + 1
(Am−n −Am+n)

where

Ap = (−1)p−12− cot

(
2p− 1

4 + 4N
π

)
+ cot

(
2p+ 1

4 + 4N
π

)
.

Note 3 A valuable unpublished paper [15] by Trefethen and Weideman gives
a clear picture of the analysis. They credit Poisson as the first to study super fast
convergence of numerical integration for analytic functions. (The exponential e−K

will be our analytic example.) The simplest approximation says that the difference
between the sum and the integral comes from all the aliasing terms aN , a2N , . . . that
are captured exactly by the sum and are absent in the integral for a0:

sum− integral = aN + a2N + a3N + · · ·

For e−K those aliasing terms drop off like (cN)−N and the convergence is super fast.
For
√
K we see only the ordinary trapezoidal convergence rate N−2.

Note 4 On a square grid in two dimensions, the Kronecker sum

K2 = K ⊕K = (K ⊗ I) + (I ⊗K)

becomes the usual 5-point approximation to the Laplacian − ∂2

∂x2 − ∂2

∂y2 . Here ⊗ is

the Kronecker product, producing matrices of size N2 from K and I. For K2, the
components of the N2 unit eigenvectors vk,l are products of sines:

(vk,l)m,n =
2

N + 1
sin(kmπh) sin(lnπh) with k, l,m, n = 1, . . . , N. (3.13)
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The eigenvalues now involve two angles θ and φ:

λk,l = (2− 2 cos θk) + (2− 2 cosφl) = 4 sin2(
θk
2

) + 4 sin2(
φl
2

). (3.14)

The same steps, (3.5) to (3.8), lead us to a function of two variables in
√
K2:

f(θ, φ) = (sin2(
θ

2
) + sin2(

φ

2
))1/2, (3.15)

with singularity at θ = φ = 0. Its Fourier cosine coefficients apq, which will multiply
(cos pθ)(cos qφ), have no form as simple as c/(1− 4p2).

Note 5 A nice property of Kronecker forms is that the exponential of a Kronecker
sum A⊕B is the Kronecker product eA ⊗ eB . And Kronecker products are bilinear.
In our example with K2 = K ⊗ I + I ⊗K,

e−K2 = e−K ⊗ e−K = (T +H)⊗ (T +H) = T ⊗ T + T ⊗H +H ⊗ T +H ⊗H

We see the Toeplitz (T ) and Hankel (H) exponentials again. And this connection
gives us an easy, accurate approximation to e−K2, from our approximation to e−K .

4. The heat equation and e−tK. Start again from the eigenvalues λk =

2 − 2 cos θk and the eigenvectors vk =
√

2
N+1 (sin θk, sin 2θk, . . . , sinNθk)T . Then

e−tK has the same eigenvectors with eigenvalues e−tλk . The entries of the matrix
exponential (the heat kernel) are

(e−tK)m,n =
2

N + 1

N∑
k=1

e2t cos θk−2t sin(mθk) sin(nθk). (4.1)

Again we use the identity sinA sinB = 1
2 (cos(A−B)− cos(A+B)):

(e−tK)m,n =
e−2t

N + 1

N∑
k=1

e2t cos θk

(
cos((m− n)θk)− cos((m+ n)θk)

)
. (4.2)

Those sums are very closely approximated by integrals. In fact this is the premier
example chosen by Weideman in his exposition [18] of the astonishing speed of con-
vergence, when Riemann sums approach the integrals of periodic analytic functions
[15]. For p = m− n and p = m+ n the limits as N →∞ are

bp =
e−2t

π

∫ π

0

e2t cos θ cos(pθ) dθ. (4.3)

The infinite matrix exp(−tK∞) has entries bm−n − bm+n. This matrix is symmetric
positive definite. With t = 1, the entries along the first rows of T +H are(

0.3085 0.2153 0.0932 . . .
0.2153 0.3085 0.2153 . . .

)
−
(

0.0932 0.0288 0.0069 . . .
0.0288 0.0069 0.0013 . . .

)
For finite N , cosines obey the aliasing equation (3.11). As before, the sums in

(4.2) are the same for p = m + n as for P = (2N + 2) − (m + n). The true e−tK



Toeplitz plus Hankel 9

is centrosymmetric. We choose the smaller of p and P , so the Hankel part of the
approximation is symmetric across the main antidiagonal m+ n = N + 1:

e−tK ≈ T +H with entries bm−n − bm+n for m+ n ≤ N + 1 (4.4)

This example has one more beautiful feature. The integral in (4.3) is the celebrated
representation of a modified Bessel function of the first kind [9, 18, 13], with integer
p. So those integrals are exactly

bp = e−2tIp(2t). (4.5)

And for e−Kt/h
2

, t in (4.5) changes to t/h2.
A remarkable point about the approximation is that the role of x (on the spatial

mesh) is played by the order p of the Bessel function! We don’t ordinarily consider
finite differences with respect to p. But we do use recursion formulas.

The same steps apply to the model Schrödinger equation ut = −iuxx and its
semidiscrete approximation ut = iKu/h2. That factor i changes the entries in T +H
from modified Bessel Ip to the ordinary Bessel coefficients Jp in (6.6). Second-order
accuracy from our tridiagonal K is in contrast to spectral (infinite order) accuracy
achievable [16, 12] with full matrices.

5. Images and Hankel matrices. We want to understand the unexpected
appearance of Hankel matrices. They produce the very opposite of shift invariance.
If the entries of a vector x shift down, then the entries of Hx shift up:

Hankel


a b

a b c
a b c
b c




0 0
1 0
0 1
0 0

 =


a

a b
b c
c

 backward shift

The first clue is that this effect must come from the boundary conditions. An initial
value problem on the whole line will be shift-invariant and purely Toeplitz, if the
coefficients in the differential or difference equation are constant.

Recall the trick of image sources for the heat equation. Those are placed to
cancel the effect of the original sources at the boundary. Suppose the original is a
point source u0(x) = δ(x− a) at x = a. If there is just one boundary, at x = 0, place
an image source −δ(x+a) at x = −a. When we solve the heat equation on the whole
line starting from u(0) = δ(x− a)− δ(x+ a), the solution remains zero at x = 0 (by
symmetry):

u(x, t) =
1√
4πt

(e−(x−a)2/4t − e−(x+a)2/4t) and u(0, t) = 0.

The part from the image source is anti-shift-invariant. When the source point x = a
moves to the right, its image point x = −a moves to the left. This accounts for
Hankel.

For problems on a finite interval, we need infinitely many image points. Across
x = 0, an image at x = −a balances the original source at x = a. But then both the
source and that image have to be balanced across x = 1 (by images at 2 − a and at
2 + a). In the end, we extend u0 = δ(x− a) to have period 2 on the whole line:

U0(x) =

∞∑
−∞

δ(x+ 2n− a)−
∞∑
−∞

δ(x− 2n+ a) for ∞ < x <∞
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Now solve the heat equation Ut = Uxx starting from this U0(x). At time zero, U =
u = δ(x − a) on the interval 0 ≤ x ≤ 1. At all times the conditions U(0, t) = 0 and
U(1, t) = 0 are satisfied by the symmetry of sources and image sources. Notice that
across x = 0, each point x = 2n + a has an image point x = −2n − a. And across
x = 1 is the image point x = 2− (2n+ a).

If we shift the original sources by changing a, the image sources at 2n − a move
in the opposite direction. This gives the Hankel part of the (continuous) solution
operator.

A corresponding discrete theory for a point source u0 = δ explains the Hankel
part of the finite matrix exp(−KN ). When δ has N − 1 zero components and 1 in
position j, its extension U has an image −1 in position −j. Then U has period
2(N + 1) on the whole discrete line:

Uk =

{
1 for k = n(2N + 2) + j

−1 for k = n(2N + 2)− j
(5.1)

Certainly K∞,∞U (with infinite Toeplitz matrix) agrees with the N components of
KNδ. More than that, exp(−K∞,∞)U agrees with exp(−KN )δ, and satisfies the
boundary conditions: zero in positions 0 and N + 1.

The Hankel part of the finite matrix corresponds to the negative images in U .
When j changes, the initial vector δ moves one way and its images move the other
way— the opposite of shift-invariance.

6. The wave equation. For the wave equation utt = uxx, eigenvalues are imag-
inary. Energy is conserved, not lost. The eigenfunctions with boundary conditions
u(0, t) = u(1, t) = 0 are still sin kπx. But the eigenvalues change from −k2π2 for the
heat equation to ±ikπ for the wave equation.

Starting from u0(x) with velocity ut = v0(x), d’Alembert found left and right
waves coming from u0 and a spreading wave coming from v0:

u(x, t) =
1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t
v0(s) ds. (6.1)

Compare with the solution to the semidiscrete equation utt = −Ku/h2:

u(t) = cos(
√
Kt/h) u0 + hK−1/2 sin(

√
Kt/h) v0. (6.2)

The matrix cosine and sine come from the matrix exponentials exp(±i
√
Kt/h). The

form (6.2) separates the waves evolving from u0 and v0. There are no fractional
powers of K because of the factor K−1/2, which corresponds to the integration in

(6.1) just as
√
K corresponds to | d

dx
|. In (6.3) below, this K−1/2 factor moves us

from sin(
√

K) to sinc(
√

K).
To find good approximations to cos(

√
Kt/h) and K−1/2 sin(

√
Kt/h), we start

with t/h = 1. The cosine and sinc matrices still have the eigenvectors vk:

cos(
√
K) =

N∑
k=1

cos(
√
λk) vkv

T
k and

sinc(
√
K) = K−1/2 sin(

√
K) =

N∑
k=1

sin(
√
λk)√
λk

vkv
T
k . (6.3)
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Recall from (3.5) that
√
λk = 2 sin( θk2 ) with θk = kπ

N+1 . Then the entries in the matrix
cosine become

cos(
√
K)m,n =

1

N + 1

N∑
k=1

cos(2 sin(
θk
2

))
(

cos((m− n)θk)− cos((m+ n)θk)
)
. (6.4)

That sum is exponentially close to an integral because cos(2 sin( θ2 )) is real analytic.
We recognize the Toeplitz and Hankel parts as Fourier cosine coefficients:

cos(
√
K)m,n ≈

1

π

∫ π

0

cos(2 sin(
θ

2
))
(

cos((m− n)θ)− cos((m+ n)θ)
)

dθ. (6.5)

Those integrals produce Bessel function values J2p(2) [13] as entries in cos(
√
K∞,∞):

Cosine coefficients cp =
1

π

∫ π

0

cos(2 sin(
θ

2
)) cos(pθ) dθ = J2p(2). (6.6)

For the matrix cos(
√
Kt/h) in (6.2), the entries of T and H become J2p(2t/h).

Unlike the (parabolic) heat equation, the (hyperbolic) wave equation is not smooth-
ing. Figure 6.1 shows an initial spike and a Gaussian, both splitting into left and right
waves (u0(x+t)+u0(x−t))/2. For the difference equation, U stays close to the Gaus-
sians but it oscillates badly for the spikes. Figure 6.2 shows the corresponding results
from initial velocities v0(x).

Now we turn to the sinc matrix that multiplies the initial velocity v0 in (6.2).
To see why the sinc function (sin θ)/θ appears, look at the final term in the exact
solution (6.1). That term is a convolution of v0 with a box function, equal to 1 on
[−t,+t]. In Fourier space this is multiplication by the transform of the box function.
That Fourier transform is exactly (sin θt)/θ = t sinc(θt).
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Fig. 6.1. Waves spreading left and right from u(0) have large oscillations in U when u(0) = δ.
The error |U − u| is too small to see when u(0) is smooth.

The discrete case involves sinc(
√
λ) = sinc(2 sin(θ/2)). We want its Fourier cosine

coefficients, the integrals sp in (6.8). Those integrals look alarming at first, but they
arise naturally so there must be hope. You will see that Hung Cheng found a way.
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To evaluate sinc(
√
K) = I − K/3! + K2/5! − · · · , the eigenvectors vk are more

useful than this infinite series. From the spectral theorem (6.3),

sinc(
√
KN ) =

N∑
k=1

sinc(
√
λk) vkv

T
k . (6.7)

As in (3.10) the m,n entry of this matrix is approximately (sm−n − sm+n)/π with

sp =

∫ π

0

sinc(2 sin(
θ

2
)) cos(pθ) dθ. (6.8)

Cheng’s Lemma Each integral sp comes from s0 and p values of Bessel
functions at x = 2:

sp = s0 − π
p∑
k=1

J2k−1(2) = π

∞∑
k=p+1

J2k−1(2). (6.9)

The first four integrals are s0 ≈ 2.2396, s1 ≈ 0.4278, s2 ≈ 0.0227, s3 ≈ 0.0006.
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Fig. 6.2. Oscillations when v(0) = δ(x) and the exact u(t) is a box function. Extra smoothness
and accuracy when v(0) = box and u(t) = box ∗ box = hat function.

Simplified proof: It was a key insight of Hung Cheng (in private correspondence)
to compute differences of the integrals sp. He worked with sp − s0, and sp − sp−1 is
even simpler:

sp − sp−1 =

∫ π

0

sinc(2 sin
θ

2
) (cos pθ − cos(p− 1)θ) dθ. (6.10)

The integrand is an even function of period 2π. So (6.10) equals half of the integral
from −π to π, and one quarter of the integral from −2π to 2π. Now write θ = 2φ and
dθ = 2dφ to shrink back to −π ≤ φ ≤ π :

sp − sp−1 =
1

2

∫ π

−π

sin(2 sinφ)

2 sinφ
(cos 2pφ− cos((2p− 2)φ)) dφ. (6.11)

That difference of cosines is −2 sinφ sin((2p−1)φ). After canceling 2 sinφ (this is the
nice step), we are left with

sp − sp−1 = −1

2

∫ π

−π
sin(2 sinφ) sin((2p− 1)φ)dφ = −πJ2p−1(2). (6.12)
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Then (sp − sp−1) + (sp−1 − sp−2) + · · ·+ (s1 − s0) produces sp − s0 in (6.9).
Signal speed. An important feature of the wave equation utt = uxx is that the

signal speed is finite. No information about the initial values at X reaches the point
x before the time t = |x −X|. This is apparent from the d’Alembert solution (6.1).
Equivalently, the solution at x, t depends only on initial values in the interval from
x− t to x+ t.

How is this property reflected in the semidiscrete wave equation utt = −Ku/h2 ?
Not exactly. The infinite Toeplitz matrices C∞ = cos(

√
K∞) and S∞ = sinc(

√
K∞)

are not banded. This would be expecting too much. What we do expect is rapid decay
beyond the appropriate diagonals. Since those matrices appear at time h (when t/h =
1 in the exponentials of ±i

√
Kt/h), the full matrices should be “morally tridiagonal”.

Notice that a fully discrete approximation (if it is explicit) does have finite
signal speed. That speed depends on the Courant-Friedrichs-Lewy (CFL) number
r = ∆t/∆x. The simplest finite difference approximation to utt = uxx would use K
and also K∗, the second difference matrix in time:

−K∗U(x, t) = U(x, t+ ∆t)− 2U(x, t) + U(x, t−∆t).

Working backwards in K∗U/(∆t)2 = KU/(∆x)2 , each value of U(x, t) comes from
earlier values on and inside a triangle with vertex at (x, t). The sides of the triangle
have slopes ±1/r. So U(x, t) uses only initial values u0(x) and v0(x) between x− t/r
and x+ t/r. The fully discrete problem is dealing strictly with banded matrices.

The consistency of the difference equation does not guarantee convergence of U
to u. If ∆t > ∆x so r > 1, then U is using initial values on a smaller interval than
[x − t, x + t] for the true solution. Without using the needed information from u0

and v0, the approximation U cannot converge to u. The Courant-Friedrichs-Lewy
requirement is r ≤ 1.

We hope to continue to convection-diffusion. But first and second difference
matrices don’t usually commute: they have different eigenvectors.

7. First differences and one-way waves. At this point we abandon K and
change to first differences. Our equation becomes ut = ux. Its solution is u0(x + t),
a pure translation of the initial function u0(x). If there is a left endpoint x = 0, we
don’t want a boundary condition there. The wave is arriving and the solution u0(t)
at that point is already known. If there is a right endpoint x = 1, then an inflow
condition is appropriate. When the condition is u(1, t) = 0 so that nothing enters,
the solution u(x, t) is zero for x+ t ≥ 1.

In the semidiscrete problem, one-sided differences are a natural choice:

∆ =


−1 1

−1 1
. . .

. . .

−1 1
−1

 and ut =
∆

h
u

The forward difference matrix ∆ is upper triangular, looking on the “upwind” side of
each mesh point for information. (Looking downwind with backward differences −∆T

would be a disaster, all waves are coming from the right side.) The missing 1 in the
last row of ∆ correctly reflects the boundary condition u = 0 at the right endpoint
x = 1.
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The matrix ∆ is Toeplitz and so are all its powers. We think of ∆ as S − I
where the upper triangular shift has SN = 0. The entries on the jth diagonal of
∆n = (S − I)n are binomial coefficients

(
n
j

)
times (−1)n+j . Then the entries on the

jth diagonal of the matrix exponential e∆ are

(e∆)i,i+j =

∞∑
n=0

(−1)n+j

n!

(
n

j

)
=

1

e

1

j!
for j = 0, . . . , N − 1 (7.1)

The infinite matrix exp(∆∞) would have these Poisson probabilities on all diagonals
j ≥ 0.

Notice that we do not use the eigenvectors of ∆ to study e∆. There is only one
line of eigenvectors! The matrix ∆ happens to be already in Jordan form, with a
single Jordan block. Its only eigenvector is (1, 0, . . . , 0) with λ = −1. We need to
approximate ut = ux by another difference matrix, to make life interesting again.

A more accurate approximation of the derivatives, and a more exciting choice of
the difference matrix, comes from centered first differences:

F =


0 1
-1 0 1

. . .
. . .

. . .

-1 0 1
-1 0

 and ut =
F

2h
u

This matrix is still Toeplitz but its powers will not have constant diagonals. The
effect of the boundary rows in F will move into the interior of Fn, one step at a
time. Consistently with the rest of this paper, we want an approximation for eF .
Since F is antisymmetric, its eigenvalues will be imaginary and its eigenvectors will
be orthogonal. Introduce the diagonal matrices D = diag(i, i2, . . . , iN ) and D−1 = D̄.
Then D−1FD multiplies row m by (−i)m and column n by in:

G = D−1FD = i


0 1
1 0 1

. . .
. . .

. . .

1 0 1
1 0

 .
The eigenvalues of G are already known to be i times 2 cos θk, with θk = kπ/(N+1) =
kπh as before. These are also the eigenvalues µk of F since the two matrices are
similar.

The eigenvectors of G are the same discrete sine vectors vk that have appeared
throughout this paper. The eigenvectors of F are then wk = Dvk:

D−1FDvk = µkvk means that FDvk = µkDvk and Fwk = µkwk.

Explicitly, the eigenvectors of F are wk = (i sin θk, i
2 sin 2θk, . . . , i

N sinNθk), to be
normalized so that ||wk||2 = w̄Tk wk = 1. Then the rank-one projection matrices wkw̄

T
k

onto these unit eigenvectors are almost Toeplitz plus Hankel. But the ‘Hankel’ part
has become “alternating Hankel” and this was completely new to us:

(wkw̄
T
k )m,n =

2

N + 1
im−n sin(mθk) sin(nθk)

=
1

N + 1
im−n

(
cos((m− n)θk)− cos((m+ n)θk)

)
. (7.2)
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For each wkw̄
T
k , the Toeplitz part has constant entries cp = (ip cos pθk)/(N + 1) on

diagonal p = m − n. The alternating Hankel part has constant absolute value but
alternating signs down each antidiagonal p = m+ n :

−1

N + 1
im+ni−2n cos((m+ n)θk) = (−1)n+1cp.

These projections wkw̄
T
k enter a matrix function like eF :

Exponential of F eF =

N∑
1

e2i cos(θk) wkw̄
T
k . (7.3)

Those eigenvalues have |eµk | = 1 so that eF is a unitary matrix. (Exponentials of
antisymmetric matrices are unitary, just as |eiθ| = 1.) As before this sum is close to
an integral:

(eF )m,n ≈
1

π

∫ π

0

e2i cos(θ)
(
im−n cos((m− n)θ) − (−1)nim+n cos((m+ n)θ)

)
dθ.

(7.4)
This matrix is T +AH, Toeplitz plus alternating Hankel. The alternating signs down
each antidiagonal of AH must reflect the fact that the original F uncouples even
indices from odd indices. The entries along the diagonal m − n = p of T and the
antidiagonal m+ n = p of AH are tp and (−1)n+1tp :

tp =
ip

π

∫ π

0

e2i cos(θ) cos(pθ) dθ = (−1)pJp(2). (7.5)

For eFt/2h those Bessel functions Jp are evaluated at 2t/2h. Always the space
variable turns up in the order p.

Recall that the exact solution to ut = ux is u0(x+ t). With boundary condition
u = 0 at x = 1, the solution is zero for x+ t ≥ 1. Then the solution operator at time
t = 2h is simply a shift by 2h. The exponential eF approximates that shift, since it
is the solution operator at t = 2h in the semidiscrete problem ut = Fu/2h.

How close is eF to a perfect shift? Not close, if the initial function u0 is a point
source. In that case we are looking at a single column of eF , which shows oscillating
entries. But if the initial function u0 is a Gaussian (therefore much smoother), then
this is translated in a coherent way. Figures 6.1 and 6.2 show similar phenomena for
the two-way wave equation.

We will leave untouched this classical question of the convergence of the dis-
cretized operator to the true solution operator. Before closing we include quick tests
to determine whether a matrix has the special form T +H or T +AH.

8. Toeplitz plus Hankel matrices. Matrices of this form fill a subspace TH of
the N2-dimensional space of N×N matrices. What is the dimension of that subspace,
and what tests on a matrix M will confirm that it can be written as M = T + H?
We quickly recall the answers.

M = T +H if and only if

Mi−1,j +Mi+1,j = Mi,j−1 +Mi,j+1 for 1 < i < N, 1 < j < N (8.1)

A Toeplitz matrix satisfies those (N − 2)2 conditions because Ti−1,j = Ti,j+1 and
Ti,j−1 = Ti+1,j . A Hankel matrix satisfies the same conditions because Hi−1,j =
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Hi,j−1 and Hi,j+1 = Hi+1,j . So the sum satisfies those conditions (8.1). They produce
a subspace TH of dimension N2 − (N − 2)2 = 4N − 4 for N > 1.

To find basis matrices for this subspace, we could try to choose separately the
2N − 1 diagonals of T and the 2N − 1 antidiagonals of H. But that gives 4N − 2
parameters. There must be a 2-dimensional intersection of T and H, and there is.
The all-ones matrix is both Toeplitz and Hankel. So is the checkerboard matrix with
entries (−1)i+j .

Note: The splitting in this paper comes from m− n and m+ n, in the cosines of
equation (3.6). K itself is pure Toeplitz, but our method puts the checkerboard part
into H and not T . The website math.mit.edu/highdegree develops other splittings,
with codes.

If the matrix M is required to be symmetric, that removes the entries of T on
N − 1 lower diagonals as independent parameters. The dimension of this subspace
STH drops from 4N − 4 to 3N − 3. Correspondingly, the tests (8.1) only apply in
the upper triangular part 1 < i < j < N . Those (N − 2)(N − 3)/2 conditions act on
the N ×N symmetric matrices (dimension N(N + 1)/2) to leave the correct subspace
STH.

If in addition the Hankel part H is required to be centrosymmetric, that removes
N − 1 more parameters. The lower antidiagonals are reflections of the upper antidi-
agonals, as in the matrices of this paper. And our examples had the further condition
that both parts T and H came from Fourier coefficients of the same function.

For M = T + AH, Toeplitz plus alternating Hankel, there is a new and equally
quick set of tests:

M = T +AH if and only if

Mi−1,j +Mi,j−1 = Mi+1,j +Mi,j+1 for 1 < i < N, 1 < j < N (8.2)

Toeplitz matrices T pass this test as before. Alternating Hankel matrices AH pass
because the test gives 0 = 0. ThereforeM = T+AH will pass. The separate subspaces
T and AH again have a 2-dimensional intersection, spanned by the Toeplitz matrices
with first row 1, 0,−1, 0, . . . and first row 0, 1, 0,−1, . . . . Then the subspace TAH has
the same dimension 4N − 4 = dim(T) + dim(AH)− dim(T ∩AH) as TH.

For fast computations with special subspaces of matrices, Morf and Kailath in-
troduced the fruitful idea of displacement rank [11, 10]. They included Toeplitz plus
Hankel matrices in this framework. Based on the tests (8.2), Toeplitz plus alternating
Hankel matrices can also be recognized by their low displacement rank. We are not
sure (but we can hope) that this subspace TAH will appear somewhere again.

9. Graph Laplacian B with Neumann boundary conditions. The discrete
Laplacian for a line of nodes is not the invertible matrix K but the singular matrix
B, with zero row sums:

B =


1 -1
-1 2 -1

. . .
. . .

. . .

-1 2 -1
-1 1

 . (9.1)

Nodes 0 and N+1 are no longer “grounded.” Rows 1 and N correspond to a Neumann

condition du
dx

= 0 at x = 0 and x = 1. In fact the eigenvalues of BN are exactly the

math.mit.edu/highdegree
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eigenvalues 2 − 2 cos θk of KN−1 with θk = kπ/N , together with the new eigenvalue
λ0 = 0.

With zero slope at the endpoints, the differential equation −uxx = λu yields the
eigenfunctions u = cos kπx. Then the eigenvectors of B are discrete cosines instead
of discrete sines. Again we sample the exact eigenfunctions, but now at half-integer
multiples of the step h = 1/N . The eigenvector for λ0 = 0 is q0 = (1, 1, . . . , 1)/

√
N .

The other N − 1 eigenvectors are

qk =

√
2

N

(
cos(

1

2
kπh), cos(

3

2
kπh), . . . , cos((N − 1

2
)kπh)

)T
. (9.2)

Then all functions f(B) come from the spectral theorem B = QΛQT :

f(B) =

N−1∑
k=0

f(λk) qkq
T
k (9.3)

Now introduce the entries (cosines) of these eigenvectors. Replace each cosA cosB
by [cos(A − B) + cos(A + B)]/2 to see that f(B) is Toeplitz plus Hankel. Then
approximate the sum by an integral:

f(B)m,n ≈
1

π

∫ π

0

f(2− 2 cos θ)
(

cos((m− n)θ) + cos((m+ n)θ)
)

dθ (9.4)

The Hankel part of the approximation to f(B) has opposite sign to the Hankel part
of f(K) ! For the matrix e−Bt that solves the heat equation, the entries will again
use values bp = e−2tIp(2t) of the modified Bessel function of the first kind in (4.5):

e−B ≈ T +H = bm−n + bm+n for m+ n ≤ N + 1 (9.5)

For the heat equation on [0, 1], with Neumann conditions at the endpoints, the
same placement of images will succeed. But now the image sources are positive (to
make the solution an even function across x = 0 and also across x = 1). The images
are still responsible for the Hankel part, shifting in the opposite direction from u0(x).
The Hankel part has a plus sign, not a minus sign, exactly as in equation (9.4) for
the matrix case.

What we have done for K and B extends to three more matrices, all involving
changes in the corners of K:

C with C1,N = CN,1 = −1 ( Periodic circulant )
L with L1,1 = 1 and LN,N = 2 (Neumann-Dirichlet)
S with S1,1 = 2 and SN,N = 1 (Dirichlet-Neumann)

Periodic case The boundary conditions u(0) = u(1) and du
dx

(0) = du
dx

(1) produce
a circulant matrix C with −1, 2,−1 on its cyclic diagonals. All functions of circulant
matrices are still circulants (therefore Toeplitz). The eigenvectors are the columns of
the Fourier matrix [14]. If we prefer to work with real eigenvectors (as we do), those
come as above from sampling the continuous eigenfunctions sin 2πkx and cos 2πkx.
Separately, those lead to Hankel parts as they did for K and B. Combined, the two
Hankel parts cancel because of opposite signs.

We now have two eigenvectors (sine and cosine) for a typical frequency k, and half
as many frequencies. The usual step from sum to integral yields a good approximation
for the midlle diagonals of CN and an exact value for C∞,∞:

(f(CN ))m,n ≈ cm−n = (f(C∞,∞))m,n. (9.6)
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The entries cp are simply the Fourier coefficients of the function f(2 − 2 cos θ). For
the exponential e−C we see modified Bessel again, but there is only the Toeplitz part:

(e−Ct/h)m,n ≈ e−2Im−n(2t/h). (9.7)

For the finite matrix, we use these values for the middle diagonals |m−k| ≤ (N+1)/2,
and complete the matrix as a circulant.

Neumann-Dirichlet The boundary conditions du
dx

(0) = 0 and u(1) = 0 change
K1,1 = 2 to L1,1 = 1 and they leave LN,N = 2. There is an important change in the
eigenvectors. For the continuous problem they become cos((k+ 1

2 )πx), to behave like
a cosine at x = 0 and like a sine at x = 1. The eigenvalues are (k + 1

2 )2π2.
The eigenvalues and eigenvectors of the finite matrix L have M = N + 1

2 where
K and B had N + 1 and N :

λk = 2− 2 cos θk with θk =
(k − 1

2 )π

M
(9.8)

yk =

√
2

M

(
cos(

1

2
θk), cos(

3

2
θk), . . . , cos((N − 1

2
)θk)

)T
(9.9)

The m,n component of f(LN ) =
∑
f(λk)yky

T
k is:

2

M

N∑
1

f(λk) cos
(

(m− 1

2
)(k − 1

2
)
π

M

)
cos
(

(n− 1

2
)(k − 1

2
)
π

M

)
. (9.10)

Then the integral approximation to f(L)m,n is

2

π

∫ π

0

f(2− 2 cos θ)
(

cos((m− n)θ) + cos((m+ n− 1)θ)
)

dθ. (9.11)

Notice the change to m+ n− 1 in the Hankel part.
This approximation is good above the main antidiagonal, where L imitates B

(Neumann). Below that antidiagonal, L imitates K (Dirichlet). There is aliasing in
the terms cos((m + n − 1)θk) = cos((m̄ + n̄ − 1)θk), where m̄ = N + 1 − m and
n̄ = N + 1 − n. So we have the option of changing to m̄, n̄ in case m + n > N + 1.
The sum is the same but the integrand is less oscillatory. For the exponential of −L
the approximation is still Toeplitz plus Hankel, but no longer centrosymmetric. We
see e−B above the antidiagonal and e−K below:

(e−L)m,n ≈ e−2Im−n(2) + e−2Im+n−1(2) for m+ n ≤ N + 1 (9.12)

(e−L)m,n ≈ e−2Im−n(2) + e−2I2N+2−m−n(2) for m+ n > N + 1 (9.13)

The Dirichlet-Neumann matrix is the reflection of Neumann-Dirichlet.

10. Resolvents. The resolvent R(z) ≡ (zI −A)−1 of a matrix A offers another
way to understand the Toeplitz plus Hankel property of all functions f(A). When the
resolvent is Toeplitz plus Hankel for all z, the Cauchy integral formula

f(A) =
1

2πi

∫
Γ

f(z) (zI −A)−1 dz
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shows that f(A) is likewise Toeplitz plus Hankel. If the contour Γk encloses one simple
eigenvalue λk, the projection

Pk = vkv
T
k =

1

2πi

∫
Γk

(zI −A)−1 dz

is also T +H. (For a repeated eigenvalue, Pk is the projection onto the eigenspace.)
Thus we have three equivalent conditions (1 ⇒ 2 ⇒ 3 ⇒ 1) for a symmetric matrix
to have the “TH property:”

1. All analytic functions f(A) are Toeplitz plus Hankel
2. The resolvent R(z) ≡ (zI −A)−1 is Toeplitz plus Hankel for (almost) all z
3. The projections onto all eigenspaces of A are Toeplitz plus Hankel.

The exceptions in 2 are the eigenvalues of A, where zI − A is singular. This “TH
property” is much stronger than merely the requirement that A itself is T +H.

The resolvent (which would be involved in studying the Helmholtz equation
−uxx − k2u = f(x)) is the Laplace transform of the exponential:

(zI −A)−1 =

∫ ∞
0

etAe−ztdt .

Our exact expression for e−Kt as a finite sum allows us to find the resolvent of −K ex-
actly, as a finite sum of Laplace transforms of simple functions (of the form e2 cos t−2t).
Alternatively, we have e−Kt approximately, in terms of modified Bessel functions of
the first kind, Ip. The key Laplace transform L is that of e−2tIp(2t):

L(p, z) =
2p√

z2 + 4z (z + 2 +
√
z2 + 4z)p

.

Hence the resolvent of A = −K is approximately:(
(zI +K)−1

)
m,n
≈ L(|m− n|, z)− L(m+ n, z) . (10.1)

As usual, we make use of symmetry and centrosymmetry for m + n > N + 1. The
approximation (10.1) is very accurate. For example, with z = 5+i, the approximation
is close to machine precision at N = 15.

11. The Four Corners Theorem. We had expected that only special values
in the (1, 1) and (1, N) and (N, 1) and (N,N) corners of our second difference matrix
would ensure that all matrix functions are T + H. But MATLAB experiments told
us we were wrong. For random values in the four corners (maintaining symmetry by
A1,N = AN,1) we computed the eigenvectors vk. In every case the projections vkv

T
k

passed the test (8.1). Then A =
∑
λkvkv

T
k has the TH property.

We finally understood why every M = vkv
T
k passes the test. Subtract 2Mi,j from

both sides of (8.1), which does not change the test:

Mi−1,j − 2Mi,j +Mi+1,j = Mi,j−1 − 2Mi,j +Mi,j+1 (11.1)

At each interior position (i, j), the second difference ∆2 down column j of M must
equal the second difference along row i. Now apply this test to M = vvT . It requires:

v(j)∆2v(i) = v(i)∆2v(j) for 1 < i < N, 1 < j < N (11.2)
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All interior rows give Av = ∆2v = λv. Arbitrary entries in the corners of A = AT

have no effect. (If we try to change other entries in row 1, A loses symmetry. And if
A has more than the three diagonals, all our T +H reasoning fails.) The test (11.2)
is passed, because it becomes

v(j)λv(i) = v(i)λv(j) for 1 < i < N, 1 < j < N (11.3)

We conclude that every vvT is T +H, and therefore all functions of A are T +H.
The changes in A1,1 and AN,N correspond to Robin boundary conditions like

du
dx

(0) = au(0). Perhaps a four corner change corresponds to Robin conditions linking

x = 0 and x = 1 (which we have never seen).
In relation to boundary value problems, we note that explicit formulas for eigen-

values and inverses of tridiagonal Toeplitz matrices with four perturbed corners have
been studied [20]. The eigenvectors are not simple sines or cosines.

For an integral operator Au(x) =
∫
M(x, y)u(y)dy with kernel M(x, y), the T+H

test (11.1) in the continuous case would become Mxx = Myy. Solutions to this wave
equation have exactly the form M = f(x− y) + g(x+ y). Then the kernel is Toeplitz
plus Hankel.

12. Conclusions. The eigenvalues and eigenvectors of a symmetric matrix K
give a formula for all functions f(K). When those eigenvectors are discrete sines or
cosines, every f(K) will be Toeplitz plus Hankel. More than that, the sum for the
entries of f(K) can be approximated by an integral. For second difference matrices K,
this paper identifies those integrals as Bessel coefficients. Those give exact solutions
to basic finite difference equations on a half-line x ≥ 0 or on the whole line.

The formulas for e−Kt/h
2

and cos(
√
Kt/h) and sinc(

√
Kt/h) allow a much more

precise estimate for discretization errors than just O(h2).
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