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Solutions to Exercises 1

Problem Set 1.1, page 8

1 ¢ = ma and d = mb lead to ad = amb = be. With no zeros, ad = bc is the equation
for a 2 X 2 matrix to have rank 1.

2 The three edges going around the triangle are u = (5,0),v = (—5,12), w = (0, —12).
Their sum is v + v + w = (0,0). Their lengths are ||u|| = 5,||v|| = 13, ||w]|| = 12.
This is a 5 — 12 — 13 right triangle with 52 + 122 = 25 + 144 = 169 = 13%—the best
numbers after the 3 — 4 — 5 right triangle.

3 The combinations give (a) alinein R® (b) aplanein R® (c) all of R3.

4 v+w=(2,3)and v — w = (6, —1) will be the diagonals of the parallelogram with

v and w as two sides going out from (0, 0).

ol

5 This problem gives the diagonals v + w = (5,1) and v — w = (1,5) of the paral-

lelogram and asks for the sides v and w : The opposite of Problem 4. In this example

v = (3,3) and w = (2,-2). Those come from v = %(v + w) + +(v — w) and

w=3(v+w)—i(v—w).
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3v+w = (7,5) and cv + dw = (2¢ + d, ¢ + 2d).
ut+v =(-2,3,1)andu+v+w = (0,0,0) and 2u+2v+w = ( add first answers) =
(—2,3,1). The vectors u, v, w are in the same plane because a combination u + v + w

gives (0,0, 0). Stated another way : w = —v — w is in the plane of v and w.

The components of every cv+dw add to zero because the components of v = (1, —2, 1)
and of w = (0,1, —1) add to zero. ¢ = 3 and d = 9 give 3v + 9w = (3,3, —6). There
is no solution to cv + dw = (3, 3, 6) because 3 + 3 + 6 is not zero.

The nine combinations ¢(2,1) + d(0,1) with ¢ = 0,1,2 and d = 0,1, 2 will lie on a

lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.

c=2,d=2

C:O,d:2 C:27d:O

c=0,d=1

o= 07 d— 0 T T T T T
The fourth corner can be (4, 4) or (4,0) or (—2, 2). Three possible parallelograms!
Four more corners (1,1,0),(1,0,1),(0,1,1), (1,1,1). The center point is (1,1, %).
Centers of faces are (3, 3,0), (3, 3,1) and (0, 3, %) (1,3,3) and (5,0,%), (5,1, 3).
The combinations of ¢ = (1,0,0) and i + j = (1, 1,0) fill the 2y plane in xyz space.
(a) Sum = zero vector. (b) Sum = —2:00 vector = 8:00 vector.

(c) 2:00 is 30° from horizontal = (cos §,sin §) = (v3/2,1/2).

Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 125 = (0, 12).
First part: w, v, w are all in the same direction.

Second part: Some combination of u, v, w gives the zero vector but those 3 vectors

are not on a line.

The two equations are ¢ + 3d = 14 and 2c + d = 8. The solution is ¢ = 2 and d = 4.
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The point Z’u + Zw is three-fourths of the way to v starting from w. The vector

1 1
i + i is halfway to u = 3? + SW The vector v + w is 2u (the far corner of the

parallelogram).

The combinations cv 4+ dw with 0 < ¢ < 1 and 0 < d < 1 fill the parallelogram with
sides v and w. For example, if v = (1,0) and w = (0, 1) then cv + dw fills the unit
square. In a special case like v = (a,0) and w = (b,0) these combinations only fill a

segment of a line.

With ¢ > 0 and d > 0 we get the infinite “cone” or “wedge” between v and w.
For example, if v = (1,0) and w = (0, 1), then the cone is the whole first quadrant
x > 0,y > 0. Question: What if w = —v? The cone opens to a half-space. But the

combinations of v = (1,0) and w = (—1,0) only fill a line.

(a) %u + %v + %w is the center of the triangle between u, v and w; %u + %w lies
halfway between v and w (b) To fill the triangle keep ¢ > 0, d > 0, e > 0, and

c+d+e=1.

The sum is (v —u) 4 (w —v) + (u — w) = zero vector. Those three sides of a triangle

are in the same plane!

The vector §(u + v + w) is outside the pyramid because c +d + e = 5+ 3 + 3 > 1.

22 All vectors in 3D are combinations of u, v, w as drawn (not in the same plane). Start by

23

24

seeing that cu + duv fills a plane, then adding all the vectors ew fills all of R3. Different

answer when u, v, w are in the same plane.

A four-dimensional cube has 2* = 16 corners and 2 - 4 = 8 three-dimensional faces

and 24 two-dimensional faces and 32 edges.

Fact: For any three vectors u, v, w in the plane, some combination cu + dv + ew is
the zero vector (beyond the obvious ¢ = d = e = 0). So if there is one combination
Cu+ Dv+ Ew that produces b, there will be many more—just add ¢, d, e or 2¢, 2d, 2e

to the particular solution C, D, E.



4 Solutions to Exercises

The example has 3u — 2v + w = 3(1,3) — 2(2,7) + 1(1,5) = (0,0). It also has
—2u+ 1lv + 0w = b = (0,1). Adding gives u — v + w = (0, 1). In this case ¢, d, e
equal 3,—2,1and C, D, E = —2,1,0.

Could another example have u, v, w that could NOT combine to produce b ? Yes. The
vectors (1,1), (2,2), (3, 3) are on a line and no combination produces b. We can easily

solve cu + dv + ew = O but not Cu + Dv + Fw = b.

25 The combinations of v and w fill the plane unless v and w lie on the same line through
(0,0). Four vectors whose combinations fill 4-dimensional space: one example is the
“standard basis” (1,0, 0,0), (0, 1,0,0), (0,0, 1,0), and (0,0, 0, 1).

26 The equations cu + dv + ew = b are

2¢ —d =1 Sod=2e c=3/4
—c+2d —e=0 then ¢ = 3e d=2/4
—d+2e=0 then4e =1 e=1/4
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Problem Set 1.2, page 16

1lu-v=-244+24=0,u-w=—-6+16=1Lu-(v+w)=u-v+u-w=
O+1l,w-v=44+6=10=v - w.

2 The lengths are ||u|| = 1 and ||v| = 5 and ||w|| = v/5. Then |u - v| = 0 < (1)(5) and

|v - w| = 10 < 5+/5, confirming the Schwarz inequality.

3 Unit vectors v/||v|| = (3, 2) = (0.8,0.6) and w/|w|| = (1/+/5,2//5). The vectors
w, (2,—1), and —w make 0°,90°,180° angles with w. The cosine of § is ”;";—” .
wo_ _
o = 10/5V5 = 2/V5.
4 For unit vectors u,v,w: (a) v-(—v) = —1 b (v+w)-v—w)=v-v+

wv—vew—w-w=1+( )—( )—1=0s060=90° (noticev - w = w - v)
© (v—2w) - (v+2w)=v-v—4dw-w=1—-4=-3.

5 u; =v/||v|| = (1,3)/v10 and uy = w/|w|| = (2,1,2)/3. U; = (3,—1)/v/10 s
perpendicular to u; (and so is (—3,1)/4/10). U could be (1, —2,0)/+/5: There is a
whole plane of vectors perpendicular to ue, and a whole circle of unit vectors in that

plane.

6 All vectors w = (¢, 2¢) are perpendicular to v = (2, —1). They lie on a line. All
vectors (z,y, z) with x + y + z = 0 lie on a plane. All vectors perpendicular to both

(1,1,1) and (1,2, 3) lie on a line in 3-dimensional space.

7 (a) cosf = v - w/||v||||lw]| = 1/(2)(1) so § = 60° or w/3 radians  (b) cosf =
0so @ = 90° or /2 radians (c) cosf = 2/(2)(2) = 1/2s0 6 = 60° or 7/3
(d) cosf = —5//10v/5 = —1/+/2 s0 6 = 135° or 37 /4 radians.

8 (a) False: v and w are any vectors in the plane perpendicular to v  (b) True:

u-(v+2w)=u-v+2u-w=0 (c) True, [|[u—v|? = (u—")-(u—)

splitsintou-u+v-v=2whenu-v=v-u=0.
9 If vows/v1w1 = —1then vowy = —viw; Or vV1wi +vewe = v-w = 0: perpendicular !

The vectors (1,4) and (1, —) are perpendicular because 1 — 1 = 0.
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Slopes 2/1 and —1/2 multiply to give —1. Then v - w = 0 and the two vectors

(the arrow directions) are perpendicular.

v+ w < 0 means angle > 90°; these w’s fill half of 3-dimensional space. Draw a
picture to show v and the w’s.

(1,1) is perpendicular to (1,5) — ¢(1,1) if (1,1) - (1,5) —¢(1,1) - (1,1) =6 —2¢ =0
(thenc=3). v-(w —cv) = 0if ¢ = v - w/v - v. Subtracting cv is the key to
constructing a perpendicular vector w — cv.

One possibility among many: v = (1,—1,0,0),v = (0,0,1,-1),w = (1,1,-1,-1)
and (1,1,1,1) are perpendicular to each other. “We can rotate those u, v, w in their

3D hyperplane and they will stay perpendicular.”

1(z+y)=(2+8)/2=>5and5 > 4; cosf = 2v/16/v/10V10 = 8/10.
[v][?=1+1+4---+1=9s0|v|]=3;u=v/3=(3,...,3) isaunit vector in 9D;

w = (1,-1,0,...,0)/v/2 is a unit vector in the 8D hyperplane perpendicular to v.
cosa = 1/v/2, cosp = 0, cosy = —1/+/2. For any vector v = (v1,vs,v3) the
cosines with the 3 axes are cos? a + cos? 8 + cos® y= (v} + v3 + v3)/||v|*= 1.
|[v||? = 42 + 22 = 20 and ||w||? = (—1)2 + 22 = 5. Pythagoras is ||(3,4)]|> = 25 =
20 + 5 for the length of the hypotenuse v + w = (3,4).

llv+wl|]?> = (v+w) - (v+w) =v-(v+w)+w- (v+ w). This expands to
vov+2v-w+w-w = ||v]]2 4 2||[v]| |[|w]| cosd + ||w]||?.
We know that (v —w) + (v —w) = v+ v — 2v - w+ w - w. The Law of Cosines writes

|v|[||w]| cos @ for v - w. Here 6 is the angle between v and w. When 6§ < 90° this
v - w is positive, so in this case v - v + w - w is larger than |Jv — w||.

Pythagoras changes from equality a®+b? = c? to inequality when & < 90° or 6 > 90 °.
2v-w < 2||v||||w] leads to |v +wl||? = v-v+2v-w+w-w < ||v]|*+2||v||||w| +
||lw||2. This is (||v|| + ||w]||)?. Taking square roots gives |v + w|| < ||v|| + |Jw]|.
viw? 4 2uwivaws + v3wE < v3w? + v?w? + viw? + viw3 is true (cancel 4 terms)

because the difference is vZw? + v3w? — 2viwivows Which is (viws — vawi)? > 0.
1wy +vywy
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22 Example 6 gives |u1||U;| < 3 (u? + U}) and |us||Us| < 3(u3 + U3). The whole line
)

becomes .96 < (.6)(.8) + (.8)(.6) < 1(.62 +.8%) + 1(.82 +.6?) = 1. True: .96 < 1.

23 The cosine of § is x/\/22 + y2, near side over hypotenuse. Then | cos #|? is not greater
than 1: 22/(2% +¢?) < 1.

24 These two lines add to 2||v||? + 2||w]|?:
lv+w|?=@w+w) v+w)=v-v+v-wtw -v+w- w

v —w||?=@v-w) - v-—w)=v-v-—v-w-—w-v+w- w

25 The length ||v — w|| is between 2 and 8 (triangle inequality when ||v|| = 5 and ||w]|| =

3). The dot product v - w is between —15 and 15 by the Schwarz inequality.

26 Three vectors in the plane could make angles greater than 90° with each other: for
example (1,0), (—1,4), (—1,—4). Four vectors could not do this (360° total angle).
How many can can be perpendicular to each other in R? or R"? Ben Harris and Greg
Marks showed me that the answer is n 4+ 1. The vectors from the center of a regular
simplex in R" to its n+ 1 vertices all have negative dot products. If n+ 2 vectors in R™
had negative dot products, project them onto the plane orthogonal to the last one. Now
you have n + 1 vectors in R™~! with negative dot products. Keep going to 4 vectors in

R?: no way!

27 The columns of the 4 by 4 “Hadamard matrix” (times %) are perpendicular unit

vectors:
1 1 1 1 The columns have
L, 1]t -1 1 -1 itititi=1
2011 1 -1 -1 Their dot products
1 -1 -1 1 are all zero.

28 The commands V = randn (3, 30); D = sqrt (diag (V' xV)); U = V\D; will give
30 random unit vectors in the columns of U. Then v’ % U is a row matrix of 30 dot

products whose average absolute value should be close to 2/7.
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29 The four vectors v1, v2, V3, v4 must add to zero. Then the four corners of the quadri-
lateral could be 0 and v; and v; + v2 and v; + v2 + v3. We are allowing the side

vectors v to cross each other—can you answer if that is not allowed ?
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Problem Set 1.3, page 26

1 The column space C(A;) is a plane in R?: the two columns of A, are independent
The column space C(A) is all of R®

The column space C(A3) is a line in R®

2 The combination Az = column 1 — 2 (column 2) + column 3 is zero for both matrices.

This leaves 2 independent columns. So C(A) is a (2-dimensional) plane in R?.

3 B has 2 independent columns so its column space is a plane. The matrix C' has the

same 2 independent columns and the same column space as B.

14 4 z1
Typical dot product is
4 Az = | 28 By=| 8 Iz=2=| 2
2(1) + 1(2) + 2(5) = 14
18 z3
2] 1] p 14
5Ac=1|4 | +2| 2 | +5| 4 | =] 28
0 1 0 2
1] o] 0 4
By=4|1|+4| 1 |+10| 0 | = 8
1 1 1 18
1 0 0 Z1
Iz=2z1| 0 |+2|1|+2z|0]|=] 2
0 0 1 23

6 A has 2 independent columns, B has 3, and A + B has 3. These are the ranks of A and
B and A + B. The rule is that rank(A + B) < rank(A) + rank(B).

1 3 3 1 4 4

7 (a) A= B = A+ B = =rank 1
2 4 4 2 6 6
1 3 -1 -3 0 0

(b) A= B = A+ B = =rank 0
2 4 -2 —4 0 0
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1 0 0 O 0 0 0O
01 0 0 0 0 0O
(©) A= B = A+ B=1=rank4
0 0 0 O 0 010
0 0 0 O 0 0 0 1

The column space of A is all of R®. The column space of B is a line in R®>. The
column space of C'is a 2-dimensional plane in R*. If C' had an additional row of zeros,

its column space would be a 2-dimensional plane in R*.

1 1 2 Seven ones is the maximum for
A=|1 1 1 rank 3. With eight ones, two
1 2 1 columns will be equal
4 3 9 has rank 1: 1 independent column,
5 15 1 independent row
B 1 2 -5 has 1 independent column in R?,
4 8 =20 1 independent row in R®
(a) If B has an extra zero column, A and B have the same column space. Different row

spaces because of different row lengths !
(b) If column 3 = column 2 — column 1, A and B have the same column spaces.

(c) If the new column 3 in B is (1,1, 1), then the column space is not changed or

changed depending whether (1,1, 1) was already in C(A).

If b is in the column space of A, then b is a combination of the columns of A and
the numbers in that combination give a solution x to Ax = b. The examples are solved

by (z1,72) = (1,1) and (1, —1) and (-1, 3).

272
1 0 1 0 2 0
A= -1 1 B = 0 2 A+B = | -1 3 | has the
0 —1 -1 -2 -1 -3

same column space as A and B (other examples could have a smaller column space :

for example if B = — A in which case A + B = zero matrix).
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1 0 2
A=1]3 1 9 | hascolumn 3 = 2 (column 1) + 3 (column 2)
5 0 10
(14 7]
A= 2 5 8 | hascolumn3 = —1 (column 1) + 2 (column 2)
3 6 9
1 1 2
A= 1|2 2 4 | has2independent columnsif g # 0
i 0 0 q ]

If Az = b then the extra column b in [ A b} is a combination of the first columns,

so the column space and the rank are not changed by including the b column.
(a) False: B could be — A, then A + B has rank zero.

(b) True : If the n columns of A are independent, they could not be in a space R™ with

m < n. Therefore m > n.

(c) True : If the entries are random and the matrix has m = n (or m > n), then the

columns are almost surely independent.

1 0 0 0 1 0 1 0
rank 2 : + rank 1 : +
0 0 0 1 0 0 0 0
1 0 1 0
rank O : —
0 0 0 0
1 0 0 3
3|1 |+4]1|+5]0|=| 7|=5Sz=0b
1 1 1 12
1 0 0
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1t ool [wm ] [1]
1 1 0 ya | = | 1 | leadstoy; = 1,y2 = 0,y3 = 0 since b = column 1.
| 1 1 1 IR i 1 ]
1t ooyl 1] " 1
1 1 0 yo | = | 4 | leadsto | yo [ = | 3 first 3 odd numbers.
111 [y | 9] U3 5
The sum of the first 3 odd numbers is 32 = 9. The sum of the first 10 is 10?> = 100.
1 0 0 Y1 c1 c1
Sy=111 0 yo | = | ¢ | issolvedby y = | ¢y —¢; |. Thisis
1 1 1 Y3 c3 C3 — C2
1 0 0 c1
y=S"le=| -1 1 0 ¢y | . S is square with independent columns. So S

1 -1 1 c3
has an inverse with SS—! = §—15 = I.

To solve Ax = 0 we can simplify the 3 equations (this is the subject of Chapter 2).
xr1+ 229+ 3r3=0 T1+ 209+ 3x3=0
Row 2 — 3(row 1)
Start from Az =0 3x1 + Hxo+6x3=0 —x9—3x3=0
row 3 — 4(row 1)
4r1 4+ Txo+923=0 —xr9—3x3=0
If x3 = 1 then o = —3 and 21 = 3. Any answer & = (3¢, —3¢, ¢) is correct.
2 1
1 1 0 1 0 ¢c=-1 0 0 O have
4 2
3 2 1 1 1 0 2 1 5 = 7 dependent
—2 1
7 4 c¢c=3 0 1 1 3 3 6 columns
4 -2

The equation Az = 0 says that « is perpendicular to each row of A (three dot products
are zero). So x is perpendicular to all combinations of those rows. In other words, x is

perpendicular to the row space (here a plane).

An important fact for linear algebra: Every « in the nullspace of A (meaning Ax = 0)

is perpendicular to every vector in the row space.
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Problem Set 1.4, page 35

13

1 Here are the 4 ways to multiply AB and the operation counts. A is m by n, B is n by p.

Row ¢ times column &
Matrix A times column k
Row 7 times matrix B

Column j of A times row j of B

mp dot products, n multiplications each
p columns, mn multiplications each
m rows, np multiplications each

n (columns) (rows), mp multiplications each

2A:[a a a}factorsintoC’R:[aﬂl 1 1}

1 00 1 00 1 00
3|1 10 -1 1 0|=|010
1 1 1 1 -1 1 1 0 1
[123]4 4[123} 4 8 12
5:[32} 5 =|5 10 15
6 6 6 12 18
4(&1)[11}1[111}
=2[111} =[222}
1
[11}1[111] 1 1 1
1 :[11}111:[222}
| 1] |1 11
1 2 1 3 1 4 15 1 4 1 9
(b) = -
0 1 0 1 0 1 0 1 0 1 0 1
1 2 1 3 1 4 1 2 1 7 1 9
0 1 0 1 0 1 0 1 01 0 1

5 A has 7 columns and 4 rows. Those columns are vectors in 4-dimensional space. We

cannot have 5 independent column vectors because we cannot have 5 independent vec-

tors in 4-dimensional space. (This is really just a restatement of the problem. The proof
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comes in Section 3.2: Every m by n matrix C', with m < n has a nonzero solution to

Cz = 0. Here m = 4 and n = 5 and 5 columns of C' cannot be independent.)

8 A=

B=

2

-2

0

S e N

4
6

1

o O

o O

6
2
6

0
0

—_

o o

2 1 0
C=1100
3 0 1
-1 0 2 0
0 1 2 0 | =AinProblem6.
0 0 0 1
2 1 A=C
4 1 = Al and
0 1 R=1
2 1 1 0
4 0 0 1|=CR
6

9 Arandom 4 by 4 matrix has independent columns (C'= A and R = I) with probability 1.

(We could be choosing the 16 entries of A between 0 and 1 with uniform probability

by A = rand(4,4). We could be choosing those 16 entries of A from a “bell-shaped”

normal distribution by A = rand(4,4). If we were choosing those 16 entries from

a finite list of numbers, then there is a nonzero probability that the columns of A are

dependent. In fact a nonzero probability that all 16 numbers are the same.)

10 If A is arandom 4 by 5 matrix, then (using rand or randn as above) with probability 1

the first 4 columns are independent and go into C'. With probability zero (this does not

mean it can’t happen!) the first 4 columns will be dependent and C' will be different

(C will have r columns with r < 4).

11 A=

1

0
0
0

0
1
0

—

o o o

0
1
0
0

1 0 a ¢

01

b d

= C'R. Many other possibilities !
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_1 2 1 01 _1 2__0 1 0 -1

12 A, = Ay =
1 3 01 1 1 3 0 0 1 2
_2 1 05 1.5 _1 O-_l 0 0 4

Az = [ } Ay =
6 0 2 01 1 0

1
13 C = andR:{Q 4}haveCR:

3 6 12

14
and CRC — and ROR = [ 28 56 }
42

Here is an interesting fact when A is m by n and B is n by m. The m numbers on

the main diagonal of AB have the same total as the n numbers on the main diagonal of

BA. Example:
0 3 12 15 18
1 2 3 8 26
A= B=|1 4 AB = BA=| 17 22 27
4 5 6 17 62
2 5 22 29 36
8+62=12+22+ 36
3 6 6 -7 2 0 3 4
14
5 10 7T 6 3 6 -2 =3
rank one orthogonal columns rank 2 A2 =1

15 1. Column j of A equals the matrix C' times column j of R.

This is a combination of the columns of C.

2. Row 7 of A is row 7 of C times the matrix R.

This is a combination of the rows of R.

3. (row ¢ of C) - (column j of R) gives A;;
That dot product requires the number of columns of C' to equal the number of

rows of R.
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4. C has r columns so R has r rows (to multiply CR). Those columns of C' are
independent (by construction). Those rows of R are independent (because R

contains the r by r identity matrix).

16 (a) The vector ABx is the matrix A times the vector Bx. So it is a combination of the

columns of A. Therefore C(AB) C C(A).
1 0 00| . ‘

(b) A= B= give AB = zero matrix and C(AB) = zero vectors.
0 0 0 1

17 (a) If A and B have rank 1, then AB hasrank 1 or 0. A = uv™ and B = ay™T give

AB = u(vTz)yT so AB = zero matrix if the dot product vz happens to be zero.

(b) If A and B are 3 by 3 matrices of rank 3, then it is true that AB has rank 3.
One approach: If ABx = 0 then Bx = 0 because A has 3 independent columns.

But Bx = 0 only when « = 0, because B has 3 independent columns.

1 0
(¢) Suppose AB = BA for all 2 by 2 matrices B. Choose B = so that
0 0
c d 1 0 1 0 c d ) c 0 c d
AB= = . This tells us that =
e f 0 0 e 0 0 0
c 0 0 1
and therefore d = e = 0. Now choose B = sothat AB =
0 f 0 0
0 1 c 0 0 ¢
= . This tells us that = andc = fand A = cl.
0 0 0 f 0 0 0 0
3 4
18 (a) AB = and BC =
1 2 4 3
4 3
(b) (AB)C = column exchange of AB =
2 1

4 3
A(BC') = row exchange of BC' = = same result ABC.
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tool]f[1 11 i1 1] Jolfor 1]
19 AB=|1 1 0 01 1|=1]1 +]1 +
11 1 0 01 1 1
ollo o 1]
0
1
111 00 0 0 0 0 11 1
=11 1(+|011[+|000O0|=]|12 2
111 01 1 0 0 1 1 2 3
1[100}1[110}1[111} 3 21
BA= |0 +11 +11 =12 2 1

0 0 1 1 11
20 AB = (4 x 3) (3 x 2) needs mnp = (4) (3) (2) = 24 multiples.
Then (AB)C = (4 x 2) (2 x 1) needs (4) (2) (1) = 8 more: TOTAL 32.
BC = (3 x 2) (2 x 1) needs mnp = (3) (2) (1) = 6 multiplies.
Then A(BC) = (4 x 3) (3 x 1) needs (4) (3) (1) = 12 more: TOTAL 18.

Best to start with C' = vector. Multiply by B to get the vector BC, and then the vector

A(BC). Vectors need less computing time than matrices !
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Problem Set 2.1, page 46

1 Multiply equation 1 by £5; = % = 5 and subtract from equation 2 to find 2z + 3y = 1

(unchanged) and —6y = 6. The pivots to circle are 2 and —6. Back substitution in

—6y = 6 gives y = —1. Then 2z + 3y = 1 gives x = 2.

2 The row picture and column picture and coefficient matrix are changed. The solution

has not changed.

3 Subtract 7% (or add %) times equation 1. The new second equation is 3y =3. Then

y=1and z=>5. If the right sides change sign, so does the solution: (x,y)= (-5, —1).

4 Subtract ¢ = £ times equation 1 from equation 2. The new second pivot multiplying y
isd— (cb/a) or (ad —bc)/a. Theny = (ag — cf)/(ad — be). Notice the “determinant

of A” = ad — be. It must be nonzero for this division.

5 6x + 4y is 2 times 3z + 2y. There is no solution unless the right side is 2 - 10 = 20.
Then all the points on the line 3z + 2y = 10 are solutions, including (0,5) and (4, —1).

The two lines in the row picture are the same line, containing all solutions.

6 Singular system if b = 4, because 4x + 8y is 2 times 2z + 4y. Then g = 32 makes the
lines 2z 4+ 4y = 16 and 4z + 8y = 32 become the same: infinitely many solutions like

(8,0) and (0,4).

7 If a = 2 elimination must fail (two parallel lines in the row picture). The equations
have no solution. With a = 0, elimination will stop for a row exchange. Then 3y = —3

gives y = —1 and 4x + 6y = 6 gives z = 3.

8 If £ = 3 elimination must fail: no solution. If £ = —3, elimination gives 0 = 0 in

equation 2: infinitely many solutions. If £ = 0 a row exchange is needed: one solution.

9 On the left side, 62 — 4y is 2 times (3x — 2y). Therefore we need ba = 2b; on the right
side. Then there will be infinitely many solutions (two parallel lines become one single

line in the row picture). The column picture has both columns along the same line.
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10

11

12

13

14

15

16

17

The equation y = 1 comes from elimination (subtract z + y = 5 from = + 2y = 6).

Then x = 4 and 5z — 4y = 20 — 4 = c = 16.

(a) Another solution is %(:r +X,y+Y,24+Z). (b) If 25 planes meet at two points,

they meet along the whole line through those two points.
Elimination leads to an upper triangular system; then comes back substitution.
20 +3y+ z=38 =2

y+32=4 gives y =1 Ifa zerois at the start of row 2 or row 3,

8z =38 z =1 that avoids a row operation.

2z — 3y =3 2r — 3y =3 20 — 3y =3 x=3
dr —by+ z=T7 gives y+ z=1 and y+ z=1 and y=1

20 — y—32=5 2y+32=2 —52=0 z=0

Subtract 2 times row 1 from row 2 to reach (d — 10)y — z = 2 along with y — 2 = 3.

If d = 10 exchange rows 2 and 3. If d = 11 the system becomes singular.

The second pivot position will contain —2 — b. If b = —2 we exchange with row 3.
If b = —1 (singular case) the second equation is —y — z = 0. But equation (3) is the
same so there is a line of solutions (x,y,z) = (1,1,—1) when b = —1.
Oz +0y+2z=4 Exchange Oz +3y+42=4
Example of
r+2y+22=5 but then r+2y+22=5
(a) 2 exchanges (b)
Oz +3y+42=6 breakdown Oz + 3y +42=26
(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row

3. The new row 3 has no pivot. If column 2 = column 1, then column 2 has no pivot.

Example © + 2y + 3z = 0,4z + 8y + 122 = 0, 5z + 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 become 0 = 0: infinitely many solutions to Az = 0 but

almost surely no solution to Az = b for a random b.
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18

19

20

21

22

23

24

25

26

Solutions to Exercises

Row 2 becomes 3y — 4z = 5, then row 3 becomes (¢ +4)z = ¢t — 5. If ¢ = —4 the
system is singular—no third pivot. Then if ¢ = 5 the third equation is 0 = 0 which
allows infinitely many solutions. Choosing z = 1 the equation 3y —4z = 5 givesy = 3
and equation 1 gives x = —9.

a 2
Elimination fails on if a = 2 or a = 0. (You could notice that the determinant
a a

a® — 2ais zero fora = 2 and a = 0.)

a = 2 gives equal columns, a = 4 gives equal rows, a = 0 gives a zero column.

Solvable for s = 10 (add the two pairs of equations to get a + b+ c+ d on the left sides,
12 and 2+ s on the right sides). So 12 must agree with 2+ s, which makes s = 10. The

3 0 4
four equations for a, b, ¢, d are singular! Two solutions are and ,
1 7 2 6
1 10 0 4 1 1 0 0
1 01 0 2 0 -1 1 0
A= and b = and U =
0 0 11 8 0 0 1 1
01 01 S 0O 0 0 O
A(2,:) = A(2,:) — 3% A(1,:) subtracts 3 times all of row 1 from all of row 2.

The average pivots for rand(3) without row exchanges were % ,5,101n one experiment—
but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite ! With
row exchanges in MATLAB’s lu code, the averages .75 and .50 and .365 are much
more stable (and should be predictable, also for randn with normal instead of uniform

probability distribution for the numbers in A).
If A(5,5) is 7 not 11, then the last pivot will be 0 not 4.

Row j of U is a combination of rows 1, ..., j of A (when there are no row exchanges).
If Az = 0 then Ux = 0 (not true if b replaces 0). U just keeps the diagonal of A when

A is lower triangular, all entries below that diagonal go to zero.

The question deals with 100 equations Az = 0 when A is singular.
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(a) Some linear combination of the 100 columns is the column of zeros.

(b) A very singular matrix has all ones: A = ones (100). A better example has 99
random rows (or the numbers 1%, ..., 100? in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination of those rows with no

Zeros).

(c) The row picture has 100 planes meeting along a common line through 0. The

column picture has 100 vectors all in the same 99-dimensional hyperplane.
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Problem Set 2.2, page 53
100 100 100[]010 010
1En=1|-510|,B2=010[,P=|001|[100]=|001
001 071 010|001 100

2 FE32F5nb = (1,—5,-35) but E21 E32b = (1,—5,0). When Es5o comes first, row 3

feels no effect from row 1.

L 00 100 1 0 0| < Ej,E31E3 1 0 0
3 |-4 1 0,0 1 0[,{0 1 0| E=EpEyE; =|—-4 1 0
0 0 1 2 0 1 0 —2 1 10 —2 1

Those E’s are in the right order to give FA = U.

1 00
E'=E'E;'ELn'=L=| 4 1 0
-2 2 1

1 1 1 1

4 Elimination on column 4: b = |( E~2>1 —4 E~3>1 —4 E~3>2 —4|. The

0 0 2 10
original Az = b = (1,0,0) has become Uz = ¢ = (1, —4, 10). Then back substitu-

tion gives z = —5,y = %, x = % This solves Ax = (1,0,0).

5 Changing ag3 from 7 to 11 will change the third pivot from 5 to 9. Changing a33 from

7 to 2 will change the pivot from 5 to no pivot.

2 37 1 4
6 Example: |2 3 7 3| = | 4]. If all columns are multiples of column 1, there
2 3 7| |-1 4

is no second pivot.
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7 To reverse F31, add 7 times row 1 to row 3. The inverse of the elimination matrix

1 0 0 1 0 0
E = 0 1 0|isE~*= 1|0 1 0. Multiplication confirms EE~! = I.
-7 0 1 7 0 1
a b a b
8 M = and M* = . det M* = a(d — £b) — b(c — la)
c d c—Vta d—1b

reduces to ad — be ! Subtracting row 1 from row 2 doesn’t change det M.

100
for both parts (a) and (b).
9 M=| 0 0 P
After the exchange, we need E3; (not Fbo1) to act on the new row 3.
-1 10

1 0 1 2 0 1
10 Atthesametime |0 1 0| ;E31E13=[0 1 0] . Teston the identity matrix!
2

1 01 1 0 1
1 2
11 An example with two negative pivotsis A = |1 1 2. The diagonal entries can
1 21

change sign during elimination.

12 For the first, a simple row exchange has P> = I so P~! = P. For the second,
0 0 1

P '=11 0 0].Always P~! =*“transpose” of P, coming in Section 2.4.

01 0
x 5 ¢ —2 1] 5 —2 . ,
13 = and = so A7 = — . This question
y —2 z 1 101 9 1

solved AA~! = I column by column, the main idea of Gauss-Jordan elimination.

1 a
14 An upper triangular U with U? = [is U = for any a. And also —U.

0 -1
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15 (a) Multiply AB = AC by A~ ! to find B = C (since A is invertible) (b) As long as

T 1
B — C has the form Y , we have AB = AC for A =

e -y 11
16 (a) If Az = (0,0,1) then equation 1 + equation 2 — equation 3 is 0 = 1
(b) Right sides must satisfy b; + by = b3

(c) In elimination, Row 3 becomes a row of zeros—no third pivot.

17 (a) The vector x = (1,1, —1) solves Az = 0 (b) After elimination, columns 1

and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot.

18 Yes, B is invertible (A was just multiplied by a permutation matrix P). If you exchange
rows 1 and 2 of A to reach B, you exchange columns 1 and 2 of A~! to reach B~!. In

matrix notation, B = PAhas B~1 = A~1P~1 = A=1P for this P.

19 (a) If B = —Athen A, B can be invertible but A + B = zero matrix is not invertible.

10 0 0
(b) A= and B = are both singular but A + B = [ is invertible.
0 0 0 1

20 Multiply C' = AB on the left by A~! and on the right by C~*. Then A= = BC~1.

21 M~! = C7'B7'A~! so multiply on the left by C' and the right by A : B~! =
CM~tA.
-1

1 0 1 O
22 Bl =471 = A1 : subtract column 2 of A~! from column 1.

1 1 -1 1
23 If A has a column of zeros, so does BA. Then BA = I is impossible. There isno A~!.

a b d —b ad — be 0 The inverse of each matrix is

¢ d|l |-¢ a 0  ad—be| the other divided by ad — be
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1 1 1 1
25 E3oEs1 By = 1 1 -1 1 =|-1 1 =FE.
-1 1| |-1 1 1 0 -1 1
1
Reverse the order and change —1 to +1 to getinverses Ey;' By B! = |1 1 =
111

L = E—!. The off-diagonal 1°’s are unchanged by multiplying inverses in this order.

26 A%B = I can also be written as A(AB) = I. Therefore A~! is AB.

T T
27 Axones(4,1)= |4 4 4 4} —[4 4 4 4} z[o 0 0 o}soA
cannot be invertible.

28 Six of the sixteen 0 — 1 matrices are invertible : I and P and all four with three 1’s.

1310 [1 3 1 o 1 0 7 -3
29 — — =[I A7
2 7 0 1 0 1 -2 1 0 1 -2 1
141 0] [1 4 10 10 -3  4/3
— — :[I Ail].
390 1 0 -3 -3 1 0 1 1 —1/3

30 A can be invertible with diagonal zeros (example to find). B is singular because each

row adds to zero. The all-ones vector = (1,1,1,1) has Bx = 0.

2 1 1 o 3 -1 -1 1 2 -1 -1 1 0
31121:34 3 —-1|; B|1|=|-1 2 —1||1[=]0
1 1 2 -1 -1 3 1 -1 -1 2 1 0
so B~! does not exist.
1 a b1 0 0 1 a 01 0 —b
32 [U I}: 0O 1 ¢ 01 0]—]0 1 0 0 1 —c
0O 01 0 0 1 0 01 0 0 1

1 0 01 —a ac—25b
-0 1 0 O 1 —c :{] U‘l]
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33

34

35

36

37

38

Solutions to Exercises

(a) True (If A has a row of zeros, then so does every AB, and AB = [ is impossible).
(b) False (the matrix of all ones is singular even with diagonal 1°s).

(c) True (the inverse of A~! is A and the inverse of A2 is (A~1)2).

a 0-b
Elimination produces the pivots ¢ anda—banda—b. A~ = ﬁ —a a 0
0—a a
The matrix C is not invertible if c =0 orc = 7 or ¢ = 2.
1 1 0 0 1 2
A7l = L andz = A1 = 2 . When the triangular A alternates
0 0 1 1 1 2
0 0 01 1 1

1 and —1 on its diagonals, A~! has 1’s on the main diagonal and next diagonal.

x=(1,1,...,1) has®x = Px = Qx so (P — Q)x = 0. Permutations do not change
this all-ones vector. Then P — () is not invertible.
I 0 At 0 -D I
The block inverses are and and
-C I -D~'cA-t D! I 0
A is invertible when elimination (with row exchanges allowed) produces 3 nonzero

pivots.
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Problem Set 2.3, page 61
10
1 /51 = 1 multiplied row 1 and subtracted from row 2; in reverse L = times
1 1
1 0] |z 5 1 1 T 5
Ur = = = cis Az = b = - .
1 1 y 2 1 2| |y 7
In letters, L multiplies Ux = c to give Ax = b.
{1 0 | 5 5 o
2 Lc=bis = , solved by ¢ = as elimination goes forward.
1 1 Co 7 2
1 1 x 5 3
Ux = cis = ,solved by x = in back substitution.
0 1 y 2 2
1 2 1 0 2 1 0
3FEA=1] 0 1 0 4 2|=1]0 4 2|=U
-3 0 1 6 3 5 0 0 5
1 2 1 0 2 1 0
WithElasL,A=LU= |0 1 0 4 2/=10 4 2].
301 0 0 5 6 3 5
1 1 1 1 1 1 0 0
4 10 1 -2 1 A=10 2 3| =U.Thend = |2 1 0| Uis
0-2 1 0 01 0 0-6 0 2 1

the same as E2_11E3_21U = LU. The multipliers {51 = ¢35 = 2 fall into place in L.

1 1 1 1 01
5 E3FE31E2 A = 1 1 -2 1 2 2 2|. This is
-2 1| |-3 1 1| |3 4 5
10 1 (1 0 0]
0 2 0| =U.Putthose multipliers 2,3,2into L.ThenA= |2 1 0| U = LU.
0 0 2 |3 2 1]
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aaaa
abbd
abcec

_abcd

1 0] |2
12 1] o
1 4 o0
0 —4 4
0 0 4
_1 a
11
111
1111

4 1 0] |2
sl |2 1] o
1 1
4 1
0 -1 1
a a a
b—a b—a b—a
c—b c¢c—b
d—c

8 Correction: Problem 8 has the same L as Problem 7.

a r r T 1
a b s s 1 1
a b ¢ t 1 1 1
La b ¢ d 1 1 1
1 0 20
9 c= gives ¢ =
4 1 11
2 4
Ar =b is LUx =
8 17
1 00 4
10 |1 1 0|lc=|5] givesec=
1 1 1 6

Those are forward elimination and back substitution for

11 (a)L goesto I (b)I goesto L~}

a T T
b—r s—r
c—s
1
2 2 4
. Then
3 0 1
2
xr = . Eliminate to
11
4 1 1

xr =

. Need

2

3
2
0

1|.Then [0 1 1| x=

1 0 0 1

1 1
1 2
1 2

Solutions to Exercises

=LDU;Uis LT

1 4 0

0O 1 -1

0 0 1
a # 0 All of the
b # a multipliers
cFbarel;; =1
d # c for this A

a#0
b#r
c# s
d#t
=5

. Need

gives x =

xr =

—_

givesx = |0 .

==
W
—

2lxT= |5
3 6

(c) LU goes to U. Elimination multiplies by L.

12 (a) Multiply LDU = L1 D1U; by inverses to get LflLD = DU, U1, The left side

is lower triangular, the right side is upper triangular = both sides are diagonal.

(b) L,U, Ly,U; have diagonal 1’s so D = D;. Then LflL and U, U1 are both 1.

=LDL".
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13

14

15

16

17

1 1 1 0 a a 0 a
1 1 1 1| =LIU; a a+b b =L b U.
0 1 1 1 0 b b+c c

A tridiagonal matrix A has bidiagonal factors L and U.

For the first matrix A, L keeps the 3 zeros at the start of rows. But U may not have the
upper zero where A4 = 0. For the second matrix B, L keeps the bottom left zero at
the start of row 4. U keeps the upper right zero at the start of column 4. One zero in A

and two zeros in B are filled in.

The 2 by 2 upper submatrix A, has the first two pivots 5,9. Reason: Elimination on A

starts in the upper left corner with elimination on As.

120 000 000 120

1 20(+]0 3 1|+]000]|=A=|1 51

000 06 2 00 2 0 6 4
111|100 3 2 1 1 00(|1 10

L'L=l0o 1 1|1 1 0|=|2 2 1|andLLT=1 1 0|0 1 1
0 1|1 11 111 11 1(l0 o0 1
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Problem Set 2.4, page 71
1 0 19 1 0
1A= has AT = JATL = J(ATHT = (AT =
9 3 0 3 -3 1/3
1 -3 1 ¢ 110 c
; A= has AT = Aand A™! = — =(A"HT.
0 1/3 c 0 “le -1
1 2 7 2
2 (AB)T = = BTAT. This answer is different from ATBT =
37 3 1
1 0 2 1 1 2 5 2
(exceptwhen AB = BA). AAT = = and ATA =
2 1 0 1 2 5 21

3@ (AB)™H)T = (B 1A HT = (A"HT(B~H)T. This is also (AT)~1(BT)~1.
(b) If U is upper triangular, so is U~ !: then (U 1) is lower triangular.

0 1
4 A= has A2 = 0. But the diagonal of AT A has dot products of columns of A
0 0

with themselves. If AT A = 0, zero dot products = zero columns = A = zero matrix.

0
1 2 3
5 (a) wTAy:[O 1} s e 1| =5
0

0
(b) This answer 5 is the row 2T A = [4 5 6} times y | 1

0
. . 2
(c) This is also the row T = {0 1} times Ay =
5
AT CT
6 MT = : MT = M needs AT = Aand BT = C and DT = D.

BT DT
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7

10

11

12

13

0 A
(a) False: is symmetric only if A = AT,

(b) False: The transpose of AB is BT AT = BA. So (AB)T = AB needs BA = AB.

(¢) True: Invertible symmetric matrices have symmetric inverses ! Easiest proof is to

transpose AA~! = I. So unsymmetric A has unsymmetric A~!.

(d) True: (ABC)T is CT BT AT (= CBA for symmetric matrices A, B, and C).

The 1 in row 1 has n choices; then the 1 in row 2 has n — 1 choices ... (n! overall).
01 01 0O 0 0 1 010
PP, = (0 0 1|0 0 1| = [0 1 0| but P = |1 0 0
1 0 0|0 1 O 1 0 0 0 0 1

If P; and P, exchange different pairs of rows, then P3P, = P, P; = both exchanges.
(3,1,2,4) and (2,3, 1,4) keep 4 in place; 6 more even P’s keep 1 or 2 or 3 in place;
(2,1,4,3) and (3,4, 1,2) and (4, 3,2, 1) exchange 2 pairs. (1,2, 3,4) makes 12 evens.
The “reverse identity” P takes (1,...,n) into (n,...,1). When rows and also columns

are reversed, the 1, 1 and n, n entries of A change places in PAP. So do the 1,n and

n, 1 entries. In general (PAP);;is (A)p —i+1,n—j+1-

(Pz)T (Py)=2T PTPy=a"ysince P P=1. In general Px-y=x-PTy # x- Py:
01 0 1 1 1 01 0 1
Non-equality where P # PT: |0 o 1| [2|-|1]| # |2]-]0 o 1| |1
1 0 0 3 2 3 1 0 0 2
0 1 0{|0 O 6 1 2 3
PA= 1|0 0 1 1 2 3| =10 4 5| is upper triangular. Multiplying A
1 0 0|0 4 5 0 0 6

on the right by a permutation matrix P; exchanges the columns of A. To make this A
lower triangular, we also need P; to exchange rows 2 and 3:
1 1 6 0 0
PIAP, = 1] A 1 =5 4 0
1 1 3 2 1
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0 1 0
14 Acyclic P = |0 0 1| oritstranspose will have P3 =1 :(1,2,3) — (2,3,1) —
1 00
1 0

0 P
Simple row exchanges have P? = [ and P> = P.

(3,1,2) — (1,2,3). The permutation P = for the same P has P4 = P # I.

E 0
15 (a) If P sends row 1 to row 4, then PT sendsrow4torow1 (b) P = =
0 F
1
PT with E = moves all rows: 1 and 2 are exchanged, 3 and 4 are exchanged.

10

16 A% — B? and also ABA are symmetric if A and B are symmetric. But (A+ B)(A— B)
and ABAB are generally not symmetric. Transposes (A — B) (A + B) and BABA.

17 (a) 5+4+3+2+1 = 15 independent entries if S = ST (b) L has 10 and D has 5;
total 15in LDLT (c) Zero diagonal if AT = — A, leaving 4+ 3+ 2+ 1 = 10 choices.

(d) The diagonal of AT A contains ||row 1||2, ||[row 2||?, ... = never negative.
. 1 3 1 oll1 o1 3 1 b 1 ol|l1 o 1 b
3 2 3 1o =7| 1o 1| |b e b 1|0 c—»2| |0 1
2 -1 0 1 2 1 —% 0
_ 1 3 2 _ T
-1 2 —1f=|-3 1 5 1 -2 =LDL".
2 4
0 -1 2 0 -2 1 2 1
1 10 1 1 1 0 1
19 |1 A=10 1 1|=1]0 1 1 1;
1 2 3 4 2 3 1 ~1
1 1 20 1 1 2 0
1A=1|1 1 1| =1|1 1 -1 1
1 2 4 1 2.0 1 1
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20

21

22

23

24

25

26

27

0 0 01

1 0 0 O Elimination on this A = P exchanges
A= =Pand L =U =1.

01 00 rows 1-2 then rows 2-3 then rows 3-4.

0 010
One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: Show that an exchange

always switches that count! Then 3 or 5 exchanges will leave that count odd.

01 2 3
1 2 30 .
A= = AT has 0,1, 2,3 in every row. I don’t know any rules for a
2 3 01
301 2

symmetric construction like this “Hankel matrix™ with constant antidiagonals.

Reordering the rows and/or the columns of [i‘ 3} will move the entry a. So the result

cannot be the transpose (which doesn’t move a).

1 0 1| |ysc YyBCc +YBS
(a) Total currents are ATy = | -1 1 0| |yes| = | -vysc+yes
0 -1 -1 YBS —Ycs — YBS

(b) Either way (Az)Ty = =" (AYy) = zpysc + vYyss — Tcypc + Tcycs —

Tsycs — Tsyps-. Six terms.

01 0
P= 1|0 0 1| and P3 = I so three rotations for 360°; P rotates every v around
1 0 0

the (1,1, 1) line by 120°.

L(UT)~!is lower triangular times lower triangular, so lower triangular. The transpose
of UTDU is UTDTUT T = UT DU again, so UT DU is symmetric. The factorization

multiplies lower triangular by symmetric to get LDU which is A.

These are groups: Lower triangular with diagonal 1’s, diagonal invertible D, permuta-

tions P, orthogonal matrices with QT = Q1.
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28 There are n! permutation matrices of order n. Eventually two powers of P must be

the same permutation. And if P" = P® then P" ~— % = [. Certainly r — s < n!

0 1 0
Py 0 1
P= is 5by 5 with P, = andPs;=|0 0 1| and P® =1.
Ps 1 0
1 0 0

29 To split the matrix M into (symmetric S) + (anti-symmetric A), the only choice is
S=3(M+MT)and A= 3(M—MT).

quf 1 0
30 Start from QTQ = I, as in a9, 92| =
q 01

(a) The diagonal entries give q7 q, = 1 and g3 q, = 1: unit vectors
(b) The off-diagonal entry is qT g, = 0 (and in general q;qu =0)

. ) . | cosf —sinf
(¢) The leading example for @ is the rotation matrix

sin @ cos
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Problem Set 3.1, page 79

Note An interesting “max-plus” vector space comes from the real numbers R combined
with —oco. Change addition to give 2 + y = max(x,y) and change multiplication to

zy=usual x+y. Which y is the zero vector that gives = + 0=max(xz, 0) =z for every x?

1e+y#yt+zxzande+ (y+2) # (x+y)+zand (¢1 + c2)x # a1z + cox.

2 When ¢(x1,z2) = (cx1,0), the only broken rule is 1 times @ equals . Rules (1)-(4)

for addition x + y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Also no 0 and no —x
(b) c¢(x + y) is the usual (zy)¢, while cx + cy is the usual (z¢)(y°). Those are equal.
With ¢ = 3, 2 = 2, y = 1 thisis 3(2 + 1) = 8. The zero vector is the number 1.

. ) . {0 0f 1 -1 -2 2

4 The zero vector in matrix space M is ;5 A= and —A =

0 0 1 -1 -2 2
The smallest subspace of M containing the matrix A consists of all matrices cA.

5 (a) One possibility: The matrices cA form a subspace not containing B (b) Yes: the

subspace must contain A — B =1 (c) Matrices whose main diagonal is all zero.

6 When f(z) = z? and g(z) = 5z, the combination 3f — 4g in function space is
h(z) = 3f(x) — 4g(z) = 32* — 20z

7 Rule 8 is broken: If cf(zx) is defined to be the usual f(cx) then (¢1 + ¢2)f
f((c1 + c2)x) is not generally the same as ¢1 f + cof = f(c1x) + f(c22).

8 (a) The vectors with integer components allow addition, but not multiplication by %
(b) Remove the x axis from the zy plane (but leave the origin). Multiplication by any
¢ is allowed but not all vector additions: (1,1) + (—1,1) = (0, 2) is removed.

9 The only subspaces are (a) the plane with by = b (d) the linear combinations of v
and w (e) the plane with by + by + b3 = 0.

a b a a
10 (a) All matrices (b) All matrices (c) All diagonal matrices.
0 0 0 0
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For the plane z +y — 2z = 4, the sum of (4,0, 0) and (0, 4, 0) is not on the plane. (The
key is that this plane does not go through (0, 0,0).)

The parallel plane P has the equation x + y — 2z = 0. Pick two points, for example
(2,0,1) and (0,2,1), and their sum (2,2, 2) is in Py.

The smallest subspace containing a plane P and a line L is either P (when the line L

is in the plane P) or R3 (when L is not in P).

(a) The invertible matrices do not include the zero matrix, so they are not a subspace
] ) 1 0 0 0] . .
(b) The sum of singular matrices + is not singular: not a subspace.
0 0 0 1

(a) True: The symmetric matrices do form a subspace (b) True: The matrices with
AT = — A do form a subspace  (c) True: Any set of vectors from a vector space will
span a subspace of that space.

The column space of A is the z-axis = all vectors (z,0,0) : a line. The column space
of B is the xzy plane = all vectors (z, y, 0). The column space of C'is the line of vectors
(z,2z,0).

(a) Elimination leads to 0 = by — 2b; and 0 = b; + b3 in equations 2 and 3:

Solution only if by = 2b; and b3 = —b; (b) Elimination leads to 0 = by + b3

in equation 3: Solution only if b3 = —b;.

A combination of the columns of C is also a combination of the columns of A. Then

C = and A = have the same column space. B = has a
2 6 2 4 3 6

different column space. The key word is “space”.
(a) Solution for every b (b) Solvable only if b3 =0 (c) Solvable only if b3 = bs.

The extra column b enlarges the column space unless b is already in the column space.
(A b] 1 0 1| (larger column space) 1 0 1| (bisin column space)
0 0 1| (nosolutionto Az =5b) [0 1 1| (Ax = b has a solution)

The column space of AB is contained in (possibly equal to) the column space of A.
The example B = zero matrix and A # 0 is a case when AB = zero matrix has a

smaller column space (it is just the zero space Z) than A.
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22 The solutionto Az =b+b"is z =x + y. If band b* are in C(A) sois b + b™.
23 The column space of any invertible 5 by 5 matrix is R°. The equation Az = b is
always solvable (by £ = A~1b) so every b is in the column space of that invertible

matrix.
24 (a) False: Vectors that are not in a column space don’t form a subspace.
(b) True: Only the zero matrix has C(A) = {0}. (c) True: C(A) = C(24).

1 0
(d) False: C(A—1I)# C(A)whenA=TorA= (or other examples).
0 0

1 1 0 1 1 2 1 1 2 0
25 A=1|1 0 0|and |1 0 1| donothave |1| inC(A). A= |2 4 0] has
0 1 0 01 1 1 3 6 0
C(A) = line in R?,
26 When Ax = b is solvable for all b, every b is in the column space of A. So that space
is C(A) = R.
27 (a) If w and v are bothin S + T, then u = s; +t1 and v = sy + t3. Sou + v =
(814 82)+ (t1 +t2)isalsoin S+ T. And sois cu = ¢s1 + ¢ty : S+ T = subspace.

(b) If S and T are different lines, then S U T is just the two lines (not a subspace) but

S + T is the whole plane that they span.
28 If S = C(A) and T = C(B) then S + T is the column space of M = [A B].

29 The columns of AB are combinations of the columns of A. So all columnsof [A AB|

0 1 0 0
are already in C(A). But A = has a larger column space than A% =

0 0 0 0
For square matrices, the column space is R"™ exactly when A is invertible.

30 y — e % and y = e are independent solutions to d?y/dz? = y. Also y = cosx and
y = sin z are independent solutions to d?y/dx? = —y. The solution space contains all
combinations A cosx + Bsinx.

31 If  and y are in the vector space VN W, then they are in both V and W. So all

combinations cx + dy are in both V and W. So all combinations are in V. N'W.
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Problem Set 3.2, page 91

1 If Az = 0 then Rz = EAx = 0. And if Rz = FAz = 0 then Az = E~ 'Rz = 0.
2 (a) If ¢ = 4 then A has rank 1 and column 1 is its pivot column and (—2,1,0) and
(—1,0,1) are special solutions to Az = 0. If ¢ # 4 then A has rank 2 and columns 1
and 3 are pivot columns and (—2, 1, 0) is a special solution. If ¢ = 0 then B = zero
matrix with rank 0 and (1,0) and (0, 1) are special solutions to B = 0. If ¢ # 0 then

B has rank 1 and column 1 is its pivot column and (—1, 1) is the special solution to

Bx = 0.
1 3 0 2
3 R= . All matrices A = C' R with C' = 2 by 2 invertible matrix have
0 01 6
the same nullspace as R.
1 2 0 0 O0f Free variables x2, x4, 5 1 0 —1|Freeuxs
4 (a) R= (b) R=
0 0 1 2 3| Pivotvariables x1,x3 0 1 1| Pivot x1, 2

5 Free variables x2, x4, x5 and solutions (—2, 1,0, 0,0), (0,0,—2,1,0), (0,0,—3,0, 1).
6 (a) False: Any singular square matrix would have free variables (b) True: An in-
vertible square matrix has no free variables. (c) True (only n columns to hold pivots)

(d) True (only m rows to hold pivots)

7 This question asks for U and not R. If it asked for R, pivot columns would have a

single 1.
011111 14j12 11111 1}f0 00 1 1 1 1
00 0111 1{j]0 01T 1 111 0 000 011
6oo0o0o01111,{0 00 0011000000 0O0
o0 o0oo0O0OO0OO0O(0OO0OOO0OOOT1T|(000O0O0O0TO0

11011100 01100111
8R:00111100,00010111

0 00 000 1O 00 00 1111

000 0O0O0O0T1 0000 O0O0O0TO
Notice the identity matrix in the pivot columns of these reduced row echelon forms R.
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If column 4 of a 3 by 5 matrix is all zero then x4 is a free variable. Its special solution

isx =(0,0,0,1,0), because 1 will multiply that zero column to give Ax = 0.
If column 1 = column 5 then x5 is a free variable. Its special solutionis (—1,0,0,0, 1).

The nullspace contains only = 0 when A has 5 pivots. Also the column space is R®,

because we can always solve Az = b and every b is in the column space.

If a matrix has n columns and r pivots, there are n — r special solutions. The nullspace
contains only = 0 when » = m. The column space is all of R™ when » = m. All
those statements are important!

Fill in 12 then 3 then 1 to get the complete solution in R® to z — 3y — z = 12
x 12 3 1

y|=10|+y|1]|+2]|0]| = one particular solution + all nullspace solutions.

z 0 0 1

Column 5 is sure to have no pivot since it is a combination of earlier columns. With
4 pivots in the other columns, the special solution is s = (1,0, 1,0, 1). The nullspace

contains all multiples of this vector s (this nullspace is a line in R5).

To produce special solutions (2,2,1,0) and (3,1,0,1) with free variables x3,z4:
10 -2 -3 o - .
R= and A can be any invertible 2 by 2 matrix times this R.
01 -2 -1
1 0 0 —4

4
The rank is 3 3
2

The nullspaceof A= [0 1 0 -3
is the line through the special solution
0 0 1 =2
1

1 0 -1/2 1 0 1
A=|1 3 —2|has|1]| and |3| in C(A4)and |1 | in N(A). Which other A’s?

5 1 =3 5 1 2

1 0 -1
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0 1 10
A= has N(A) = C(A). Notice that rref(AT) = is not AT.
0 0 0 0

If nullspace = column space (with 7 pivots) thenn —r = r. If n = 3 then 3 = 2r is

impossible. Only possible when n is even.

If A times every column of B is zero, the column space of B is contained in the nullspace
1 1 1 1

of A. An example is A = and B = . Here C(B) equals N(A).
11 -1 -1

For B = 0, C(B) is smaller than N(A).

For A = random 3 by 3 matrix, R is almost sure to be /. For 4 by 3, R is most likely

to be I with a fourth row of zeros. What is R for a random 3 by 4 matrix?

If N(A) = line through & = (2,1,0, 1), A has three pivots (4 columns and 1 special
1 0 0 -2
solution). Its reduced echelon formcanbe R= [0 1 (0 —1 | (add any zero rows).
0 0 1 0
1 00
R=[1 -2 -3], R= , R = 1. Any zero rows come after those rows.
01 0
1 0 10 1 1 0 1 0 0 )
(a) , , , , (b) All 8 matrices are R’s !
0 1 0 0 0 0 0 0 0 0
The nullspace of B = [A A] contains all vectors & = Y for yin RL
-y

One reason that R is the same for A and —A: They have the same nullspace. (They
also have the same row space. They also have the same column space, but that is not

required for two matrices to share the same R. R tells us the nullspace and row space.)

If Cx = 0 then Az = 0 and Bz = 0. So N(C) = N(A4) NN(B) = intersection.
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12 3 000
1 2 3 0 001 2 3
Ahas Ry = andR:[1 2 3}.BandChaveR0:
0 00 0 00 0O0O
0 00 0O0FO
12 3 000
And R =
0 001 2 3
1
0 10
R = and N = |0
0 0 1
0
A and AT have the same rank » = number of pivots. But the pivot column is column 2

01 0

for this matrix A and column 1 for AT: A= {0 0 0

0 0 O
a b c 3 9 —-45
The new entries keeprank 1: A = | 4 b—j % ifa#0, B=|1 3 —-15]|,
g ¥ « 2 6 -3
a b
M= ifa # 0.
¢ be/a
With rank 1, the second row of R does not exist !
Invertible r by r submatrices 1 3 1 0
S = and S =[1l]and S =
Use pivot rows and columns 1 4 0 1

(a) A and B will both have the same nullspace and row space as the R they share.

(b) A equals an invertible matrix times B, when they share the same R. A key fact!
CORRECTED: ATy =0 :y1 —ys+ya = —y1+ 92 +ys = —Y2 + ys + Y =
—Ys —Ys —ys = 0.

These equations add to 0 = 0. Free variables y3, y5, yg: watch for flows around loops.
The solutions to ATy = 0 are combinations of (—1,0,0,1,—1,0)and (0,0, —1,—1,0,1)

and (0,—1,0,0,1, —1). Those are flows around the 3 small loops.
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Solutions to Exercises
1 3
: L2 S - .
C = |2 ¢/| CT has pivot columns . The invertible S inside C' is
3 7 2 7
2 7
The column space of AB contains all vectors (AB)x. Those vectors are the same as

A(Bzx) so they are also in the column space of A.

By matrix multiplication, each column of AB is A times the corresponding column of
B. So if column j of B is a combination of earlier columns of B, then column j of AB
is the same combination of earlier columns of AB. Then rank (AB) < rank (B). No

new pivot columns !

We are given AB = I which has rank n. Then rank(AB) < rank(A) forces rank(A) =
n. This means that A is invertible. The right-inverse B is also a left-inverse: BA = I
and B = A~%.

Certainly A and B have at most rank 2. Then their product AB has at most rank 2.
. . . . L 00
Since BA is 3 by 3, it cannot be [ even if AB = I. Example A = ,

0 1 0
10 1 00
B=10 1{,BA=|0 1 0
0 0 0 0 0
1 I 1
A:[[ [} has N = B = hasthesameN;C:[[ I [} has
—1I 0 0
-1 -1
N = I 0
0 I
The m by n matrix Z has r ones to start its main diagonal. Otherwise Z is all zeros.
I F rbyr rbyn—r I
Ro=| | = L (0) B = ©C =11 0
00 m—rbyr m—rbyn—r 0

10
rref(RY) = ; rref( RE Ro) =same Ry
00
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1 2 0 1 2 0

2 0
44 Ry = has RERO =12 4 (]| andthis matrixrowreducesto [0 0 1| =

0 0 1

0 0 1 0 0 O

Ry .
. Always R(qf Ry has the same nullspace as Ry, so its row reduced form
ZEero row

must be Ry with n — m extra zero rows. R is determined by its nullspace and shape !

0
45 The row-column reduced echelon form is always ; Lisrbyr.
0 0
1 4 7
1 4] . L 195 4
46 A=|2 5 8| andW = is invertible if W1 = =
2 5 31 2 -1
3 6 9
7 -1 10 -1
Then W1 = . This is the correct last column F' of R =

8 2 0 1 2
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Problem Set 3.3, page 103

2 4 6 4 by 2 4 6 4 by 2 4 6 4 by
112 5 7 6 b0 1 1 2 by—by|—[0 1 1 2 by—Dby

2 3 5 2 bs 0-1-1—-2 bsg—b; 0 0 0 0 bs+by—2b;
Ax = b has a solution when b3 + bs — 2b; = 0; the column space contains all combi-

nations of (2,2, 2) and (4, 5, 3). This is the plane b3 + b2 — 2b; = 0 (!). The nullspace
contains all combinations of s; = (—1,—1,1,0) and s3 = (2,—2,0,1); Zcomplete =

Tp + c181 + c289;

1 0 1 -2 4
[RO d} =10 1 1 2 —1| gives the particular solution z,, = (4, —1,0,0).
0 0O 0 0

2 1 3 by 2 1 3 by 1 1/2 3/2 5
26 3 9 by|]—>[0 0 0 by—3by| Then[Ry d]

0 0 0 0

4 2 6 bs 0 0 0 bg—2by 00 0 o
Az = b has a solution when by — 3b; = 0 and b3 — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planes bo — 3b; = 0 and b3 — 2b; = 0;
the nullspace contains all combinations of s; = (—1/2,1,0) and s, = (—3/2,0,1);

particular solution @, = d = (5,0, 0) and complete solution &, + ¢181 + c282.

-2 -3
7 -3
mcomplete - 0 te 1 ’ wcomplete = 0p el
1 0
1 1
 omplete — Tp T Tn = (3,0,%,0) + 22(—3,1,0,0) + x4(0,0, —2,1).
1 2 =2 i 1 2 =2 i
5(2 5 —4 by| =0 1 0 by—2h solvable if b3 — 2b; — by = 0.

4 9 -8 b3 0 0 0 b3 —2b; — b
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Back-substitution gives the particular solution to Ax = b and the special solution to

5b1 — 2by 2 2 0 2 b 1 0 1 b1/2
Ar =02z = | by —2b; |+x3|0] - 4 4 0 bay| |0 1 =1 byfd—01/2
0 1 8 8 0 b3 0 0 0 b3 —2by

by /2 ~1
is solvable if b3 = 2by. Then x = ba/d—b1/2| tx3 | 1
0 1

6 (a) Solvable if by — 2y and 3by — 3bs + by = 0. Then — |+ 7% | — x,

by — 20,

5b1 — 2bs3 -1

(b) Solvableif by = 2b; and 3by —3b3 +bs=0. = | b3 —2b; | + 23 |—1

0 1

1 3 1 i 1 3 1 b One more step gives [0 0 0 0] =

7 (3 8 2 by|—|0 =1 —1 by—3by| row3— 2 (row2)+ 4(row 1)
2 4 0 b5 0 -2 =2 b572b1 providedb3—2b2+4b1:O.

8 (a) Every bis in C(A): independent rows, only the zero combination gives 0.

(b) We need b3 = 2bs, because (row 3) — 2(row 2) = 0.

T 4 -1 -1 T 4 -1
9@ |y|l=|0|+y 1| += 0 ® |yl =1|0|+=z 0 | . The second
z 0 0 1 z 0 1
equation in part (b) removed one special solution from the nullspace.
10 -1 2 .
10 T = has &, = (2,4,0) and ;] = (¢, ¢, ¢). Many possible A !
0 1 -1 4

11 A1 by 3 system has at least two free variables. But @, in Problem 10 only has one.
12 (a) If Axy = band Axy = bthenx = &1, — x5 and also x = 0 solve Ax =0

(b) A(le — 21132) = 0, A(2$1 — mg) =b
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(a) The particular solution %, is always multiplied by 1. 2z, would solve Az = 2b

(b) Any solution can be x,,. If A has rank = m, the only x,, is 0.

3 3 x 6 1] 2
(c) = . Then is shorter (length \/5) than (length 2)
3 3 Y 6 1 0

(d) The only “homogeneous” solution in the nullspace is «,, = 0 when A is invertible.

If column 5 has no pivot, x5 is a free variable. The zero vector is not the only solution

to Az = 0. If this system Ax = b has a solution, it has infinitely many solutions.

If row 3 of U has no pivot, that is a zero row. Ux = c is only solvable provided
c3 = 0. Az = b might not be solvable, because U may have other zero rows needing

more ¢; = 0.

The largest rank is 3. Then there is a pivot in every row. The solution always exists.

The column space is R®. An exampleis A = [I F] for any 3 by 2 matrix F.

The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every column. The
columns are independent. The solution is unique (if there is a solution). The nullspace
I (4by4)
0 (2by4)

contains only the zero vector. Then Rg = rref(A) =

Rank = 2; rank = 3 unless ¢ = 2 (then rank = 2). Transpose has the same rank!

If Az; = b and also Axs = b then A(x; — x2) = 0 and we can add 1 — @ to any
solution of Az = B: the solution « is not unique. But there will be no solution to

Ax = B if B is not in the column space.

For A, g = 3 gives rank 1, every other ¢ gives rank 2. For B, g = 6 gives rank 1, every
other ¢ gives rank 2. These matrices cannot have rank 3.

1 b1 . . |: 1 1i| I
(a) [z] = has 0 or 1 solutions, depending on b (b) =

1 bo X2
[b] has infinitely many solutions for every b  (c) There are 0 or oo solutions when A

has rank » < m and r < n: the simplest example is a zero matrix.  (d) one solution

for all b when A is square and invertible (like A = I).

(@ r<m,alwaysr<n (Mb)r=m,r<n ()r<m,r=n (@) r=m=n.
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2 4 4 1 0 -2 2 4 4
23 |0 3 6| >Ro=10 1 2land |0 3 6| - Ro=1=Rand

_0 0 O_ _0 0 0 0 0 5
0 0 4 010

— Ry = = R.
0 1 0 0 0 1

24 Ry = I when A is square and invertible—so for a triangular matrix, all diagonal entries

must be nonzero.

-2
1230 1200 1235 120 -1
- P an = | 1(s -
0040 0010 0048 001 2
0
Free x5 = 0 gives ¢, = (—1, 0, 2) because the pivot columns contain I. Note: Ry =R.
1 00O 0 1 0 0 -1
26 [Rod] = |0 0 1 0| leads to z, = |1|; [Rod] = [0 0 1 2
0 00 O 0 0 0 O 5

leads to no solution because of the 3rd equation 0 = 5.

—4 -2

1023 2 102 3 2 1020 —4
3 0

27 11320 5[—=(030-33|—=>|0100 3]s ;Tn = T3

0 1

204910 000 36 060001 2
0

11 1
0

28 For A= |0 2]|,theonlysolutionto Az = |2 isx =
1
0 3 3

B cannot exist since 2 equations in 3 unknowns cannot have a unique solution.
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1 3 1 1 1 3 1
1 2 3 1 1 0 -1 2
A= factors into LU = and the rank is
2 4 6 2 21 0 0 0
1 1 5 1 2 01 0 0 0

r = 2. The special solution to Az = 0 and Uz = 0is s = (—7,2,1). Since
b = (1,3,6,5) is also the last column of A, a particular solution to Ax = b is
(0,0, 1) and the complete solution is = (0,0, 1) 4 ¢s. (Another particular solution is

x, = (7,—2,0) with free variable x5 = 0.)

For b = (1,0,0,0) elimination leads to Uz = (1,—1,0, 1) and the fourth equa-

tion is 0 = 1. No solution for this b.

1 0
If the complete solution to Ax = isx = + then A =
3 0 c 3 0
(a) If s = (2,3,1,0) is the only special solution to Az = 0, the complete solution is

x = cs (aline of solutions). The rank of A mustbe 4 — 1 = 3.
1 0 -2 0
(b) The fourth variable x4 is not free in s, and Rg mustbe |0 1 -3 0

00 01

(¢) Ax = b can be solved for all b, because A and R have full row rank r = 3.

If Ax = b and Cx = b have the same solutions, A and C' have the same shape and
the same nullspace (take b = 0). If b = column 1 of A, = (1,0,...,0) solves

Ax=bsoitsolves Cx=>b. Then A and C share column 1. Other columns too: A=C'

The column space of Ry (m by n with rank r) is spanned by its r pivot columns (the
first  columns of an m by m identity matrix). The column space of R (after m — r

zero rows are removed from Ry) is r-dimensional space R".
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Problem Set 3.4, page 116

1 1 1 c1
=0 gives c3 = co = ¢; = 0. So those 3 column vectors are
0 1 1 Co
independent: no other combination gives O
0 0 1 c3
r 1
1 11 2 0
1
0 1 1 3|c=]|0] issolvedbyc= . Then v, + v2 — 4v3 + v4 =0 (dependent).
—4
0 01 4 0
- 1

v1, Va9, v3 are independent (the —1’s are in different positions). All six vectors in R*
are on the plane (1,1,1,1) - v = 0 so no four of these six vectors can be independent.
If ¢ = 0 then column 1 = 0; if d = 0 then b(column 1) — a(column 2) = 0; if f =0

then all columns end in zero (they are all in the zy plane, they must be dependent).

a b c T 0
Uz = |0 d e y| = |0]| gives z = O then y = 0 then x = 0 (by back
0 0 f||= 0

substitution). A square triangular matrix has independent columns (invertible matrix)

when its diagonal has no zeros.

1 2 3 1 2 3 1 2 3
: invertible = independent
@ |3 1 2|—=|0 =5 —7|—|0 =5 -7
columns.
2 31 0 -1 -5 0 0 —18/5
1 2 -3 1 2 -3 1 2 -3 1 0
columns
® -3 1 2|—=l0o 7 —7|—=1|0 7 —7|;A|1|=
add to 0.
2 -3 1 0 -7 7 0 0 0 1

Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).
Same column numbers (not same columns!) for A. This is because EA = U for the
matrix F that subtracts 2 times row 1 from row 4. So A and U have the same nullspace

(same dependencies of columns).
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The sum v; — v2 +v3 = 0 because (wa — w3) — (w1 —ws) + (w1 —wsy) = 0. So the
0 1 1
differences are dependent and the difference matrix is singular: A = 1 0 —1
~1 -1 0

If ¢1 (wa +w3) + ca (w1 + w3) + cs (w1 +ws) = 0 then (c2 + ¢3)wi + (1 +¢3)wa +
(c1 + c2)wsz = 0. Since the w’s are independent, ¢y + ¢3 = ¢ +¢3 = ¢1 + ¢ = 0.

The only solution is ¢; = ¢3 = ¢3 = 0. Only this combination of v1, v2, v3 gives 0.
(changing —1’s to 1’s for the matrix A in solution 7 above makes A invertible.)

(a) The four vectors in R? are the columns of a 3 by 4 matrix A. There is a nonzero
solution to Ax = 0 because there is at least one free variable (b) Two vectors are
dependent if [v; w2 ] has rank 0 or 1. (OK to say “they are on the same line” or “one
is a multiple of the other” but not “vs is a multiple of v,” —since v; might be 0.)

(c) A nontrivial combination of v; and 0 gives 0: Ov; + 3(0,0,0) = (0,0,0).

The plane is the nullspace of A = [1 2 —3 —1]. Three free variables give three
independent solutions (z,y,z,t) = (—2,1,0,0) and (3,0,1,0) and (1,0,0,1).

Combinations of those special solutions give more solutions (all solutions).
(a) Line in R® (b) Plane in R® (c) All of R® (d) All of R®.

b is in the column space when Az = b has a solution; c is in the row space when

ATy = chas a solution. False because the zero vector is always in the row space.

The column space and row space of A and U all have the same dimension = 2.
The row spaces of A and U are the same, because the rows of U are combinations of

the rows of A (and vice versa!).

v=2(v+w)+i(v—w)andw = 1(v+ w)— (v — w). The two pairs span the

same space. They are a basis for the same space when v and w are independent.

The n independent vectors span a space of dimension n. They are a basis for that space.

If they are the columns of A then m is not less than n (m > n). Invertible if m = n.
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These bases are not unique! (a) (1,1,1,1) for the space of all constant vectors
(¢,c,c,0) () (1,-1,0,0),(1,0,-1,0),(1,0,0, —1) for the space of vectors with
sum of components = 0 (© (1,-1,-1,0),(1,-1,0,—1) for the space perpendic-
ular to (1,1,0,0) and (1,0,1,1) (d) The columns of I are a basis for its column

space, the empty set is a basis (by convention) for N(I) = Z = {zero vector}.

1 01 0 1
The column space of U = is R? so take any bases for R?;

01 0 10
(row 1 and row 2) or (row 1 and row 1+ row 2) or (row 1 and — row 2) are bases

for the row space of U.

(a) The 6 vectors might not span R* (b) The 6 vectors are not independent

(c) Any four might be a basis.

n independent columns = rank n. Columns span R™ = rank m. Columns are basis

for R™ = rank = m = n. The rank counts the number of independent columns.

One basis is (2,1,0), (—=3,0,1). A basis for the intersection with the zy plane is

(2,1,0). The normal vector (1, —2, 3) is a basis for the line perpendicular to the plane.

(a) The only solution to Ax = 0 is * = 0 because the columns are independent
(b) Az = bis solvable because the columns span R®. Their combinations give every b.

Key point: A basis gives exactly one solution for every b.
(a) True (b) False because the basis vectors for R® might not be in S.

Columns 1 and 2 are bases for the (different) column spaces of A and U; rows 1 and
2 are bases for the (equal) row spaces of A and U; (1, —1, 1) is a basis for the (equal)

nullspaces. Row spaces and nullspaces stay fixed in elimination.

(a) False A =1 1] has dependent columns, independent row (b) False Column

space # row space for A = (¢) True: Both dimensions = 2 if A is
0 0

invertible, dimensions = 0if A = 0, otherwise dimensions = 1 (d) False, columns

may be dependent, in that case not a basis for C(A).
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(a) Make w1, . .. vg the columns of A. Then find the first n independent columns (we

are told they span R™).

(b) Make vy, ...v; the rows of A and then include the n rows of the identity matrix.
Row elimination will keep the first j independent rows and find n — j more rows to

form a basis for R".

c d
Ahasrank 2ifc =0andd = 2; B = has rank 2 except when ¢ = d or
d c
c=—d.
1 00 0 0 0 0 0 O
(a) Basis for all diagonal matrices: ([0 0 0|, {0 1 0|, [0 O 0
0 0 O 0 0 0 0 0 1

0 1 0 0 0 1 0 0O
() Add |1 0 0], |0 O O0|,|0 0O 1| = basisfor symmetric matrices.

0 0 0 1 00} (010

01 0 0 0 1 0 0 O
© -1 0 0|0 0 O0],|0 0 1
0 0 0 -1 0 0 0 -1 0

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric
matrices (c) skew-symmetric matrices. The dimensions are 3, 6, 3.

1 00 1 00 1 00 110 1 0 1 1 00

0 1 0/,]0 1 0f,{0 2 Of,(0 1 0O},]0 1 Of,({0 1 1};

0 0 1 0 0 2 0 0 1 0 01 0 0 1 0 0 1
Echelon matrices do not form a subspace; they span the upper triangular matrices (not
every U is an echelon matrix).

100’010’001;1—1 Oandlo—l

-1 0 0 0 -1 0 0 0 -1 -1 1 0 -1 0 1
(a) The invertible matrices span the space of all 3 by 3 matrices (b) The rank one
matrices also span the space of all 3 by 3 matrices (c) I by itself spans the space of

all multiples cI.



Solutions to Exercises 53

-1 2 0 -1 0 2 0 0 O 0 0 O
31 s s s . Dimension = 4.
0 0 O 0 0 O -1 2 0 -1 0 2

32 (a) y(z)= constant C'  (b) y(x)=3z. (c) y(x)=3z+ C=yp,+y, solvesy’ = 3.
33 y(0) = O requires A + B + C = 0. One basis is cos 2z — cos 2x and cos x — cos 3.

34 (a) y(x) = €** is a basis for all solutions to ¢’ = 2y (b) y = x is a basis for all
solutions to dy/dx = y/x (First-order linear equation = 1 basis function in solution
space).

35 y1(2),y2(2), y3(x) can be x, 22, 3z (dim 1) or x, 22, 2 (dim 2) or z, 22, 23 (dim 3).

36 Basis 1, z, 22, 23, for cubic polynomials; basis z — 1, 22 — 1, 23 — 1 for the subspace
with p(1) = 0. (4-dimensional space and 3-dimensional subspace).

37 BasisforS: (1,0,-1,0),(0,1,0,0), (1,0,0,—1); basis for T: (1,—1,0,0) and (0,0,2,1);
S NT= multiples of (3, —3,2, 1) = nullspace for 3 equations in R* has dimension 1.

38 If the 5 by 5 matrix [ A b] is invertible, b is not a combination of the columns of A:

no solution to Ax = b. If [A b] is singular, and the 4 columns of A are independent

(rank 4), b is a combination of those columns. In this case Az = b has a solution.

39 One basis for y” = yis y = €% and y = e~*. One basis fory” = —y is y = cosx and
y =sinz.
1 1 1 1 1
The six P’s
40 I=|1 - 1|+ 1 + 1] — |1

are dependent
1 1 1 1 1

Those five are independent: The 4th has P;; = 1 and cannot be a combination of the
others. Then the 3rd cannot be (from P»y = 1) and also 1st (P33 = 1). Continuing,
a nonzero combination of all five could not be zero. Further challenge: How many

independent 4 by 4 permutation matrices?
41 The dimension of S spanned by all rearrangements of x is  (a) zero when x = 0
(b) one when x = (1,1,1,1) (c) three when & = (1,1, —1, —1) because all rear-

rangements of this  are perpendicular to (1,1,1,1) (d) four when the a’s are not
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equal and don’t add to zero. No x gives dim .S = 2. I owe this nice problem to Mike

Artin—the answers are the same in higher dimensions: 0 or 1 or n — 1 or n.

The problem is to show that the w’s, v’s, w’s together are independent. We know the
w’s and v’s together are a basis for V, and the «’s and w’s together are a basis for W'.

Suppose a combination of u’s, v’s, w’s gives 0. To be proved: All coefficients = zero.

Key idea: In that combination giving 0, the part « from the u’s and v’s is in V. So the
part from the w’s is —a. This partis nowin V and also in W. Butif —zisin VNW
it is a combination of u’s only. Now the combination giving 0 uses only w’s and v’s
(independent in V'!) so all coefficients of «’s and v’s must be zero. Then £ = 0 and

the coefficients of the w’s are also zero.

If the left side of dim(V) + dim(W) = dim(V N'W) 4+ dim(V + W) is greater than

n, then dim(V N W) must be greater than zero. So V.N'W contains nonzero vectors.

Here is a more basic approach : Put a basis for V and then a basis for W in the columns
of a matrix A. Then A has more columns than rows and there is a nonzero solution
to Az = 0. That x gives a combination of the V columns = a combination of the

W columns.

If A? = zero matrix, this says that each column of A is in the nullspace of A. If the
column space has dimension r, the nullspace has dimension 10 — r by the Counting

Theorem. So we must have » < 10 — r and this leads to r < 5.
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Problem Set 3.5, page 129

1 (a) Row and column space dimensions 9—5 = 5, nullspace dimension = 4, dim(N(A™))
=9-7=2 sumb5+5+4+2=16=m-+n
(b) Column space is R3; left nullspace contains only 0 (dimension zero).

2 A: Row space basis = row 1 = (1,2, 4); nullspace (—2,1,0) and (—4,0, 1); column
space basis = column 1 = (1,2); left nullspace (—2,1). B: Row space basis =
both rows = (1,2,4) and (2, 5, 8); column space basis = two columns = (1,2) and
(2,5); nullspace (—4,0,1); left nullspace basis is empty because the space contains

only y = 0: the rows of B are independent.

3 Row space basis = first two rows of R; column space basis = pivot columns (of A not R)
= (1,1,0) and (3,4, 1); nullspace basis (1,0,0,0,0), (0,2,—1,0,0), (0,2,0,—2,1);
left nullspace (1, —1,1) = last row of the elimination matrix £~ = L.

10
4@ [1 0 (b) Impossible: 7+(n—r) mustbe3  (¢) [1 1] (d)

3 -1
0 1

(e) Impossible Row space = column space requires m = n. Thenm —r = n —r;

nullspaces have the same dimension. Section 4.1 will prove N(A) and N(A™T)

orthogonal to the row and column spaces respectively—here those are the same space.
11 1

5 A= has those rows spanning its row space. B = {1 -2 1} has the
2 1 0

same vectors spanning its nullspace and AB™ = zero matrix (not AB).

6 A: dim 2,2,2,1: Rows (0,3,3,3) and (0,1,0,1); columns (3,0,1) and (3,0,0);
nullspace (1,0,0,0) and (0, —1,0,1); N(AT) (0,1,0). B: dim 1,1,0,2 Row space
(1), column space (1,4,5), nullspace: empty basis, N(AT) (—=4,1,0) and (5,0, 1).
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7 Invertible 3 by 3 matrix A: row space basis = column space basis = (1,0, 0), (0,1, 0),
(0,0, 1); nullspace basis and left nullspace basis are empty. Matrix B = {A A} I TOW
space basis (1,0,0,1,0,0), (0,1,0,0,1,0) and (0,0,1,0,0,1); column space basis
(1,0,0), (0,1,0), (0,0, 1); nullspace basis (—1,0,0,1,0,0) and (0,—1,0,0,1,0) and

(0,0,—1,0,0, 1); left nullspace basis is empty.
8 [[ 0} and [[ I; oT OT} and [0} = 3 by 2 have row space dimensions = 3,3,0 =
column space dimensions; nullspace dimensions 2, 3, 2; left nullspace dimensions 0, 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of row space) is the same

(b) Same column space and left nullspace. Same rank (dimension of column space).

10 For rand(3), almost surely rank= 3, nullspace and left nullspace contain only (0, 0, 0).

For rand(3, 5) the rank is almost surely 3 and the dimension of the nullspace is 2.

11 (a) No solution means that r < m. Always r < n. Can’t compare m and n here.

(b) Since m — r > 0, the left nullspace must contain a nonzero vector.

1 1 2 21
1 0 1
12 A neat choiceis | 2 =12 4 0|; 7+ (n—7r)=n= 3does
1 2 0
1 0 1 0 1

not match 2 + 2 = 4. Only v = 0 is in both N(A) and C(A™).
13 (a) False: Usually row space # column space.
(b) True: A and — A have the same four subspaces

(c) False (choose A and B same size and invertible: then they have the same four
subspaces)

14 Row space basis can be the nonzero rows of U: (1,2,3,4), (0,1,2,3), (0,0,1,2);
nullspace basis (0,1, —2, 1) as for U; column space basis (1,0,0), (0,1,0), (0,0,1)
(happen to have C(A4) = C(U) = R?); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the same; (2,1, 3,4) is in the

new left nullspace after the row exchange.

16 If Av = 0 and v is arow of A then v - v = 0. So v is perpendicualrto v: v = 0.
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Row space of A = yz plane; column space of A = zy plane; nullspace = x axis; left
nullspace = z axis. For I + A: Row space = column space = R3, both nullspaces
contain only the zero vector.

a1 = lya12 = 0,a13 = 1,a22 = 0,a32 = 1,a31 = 0,a23 = 1,a33 = 0,a21 = 1.
(Need to specify the five moves).

Row 3—2 row 2+ row 1 = zero row so the vectors ¢(1, —2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accident for this matrix).

(a) Special solutions (—1,2,0,0) and (—%, 0,—3, 1) are perpendicular to the rows of
Ry (and rows of ERy). (b) ATy = 0 has 1 independent solution = last row of E~1.

(E~'A = Ry has a zero row, which is just the transpose of ATy = 0).

(a) wand w (b) vand z (c) rank < 2 if w and w are dependent or if v and z

are dependent (d) The rank of uv™ + wzT is 2.

1 2 3 2
T 1 0 u, w span column space;
A=lu w =12 2 =14
2T 11 v, Z span row space
4 1 5

As in Problem 22: Row space basis (3,0, 3), (1,1, 2); column space basis (1,4, 2),
(2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either

factor, so rank < 2 and the 3 by 3 product is not invertible.

ATy = d puts d in the row space of A; unique solution if the left nullspace (nullspace

of AT) contains only y = 0.

(a) True (A and AT have the same rank) (b) False A=[1 0]and AT have very
different left nullspaces (¢) False (A can be invertible and unsymmetric even if
C(A)=C(A") (d) True (The subspaces for A and —A are always the same. If
AT = Aor AT = — A they are also the same for AT)

Choose d = bc/a to make |2 5] arank-1 matrix. Then the row space has basis (a, b)

and the nullspace has basis (—b, a). Those two vectors are perpendicular !
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27 B and C (checkers and chess) both have rank 2 if p # 0. Row 1 and 2 are a basis for the
row space of C, BTy = 0 has 6 special solutions with —1 and 1 separated by a zero;
N(CT) has (—1,0,0,0,0,0,0,1) and (0, —1,0,0,0,0,1,0) and columns 3,4,5,6 of
I; N(C) is a challenge : one vector in N(C) is (1,0,...,0,—1).

28 The subspaces for A = uwv™ are pairs of orthogonal lines (v and v, u and u™b).

If B has those same four subspaces then B = cA with ¢ # 0.

29 (a) AX = 0 if each column of X is a multiple of (1,1,1); dim(nullspace) = 3.
(b) If AX = B then all columns of B add to zero; dimension of the B’s = 6
(c) 3+ 6 = dim(M3*3) = 9 entries in a 3 by 3 matrix.

30 The key is equal row spaces. First row of A = combination of the rows of B: the

only possible combination (notice I) is 1 (row 1 of B). Same for each row so F' = G.
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Problem Set 4.1, page 140

1 Both nullspace vectors will be orthogonal to the row space vector in R3. The column

space of A and the nullspace of A" are perpendicular lines in R? because rank = 1.

2 The nullspace of a 3 by 2 matrix with rank 2 is Z (only the zero vector because the 2
columns are independent). So «,, = 0, and row space = R?. Column space = plane

perpendicular to left nullspace = line in R3 (because the rank is 2).

1 2 -3
3 (a) One way is to use these two columns directly A= | 2 -3 1
and make col 3 = — col 1— col 2. -3 5 =2

1

Impossible because N(A) and C(A™T) )
b) —3 | is not orthogonal to | 1

are orthogonal subspaces :
5 1

1 1
(¢) |1 and |0 | in C(A) and N(A™) is impossible: not perpendicular
1 0
(d) Rows orthogonal to columns makes A times A = zero matrix. An example is A =
[1 73]
(e) (1,1,1) in the nullspace (columns add to the zero vector) and also (1,1,1) is in

the row space: no such matrix.

4 If AB = 0, the columns of B are in the nullspace of A and the rows of A are in the left
nullspace of B. If rank = 2, all those four subspaces have dimension at least 2 which

is impossible for 3 by 3.

5 (a) If Az = b has a solution and ATy = 0, then y is perpendicular to b. bly =
(Az)Ty = xT(ATy) = 0. This says again that C(A) is orthogonal to N(A™).
(b) If ATy = (1,1,1) has a solution, (1,1,1) is a combination of the rows of A.

It is in the row space and is orthogonal to every « in the nullspace.
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Multiply the equations by y1,y2,y3 = 1,1, —1. Now the equations add to 0 = 1 so
there is no solution. In subspace language, y = (1,1, —1) is in the left nullspace.

Az = bwouldneed 0 = (yTA)x = yTb but here yTb = 1.

Multiply the 3 equationsby y = (1,1, —1). Then 21 — x5 = 1 plus &9 — x5 = 1 minus
x1 — 23 = 11is 0 = 1. Key point: This y in N(A7T) is not orthogonal to b = (1,1,1)
so0 b is not in the column space and Az = b has no solution.

Figure 4.3 has * = «, + x,,, where x,. is in the row space and x,, is in the nullspace.
Then Az, = 0 and Ax = Az, + Az, = Ax,. The example has ¢ = (1, 0) and row
space = line through (1,1) so the splitting is * = , + ©,, = (3, 3) + (3. —3). All
Az are in C(A).

Ax is always in the column space of A. If AT Az = 0 then Az is also in the nullspace
of AT. Those subspaces are perpendicular. So Az is perpendicular to itself. Conclu-
sion: Az = 0if ATAx = 0.

(a) With AT = A, the column space and row space are the same. The nullspace is
always perpendicular to the row space. (b) « is in the nullspace and z is in the

column space = row space: so these “eigenvectors” « and z have 7z = 0.

For A: The nullspace is spanned by (—2, 1), the row space is spanned by (1,2). The
column space is the line through (1,3) and N(A7T) is the perpendicular line through
(3, —1). For B: The nullspace of B is spanned by (0, 1), the row space is spanned by

(1,0). The column space and left nullspace are the same as for A.
x = (2,0) splits into &, + &, = (1,—1) + (1,1).
VTW = zero matrix makes each column of V orthogonal to each column of 7. This

means : each basis vector for V is orthogonal to each basis vector for W. Then every

v in V (combinations of the basis vectors) is orthogonal to every w in W.
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Axz = BZ means that [A B] = 0. Three homogeneous equations (zero right
-z

hand sides) in four unknowns always have a nonzero solution. Here = (3, 1) and

Z = (1,0) and Az = Bz = (5,6,5) is in both column spaces. Two planes in R?® must

share a line.

A p-dimensional and a g-dimensional subspace of R" share atleastalineif p + q¢ > n.
(The p + g basis vectors of V and W cannot be independent, so some combination of

the basis vectors of V is also a combination of the basis vectors of W.)
ATy = 0leads to (Az)Ty = 2T ATy = 0. Theny L Az and N(AT) L C(A).
If S is the subspace of R? containing only the zero vector, then St is all of R3.

If S is spanned by (1,1,1), then S* is the plane spanned by (1, —1,0) and (1,0, —1).
If S is spanned by (1,1,1) and (1,1, —1), then S+ is the line spanned by (1, —1, 0).

S+ contains all vectors perpendicular to those two given vectors. So S+ is the nullspace
5
of A= . Therefore S* is a subspace even if S is not.
2 2 2

L" is the 2-dimensional subspace (a plane) in R? perpendicular to L. Then (L) is

a 1-dimensional subspace (a line) perpendicular to L*. In fact (L*)+ is L.

If V is the whole space R?, then V< contains only the zero vector. Then (VL)l =
all vectors perpendicular to the zero vector = R* = V.

1 2 2 3

1 3 3 2

For example (—5,0,1,1)and (0,1, —1, 0) span S* =nullspace of A=

(1,1,1,1) is a basis for the line P+ orthogonal to the hyperplane P.
A= {1 1 1 1} has P as its nullspace and P+ as its row space.

x in V* is perpendicular to every vector in V. Since V contains all the vectors in S,

« is perpendicular to every vector in S. So every @ in V= is also in S*.

AA~! = I: Column 1 of A~ is orthogonal to rows 2, 3, ..., n of A and therefore it is

orthogonal to the space spanned by those rows.
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If the columns of A are unit vectors, all mutually perpendicular, then AT A = I. Simple
but important ! We write () for such a matrix.

2 2 —1| Thisexample shows a matrix with perpendicular columns.

A=|-1 2 2|, ATA=09Iisdiagonal: (AT A);; = (column i of A) - (column j of A).
2 —1 2| When the columns are unit vectors, then ATA = I.
The lines 3x + y = b; and 6x + 2y = by are parallel. They are the same line if

by = 2b;. In that case (b1, ba) is perpendicular to (—2, 1). The nullspace of the 2 by 2

matrix is the line 3z + y = 0. One particular vector in the nullspace is (—1, 3).

(a) (1,—1,0) is in both planes. Normal vectors are perpendicular to each other,
but planes can still intersect ! Two planes in R3 can’t be orthogonal.
(b) Need three orthogonal vectors to span the whole orthogonal complement in R®.
(c) Lines in R? can meet at the zero vector without being orthogonal.

1 2 3 1 1 —1| Ahaswv=(1,2,3)inrow and column spaces
A=12 1 0|, B=|2 -1 0] Bhasv inits column space and nullspace.

3 0 1 3 0 —1]| wv cannotbe in the nullspace and row space,
or in the left nullspace and column space. These spaces are orthogonal and vTv # 0.
When AB = 0, every column of B is multiplied by A to give zero. So the column
space of B is contained in the nullspace of A. Therefore the dimension of C(B) <

dimension of N(A). This means rank(B) < 4 — rank(A).

null(N') produces a basis for the row space of A (perpendicular to N(A)).

We need 7Tn = 0 and ¢T£ = 0. All possible examples have the form A = acr™ with
a # 0.

Both 7’s must be orthogonal to both n’s, both ¢’s must be orthogonal to both £’s, each

pair (r’s, m’s, ¢’s, and £’s) must be independent. Fact: All A’s with these subspaces

have the form [c; ca] M [ry )T for a 2 by 2 invertible M.
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Problem Set 4.2, page 150

(@) a™b/aTa = 5/3; projection p = 5a/3 = (5/3,5/3,5/3);e = (—2,1,1)/3

(b) aTb/aa=—1; projection p=—a; e=0.

(a) The projection of b = (cosf,sinf) onto @ = (1,0) is p = (cosh,0)
(b) The projectionof b= (1,1) ontoa = (1,—1)is p = (0,0) since a¥b = 0.

The picture for part (a) has the vector b at an angle 6 with the horizontal a. The picture

for part (b) has vectors a and b at a 90° angle.

1 1 1 5 1 3 1 1
1 1 1
P=-11 1 1|landPib=< [5|.Po=— (3 9 3|and b= |3
3 3 11
1 1 1 5 1 3 1 1
P projects onto (1,0), P, projects onto (1, —1)
10 act 1| 1 —
P, = Pr= === . Py P, # 0 and P; + P, is not a projection matrix.
0 0 ata 2|
(P + P)? is different from P; + Ps.
1 -2 =2 4 4 =2
P; L d P. L
=_|_ an = - —
1<9 2 4 4 2=y 4 4 2
-2 4 4 -2 =2 1
Py and P, are the projection matrices onto the lines through a; = (—1,2,2) and

as = (2,2,—1). P1 P> = zero matrix because a1 L as.

plz(%a_%a_%) andpQZ(%a %a_%) andp3 = (%7_%a %) Sopl +p2 +p5 = b

1 -2 -2 4 4 =2 4 -2 4
1 1 1
P1+P2+P3:§ -2 4 4 +§ 4 4 =2 +§ -2 1 =2| =1
-2 4 4 -2 -2 1 4 -2 4

We can add projections onto orthogonal vectors to get the projection matrix onto the
larger space. This is important.

The projections of (1,1) onto (1,0) and (1,2) are p; = (1,0) and p, = £(1,2). Then
p, + Py, # b. The sum of projections is not a projection onto the space spanned by

(1,0) and (1, 2) because those vectors are not orthogonal.
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Since A is invertible, P = A(ATA)~! AT separates into AA=H(AT)"1AT = I. And

I is the projection matrix onto all of R2.

I 0.2 04 0.2 T 1
Py = a2Ta2 = s Paay = s Pr= alTal = s PiPay =
as a2 0.4 0.8 0.4 a; a1 0 0

0.2| Thisisnota; = (1,0)
0 . NO, P1P2 7é (P1P2)2.
(@) p=A(ATA)"1ATb=(2,3,0),e=(0,0,4), ATe=0

(b) p=(4,4,6) and e=0 because b is in the column space of A.

1 0 0
Pr= |0 1 0] = projection matrix onto the column space of A (the zy plane)
0 00
05 05 0
Projection matrix A(A™ A)~1 AT onto the second column space.
Pr=105 05 0=
Certainly (P2)? = P». A true projection matrix.
0 O 1
1 0 0 1 0 00 1 1
010 . 01 0O 2 2
A= , P = square matrix = ,p=P =
0 0 1 0 01 0 3 3
0 00 0 00 O 4 0

The projection of this b onto the column space of A is b itself because b is in that

column space. But P is not necessarily I. Here b = 2(column 1 of A):

0 1 5 8 —4 0

1
A=11 2 givesP:ﬁ 8 17 2| andb=Pb=p= |2
2 0 -4 2 20 4

2 A has the same column space as A. Then P is the same for A and 2A4, but Z for 24

is half of Z for A.
1(1,2,-1) + 2(1,0,1) = (2,1,1). So b is in the plane. Projection shows Pb = b.
If P2 = Pthen(I — P)2 = (I—P)(I—P)=1—PI—IP+P?>=1— P.When

P projects onto the column space, I — P projects onto the left nullspace.
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(a) I — P is the projection matrix onto (1, —1) in the perpendicular direction to (1,1)
(b) I — P projects onto the plane « + y + z = 0 perpendicular to (1,1, 1).
5/6  1/6 1/3
1/6 5/6 —1/3
1/3 -1/3 1/3

For any basis vectors in the plane x — y — 22 = 0,

say (1,1,0) and (2,0, 1), the matrix P = A(ATA)71AT is

1 1/6 —1/6 —1/3 5/6 1/6  1/3
e=|-1].Q=&=1|-1/6 1/6 1/3|.1-Q=1{1/6 5/6 —1/3
2 13 1/3 2/3 1/3 —-1/3  1/3

(A(ATA)"TAT)? = A(ATA)"1(ATA)(ATA)~TAT = A(ATA)LAT. So P2 = P.

Pb is in the column space (where P projects). Then its projection P(Pb) is also Pb.

PT = (AATA)7TAT)T = A(ATA)"H)TAT = A(ATA)71AT = P. (AT A is sym-
metric!)
If A is invertible then its column space is all of R™. So P = [ and e = 0.

The nullspace of AT is orthogonal to the column space C(A). Soif ATb = 0, the pro-
jection of b onto C(A) shouldbe p = 0. Check Pb = A(ATA)~1ATb = A(ATA)~10.
The column space of P is the space that P projects onto. The column space of A
always contains all outputs Ax and here the outputs P fill the subspace S. Then rank

of P = dimension of S = n.

A~ exists since the rank is r = m. Multiply A2 = Aby A~ toget A = I.

If ATAz = 0 then Az is in the nullspace of AT. But Az is always in the column
space of A. To be in both of those perpendicular spaces, Az must be zero. So A and
A" A have the same nullspace: AT Az = 0 exactly when Az = 0.

P? = P = PT give PTP = P. Then the (2,2) entry of P equals the (2,2) entry of
PTP . Butthe (2,2) entry of PT P is the length squared of column 2.

A = BT has independent columns, so AT A (which is BB™) must be invertible.

aaT 119 12

(a) The column space is the line through a = so Po = — = —
aTa 25 12 16
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The formula P = A(AT A)~! AT needs independent columns—this A has dependent

columns. The update formula is correct. The column space of A is a line.

(b) The row space is the line through v = (1,2,2) and Pgr = vv'/vTv. Always
Po A = A (columns of A project to themselves) and APp = A. Then Pc APr = A.

Test: The error e = b — p must be perpendicular to all the a’s.

1 1 bl()()() 1 bl()()()
— (b 4+---+b 1—— 423990 4 4p — =
999 < the 999) i < 1ooo> 1000 ( e 999) (1000) 1000

21000-

If P1P2 = PQPl then P1P2P1P2 = P1P1P2P2 = Plpg. Also (Plpg)T = PQTPIT =
PP =P Ps.

Suppose Py P, # P,P;. Then the previous equation fails: (Png)T % PP, and

P, P, # projection.
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Problem Set 4.3, page 161

1 0 0
11 8| 4 8 3
1A= and b = give ATA = and ATb = )
1 3 8 8 26 112
1 4 20
1] 1
R S 1 R 5 3
ATAm:ATbglvesa:: and p = Az = ande=b—p =
4 13 -5
10 0 1
1 1 C 8| This Ax = bis unsolvable | 5
2 = . ; When p replaces b,
1 3(|D 8| Projectbtop = Pb= 13
1 4 20 _17

1
T= exactly solves Az = p.
4

3 InProblem 2, p = A(ATA)"1ATb = (1,5,13,17)ande = b — p = (1,3, -5, 3).

This e is perpendicular to both columns of A. This shortest distance | e]| is v/44.

4 E=(C+0D)?>+ (C+1D —8)?2+ (C + 3D —8)? + (C + 4D — 20)%. Then
OE/0C = 2C +2(C + D — 8) + 2(C + 3D — 8) + 2(C + 4D — 20) = 0 and
OFE/OD = 1-2(C+ D —8)+3-2(C +3D —8)+4-2(C +4D — 20) = 0.

4 8| |C 36

These two normal equations are again = .
8 26| |D 112

5 E=(C—-0)?+(C—8)2+(C—8)?+(C-20)2. AT =[1 1 1 1]and ATA = [4].
ATb = [36] and (ATA)"'ATb = 9 = best height C for the horizontal line.
Errorse =b—p = (—9,—1,—1, 11) still add to zero.
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a = (1,1,1,1) and b = (0,8,8,20) give 7 = a'b/a>a = 9 and the projection is
Ta=p=(9,9,9,9). Thenea = (-9,—1,—1,11)T(1,1,1,1) = 0 and the shortest
distance from b to the line through a is | e|| = v/204.

Now the 4 by 1 matrix in Az = bis A = [0 1 3 4]". Then ATA = [26] and
ATb = [112]. Best D = 112/26 = 56/13.

z = a"b/aTa = 56/13 and p = (56/13)(0,1,3,4). (C,D) = (9,56/13) don’t
match (C, D) = (1,4) from Problems 1-4. Columns of A were not perpendicular so

we can’t project separately to find C and D.

1 0 O 0

Parabola C 4 8 26 C 36
1 1 1 8 T~

Project b D|= CATAZ=| 8 26 92| |D| =112
1 3 9 8

4D to 3D E 26 92 338 E 400
1 4 16 20

Figure 4.9 (a) is fitting 4 points and 4.9 (b) is a projection in R*: same problem !
1 0 0 o0f]|C 0 C 0| Exactcubicsop =>b,e=0.
1 1 1 1(|D 8 D 1 47| This Vandermonde matrix
= . Then =— .
1 3 9 27| |FE 8 E| 3|-28 gives exact interpolation
1 4 16 64| | F 20 F 5| byacubicat0,1,3,4

(a) The best line x = 1 + 4t gives the center point b = 9 at center time, t=2.
(b) The first equation C'm + D> t; = > b, divided by m gives C + Dt = b. This

shows : The best line goes through b at time 7.

@ a=(1,...,1) hasaTa = m, a™b = by + --- + b,,. Therefore 7 = a¥b/m is
the mean of the b’s (their average value)

(b) e = b — Za and ||e||> = (by — mean)? + --- + (b,, — mean )?> = variance
(denoted by o2).

111

1
() p=(3,3,3)and e = (-2, -1, 3) pTe = 0. Projection matrix P = 3111
111
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(ATA)~1AT(b — Ax) = T — . This tells us: When the components of Az — b add
to zero, so do the components of Z — « : Unbiased.

The matrix (Z — z)(Z — )T is (ATA)"1AT(b — Azx)(b — Ax)TA(AT A)~1. When
the average of (b — Ax)(b— Ax)T is 021, the average of (Z — x)(Z — )T will be the
output covariance matrix (AT A) "1 ATo2 A(AT A)~! which simplifies to 02(AT A) 1.

That gives the average of the squared output errors  — .

When A has 1 column of 4 ones, Problem 14 gives the expected error (7 — x)? as
02(AT A)~!' =0? /4. By taking m measurements, the variance drops from o2 to o2 /m.
1 9 1 NP . . ,
Ebm + 1—0399 = E(bl + -+ 4 b1g). Knowing Zy avoids adding all ten b’s.
1 -1 7
C o 3 20|c| |35
1 1 = | 7. The solution x = comes from =
D 4 2 6||D 42
1 2 21
p = Az = (5,13,17) gives the heights of the closest line. The vertical errors are

b—p=(2,—6,4). This error e has Pe = Pb— Pp=p—p = 0.
If b = error e then b is perpendicular to the column space of A. Projection p = 0.
The matrix A has columns 1,1,1and —1,1,2. Ifb = Az = (5,13,17) thenZ = (9,4)

and e = 0 since b = 9 (column 1) + 4 (column 2) is in the column space of A.

eisin N(AT); pisin C(A); Zisin C(AT); N(A) = {0} = zero vector only.
.15 0] |C )
The least squares equation is = . Solution: C =1, D = —1.
0 10| |D —10

The best line is b = 1 — . Symmetric t’s = diagonal AT A = easy solution.

e is orthogonal to p in R™; then ||e||? = eT(b—p) = eTb=b"b—b"p.

The derivatives of || Az — b||? = T AT Az — 2b" Az + b b (this last term is constant)
are zero when 2AT Az = 2A"b, or & = (AT A)~1 AT,

3 points on a line will give equal slopes (bs — b1)/(t2 — t1) = (bs — ba)/(ts — t2).
Linear algebra: Orthogonal to the columns (1,1, 1) and (¢1,t2, t3) isy = (t2 —t3,t3 —
t1,t1 — t2) in the left nullspace of A. b is in the column space ! Then yTb = 0 is the

same equal slopes condition written as (ba — b1)(t3 — t2) = (bs — ba)(t2 — t1).
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26 The unsolvable equations for C + Dx + Ey = (0,1, 3, 4) at the 4 corners are

1 1 0 0

C 4 0 0 8| |C 2
1 0 1 I - .

D| = CATA=10 2 0|;Ab=|-2|;|D|=| -1
1 -1 0 3

E 00 2 -3| |E| |-3/2
1 0 -1 4

At x,y = 0,0 the best plane 2 — x — %y has height C' = 2 = average of 0, 1, 3, 4.
27 The shortest link connecting two lines in space is perpendicular to those lines.

28 If A has dependent columns, then AT A is not invertable and the usual formula P =
A(ATA)~1 AT will fail. Replace A in that formula by the matrix B that keeps only the

pivot columns of A.

29 Only 1 plane contains 0, a;, a3 unless a1, as are dependent. Same testforay, ..., Q,—1.
If they are dependent, there is a vector v perpendicular to all the a’s. Then they all
(including 0) lie on the plane vTx = 0 going through = = (0,0,...,0).

30 When A has orthogonal columns (1,...,1) and (74,...,T,), the matrix ATA is
diagonal with entries m and T2 + - - - + T'2. Also ATb has entries by + - - - + b,, and

T1by +- - -+ Tyby,. The solution with that diagonal AT A is just the given Z = (C, D).
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Problem Set 4.4, page 174

1 (a) Independent (b) Independent and orthogonal (¢) Independent and orthonormal.
For orthonormal vectors, (a) becomes (1,0), (0,1) and (b) is (.6, .8), (.8, —.6).
5/9 2/9 —4/9

Divide by length 3 to get T 1 0 T
2 2 2 1 122 @ Q= butQQ™ = | 2/9 8/9  2/9].
q1:(§a§a73)' q2:(7§7§7§)' 01

—4/9 2/9  5/9
3 (a) ATA will be 167 (b) AT A will be diagonal with entries 12,22,32 = 1,4, 9.

1 0 1 0 0
4@ Q=10 1/.QQT =10 1 0| #1. Any Q withn < m has QQT # I.
0 0 0 0O

(b) (1,0) and (0, 0) are orthogonal, not independent. Nonzero orthogonal vectors are
independent. (c) From q, = (1,1,1)/v/3 my favorite is g, = (1,—1,0)/+/2 and
g5 = (1,1,-2)/VB.

5 Orthogonal vectors are (1, —1,0) and (1,1, —1). Orthonormal after dividing by their
lengths : (%, —%,0) and (%, %, —%)

6 Q1Q- is orthogonal because (Q1Q2)TQ1Q2 = QTQTQ1Q2 = QT Q2 = I. Another
approach is to see that (Q1Q1) ™' = Q5 Q7' = Q3 QT = (Q1Q2)".

7 When Gram-Schmidt gives () with orthonormal columns, QTQz = QTb becomes
Z = QTb. No cost to solve the normal equations !

8 If q, and g, are orthonormal vectors in R® then p = (q] b)q, +(q3 b)q, is closest to b.

The error e = b — p is orthogonal to g; and g5.

8 —6 1 00
9@ Q=16 8| hasP=QQ" = |0 1 0| = projection on the xy plane.
0 0 0 0O

() (QQM)(QQ") =QQTR)QT =QQ™.
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(a) If q,, g4, g5 are orthonormal then the dot product of g, with c1q; +c2q,+c3g5 =
0 gives ¢c; = 0. Similarly ca = c¢3 = 0. This proves: Independent q’s

(b) Qz = 0 leads to QT Qx = 0 which says = 0.

(a) Two orthonormal vectors are q; = 15(1,3,4,5,7) and g, = 15(—7,3,4,-5,1)
(b) Closest vector = projection QQT(1,0,0,0,0) = (0.5, —0.18,—0.24,0.4,0).

(a) Orthonormal a’s: a1 b = af (z1a; + x2a2 + w303) = v1(ala;) = 7,

(b) Orthogonal a’s: aib = af(r1a; + x2a2 + w3a3) = x1(ala;). Therefore
r1 =aib/alay

(c) x is the first component of A~! times b (A is 3 by 3 and invertible).

4 1 2

The multiple to subtract is gig. Then B = bfg;ga: -2 =
0 1 -2

14 lq q] lal qfo| [uvE uvE] [vE o2vz
= 1 2 = =

10 0 |B] 1/V2 —1/V2 0 2v2

(a) Gram-Schmidt chooses q; = a/||al|| = %(1,2,72) and g, = %(2,1,2). Then
qs = 3(2,-2,-1).

(b) The nullspace of A™ contains g5

() = (ATA)"1AT(1,2,7) = (1,2).

p = (a™b/aTa)a = 14a/49 = 2a/7 is the projection of b onto a. q; = a/|al =
a/7is (4,5,2,2)/7. B=b—p=(—1,4,—4,—4)/7has | B|| = 1 so g, = B.

p = (aTb/aTa)a = (3,3,3) and e = (—2,0,2). Then Gram-Schmidt will choose
g, =(1,1,1)/v3and g, = (-1,0,1)/V/2.

A=a= (17 —1,0,0);3 =b—p= (%a %a _150)30 =C—Pa—Pp = (%a %a %a -1).
Notice the pattern in those orthogonal A, B,C. InR®, D would be (3,1, 1,1, —1).

Gram-Schmidt would go on to normalize ¢, = A/||Al|,q, = B/||Bl||,q5 = C/||C||.
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19 If A = QRthen ATA = RTQTQR = RT R = lower triangular times upper triangular

(this Cholesky factorization of AT A uses the same R as Gram-Schmidt!). The example

-1 1 -1 2
1 3 3 .
has A = 2 1| = 3 2 -1 = @R and the same R appears in
0 3
2 4 2 2
9 9 3 0 3 3
ATA = = = RTR.

9 18 3 3 0 3

20 The orthonormal vectors are ¢, = (1,1,1,1)/2 and g, = (=5, —1,1,5)/+/52. Then
b = (—4,-3,3,0) projects to p = (q1b)q, + (g3b)q, = (—7,—3,—1,3)/2. And
b—p=(-1,-3,7,—3)/2is orthogonal to both g, and g5.

21 A =(1,1,2), B =(1,-1,0), C = (—1,—1,1). These are not yet unit vectors.
Gram-Schmidt will divide by ||A|| = v/6 and ||B|| = v/2 and ||C|| = /3.

1 0 0 1 0 0 1 2 4
22 Youcanseewhyq, = (0|,g, = |0|.g3=|1|-A=|0 0 1| |0 3 6| =

0 1 0 01 0|0 0 5
QR. This @ is just a permutation matrix—certainly orthogonal.

T BTc B v
23 (¢;C")q, = WB because g, = Bl and the extra g, in C™ is orthogonal to gq,.
24 When a and b are not orthogonal, the projections onto these lines do not add to the pro-

jection onto the plane of a and b. We must use the orthogonal A and B (or orthonormal

g, and g,) to be allowed to add projections on those lines.
25 There are $m”n multiplications to find the numbers ;; and the same for v;;.

26 q; = %(272a 71)’ 9z = %(Za 7]-;2)’ qs = %(1) 72; 72)

1 0 0
1
27 Q1 = reflects across z axis, Q2 = |0 0 —1 | across planey+z = 0.
0 -1
0 -1 0

28 Orthogonal and lower triangular = £1 on the main diagonal and zeros elsewhere.

29 (a) Qu = (I — 2uu®)u = u — 2uuTu. This is —u, provided that uTu equals 1

(b) Qv = (I —2uuT)v = v — 2uuTv = v, provided that uTv = 0.
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Starting from A = (1,—1,0,0), the orthogonal (not orthonormal) vectors B =
(1,1,-2,0)and C=(1,1,1,—3)and D=(1, 1, 1, 1) are in the directions of g5, g3, g.
The 4 by 4 and 5 by 5 matrices with integer orthogonal columns (not orthogonal rows,

since not orthonormal Q!) are

1 1 1 1 1
1 1 1 1
-1 1 1 1 1
-1 1 1 1
A B C D| = and 0 —2 1 1 1
0 -2 1 1
0 0 -3 1 1
0 0 -3 1
0 0 0 —4 1

[@Q, R] = gr(A) produces from A (m by n of rank n) a “full-size” square Q =[ Q1 Q2]

and . The columns of (), are the orthonormal basis from Gram-Schmidt of the
0

column space of A. The m — n columns of Q5 are an orthonormal basis for the left
nullspace of A. Together the columns of Q = [Q1 Q2] are an orthonormal basis

for R™.

This question describes the next q,,,; in Gram-Schmidt using the matrix ) with
the columns q;, ..., g,, (instead of using those g’s separately). Start from a, subtract
its projection p = QQ" a onto the earlier q’s, divide by the length of e = a — QQ"a

to get the next q,, ; = e/||e||.
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Problem Set 5.1, page 181

10

det(24) = 2*det A = 8; det(—A) = (—1)*det A = 1; det(A?) = ; det(A™1)=2.

det(34) = (3)3det A = —% and det(—A4) = (—1)*det A = 1; det(4?) = 1;
det(A~1) = —1. If det A = 0 then det A/2 = det(—A) = det A2 = 0;no A~L.

(a) False: det(I 4+ I)isnot 1+ 1 (except whenn = 1) (b) True: The product rule

extends to ABC (use it twice) (c) False: det(4A) is 4™ det A

0 0 0 1 0o -1 )
(d) False: A = ,B= ,AB — BA = is invertible.
0 1 1 0 1 0
Exchange rows 1 and 3 to show det J3 = —1. Exchange rows 1 and 4, then rows 2 and

3 to show det J, = 1. Two exchanges = even permutation.

|J5| = 1 by exchanging row 1 with 5 and row 2 with 4. |Js| = —1, |J7| = —1.

Determinants 1, 1, —1, —1 repeat in cycles of length 4 so the determinant of J1¢1 is +1.
det A =4,det B=0,detC = 0.

The 6 terms become a(q+b)z —b(p+a)z+ - - - (4 more). The approach in the display
(using linearity to split up row 2) is better. Result: det does not change if row 2 is
added to row 1.

a p x

aqz +cpy + brx
detAT=1|p g y | = ¢ by — same six terms as det A

—ary —bpz — cqx
c r =z
Key point: det PT = det P for every permutation, because the number of row

exchanges is the same (just done in reverse order). Then P is even when P is even.

det A = 1 from two row exchanges. det B = 2 (subtract rows 1 and 2 from row 3,

then columns 1 and 2 from column 3). det C' = 0 and det D = 0 (equal rows).

If the entries in every row add to zero, then (1,1,...,1) is in the nullspace: singular
A has det = 0. (The columns add to the zero column so they are linearly dependent.)

If every row adds to one, then rows of A — I add to zero (not necessarily det A = 1).
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If P; needs n exchanges toreach I and P, needs IV exchanges then P; P, reaches [ after

those n+ NN exchanges. So det(Py Py) = (—1)"*N = (—1)"(—=1)N = (det P;) (det P).

We can pair off even permutations with odd permutations: odd = even followed by

exchanging 1 and 2. Number of even permutations= %n! =number of odd permutations.
Pivots 1, 1, 1 give determinant = 1; pivots 1, —2, —3/2 give determinant = 3.

det(A) = 36 and the 4 by 4 second difference matrix has det = 5.

The first determinant is 0, the second is 1+t +t4—t*—2—2 = 1-2t24+t* = (1-12)2.

A singular rank one matrix has determinant = 0. The skew-symmetric A also has
det A = 0. A skew-symmetric matrix A of odd order 3: Changing every sign will
multiply det A by (—1)2 but also keep the same det A = det A™. So det A = 0.

When the ¢, j entry is 4 times j, row 2 = 2 times row 1 so det A = 0.

When the ij entry is i + j, row 3 — row 2 = row2 — row 1 so A is singular: det A = 0.

2

1 a a 1 a a?

b—a b®—ad?

1 b B2 =10 b—a V2—-a2| = to reach 2 by 2.
c—a ¢ —a?

1 ¢ 0 c—a c?—ad?

We eliminated @ and a? in row 1 by subtracting a and a? times column 1 from columns

2 and 3. Factor out b — a and ¢ — a from the 2 by 2:

1 b+a
(b—a)(c—a) =(b—-a)(c—a)(c—0D).
1 c+a
Fill a row (or column) by 4 zeros to guarantee det = 0. Leave only the main diagonal

(12 zeros) to allow det A # 0.

(a) If a11 = aos = azz = 0 then 4 terms will be zeros and 2 terms can be nonzero.
(b) 15 terms must be zero. Effectively we are counting the permutations that make
everyone move; 2,3, 1 and 3, 1,2 for n = 3 mean that the other 4 permutations take a

term from the main diagonal of A; so those terms are 0 when the diagonal is all zeros.

The cofactor formula det A = a11:C11 + - -+ + a1,C1p gives det = 0 if all cofactors

are zero. The 2 by 2 matrix of 1’s has det = 0 even though no cofactors are zero.
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22 A tridiagonal matrix has det = a11C11 + a12C12 since aq3, . . . , a1, are zero. If n =5
then C'; has 5 nonzeros. C15 has as; = only nonzero in column 1. That ay; multiplies

a 3 by 3 tridiagonal determinant (with 3 nonzeros). So det A has 5 + 3 = 8 nonzeros.
23 Two equal rows imply det = 0. Proof for 3 x 3 if row 1=row 2. Thena = p,b = g,
¢ =r. Then aqz+brx+cpy—ary—bpz—cqr = abz+bcr+cay—acy—baz—cbx = 0.

24 If A has two equal rows then AT has two equal columns (say columns j and k). Then
the columns are not independent. So det AT = 0 and det A = 0. Other proofs also

reach this conclusion.
25 (a) aj4 multiplies 3! = 6 terms.
(b) Only 2 terms include both a15 and as2. Those terms are aq3a290(—as1a44+assa41).

(c) If the main diagonal is all zero, we are counting only the permutations like a12a23a34041
that involve no diagonal entries. Those are called derangements : How many ways can
n = 4 students grade each other’s tests ? Wikipedia says there are 9 ways and uses the

symbol 7.
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Problem Set 5.2, page 190

1 Ifdet A =2thendet A~ 1 = %,det = A" = 27 and det AT = 2.

2 det A = —2, independent columns; det B = 0, dependent columns; det C = —1,
independent columns but det D = 0 because its submatrix B has dependent rows (and

dependent columns).

3 The problem suggests 3 ways to see that det A = 0: All cofactors of row 1 are zero.
A has rank < 2. Each of the 6 terms in det A is zero. Notice also that column 2 has no

pivot.

[ 0.9 —09
4 (a) A= has det A = 1.62 and det A™ = (1.62)" — 0.

09 09

2 2
(b) A= has det A = 0 and det A” = O evenif A;; = 2.
2 2

2 5 1 5
5@ [Al = =3, |Bi] = = —6, |By| = = 3 so
1 4 2 1

21 =-6/3=—2anday =3/3=1 (b) |A| =4,|By|=3,|Bs| = —2,|Bs| = 1.
Therefore x1 = 3/4 and z2 = —1/2 and z3 = 1/4.

6 () y= ‘cl(l)’/ ?Z’ = —c/(ad — bc) (b) y = det By/det A = (fg — id)/D.
That is because By with (1,0,0) in column 2 has det B, = fg — id.

7 (a) z1 = 3/0and z2 = —2/0: no solution (b) x1 = x2 = 0/0: undetermined.
8 (a) z; =det([b az as])/det A, ifdet A # 0. Thisis |By|/|A].

(b) The determinant is linear in its first column so |z1 a1 + z2 as + 3 a3 asz as|
splits into 21 |a; ag as| + x2|as az az| + x3las as ag|. The last two determinants are

zero because of repeated columns, leaving x4 |a; a2 as| which is z; det A.

9 If the first column in A is also the right side b then det A = det B;. Both Bs and Bj are

singular since a column is repeated. Therefore x; = |B;|/|A| = 1 and 22 = 23 = 0.
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10 (a) Area ‘ 32 ‘ =10 (b) and (c) Area 10/2 = 5, these triangles are half of the
parallelogram in (a).

=5 (b) 5+ new triangle area %

11 (a) Area 5 =5+4+T7=12.

2
0
-1

(=],

1
1
1

12 The edges of the hypercube have length v/1+4+1+1+4+1 = 2. The volume det H
is 2 = 16. (H/2 has orthonormal columns. Then det(H/2) = 1 leads again to
det H = 16 in 4 dimensions.)

13 The n-dimensional cube has 2" corners, n2"~! edges and 2n (n — 1)-dimensional

faces. Coefficients come from (2 + x)™. Cube from 27 has volume 2™.
1 1
14 The pyramid has volume 5 The 4-dimensional pyramid has volume 21

15 The patterndet = 1,0, —1, —1, 0, 1 repeats. So F1o99 = FE4 after 16 repeats of length 6.
And By = —1.

16 Take the determinantof ACT = (det A)I. The leftside gives det ACT = (det A)(det C)
while the right side gives (det A)™. Divide by det A to reach det C' = (det A)"~ 1.

17 If we know the cofactors and det A = 1, then CT = A~! and also det A~! = 1.

Now A is the inverse of CT, so A can be found from the cofactor matrix for C.

9 3 5
18 If the entries are 1 to 9, the maximum determinant may be 412 =1| 4 8§ 1
2 6 7

19 Orthogonal matrix = box volume = 1, singular matrix = box volume = 0, box for

2F has volume 2"V,

20 Geometric proof that det A = det AT : A student showed me how to slide the edges
of the parallelogram for det A along themselves to get the parallelogram for det AT.
No change in area.

u 0
21 The matrix still gives area uw for this parallelogram: Rotate the usual

vow
parallelogram by 90° to see base = w and height = v and area = uw.
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Problem Set 5.3, page 199

1 With w = 0 linearity gives T'(v + 0) = T'(v) 4+ T(0). Cancel T(v): T(0) = 0.
With ¢ = —1 linearity gives 7'(—0) = —7'(0). This is a second proof that 7'(0) = 0.

2 T(v) = (4,4) and (2,2) and (2,2); if v = (a,b) = b(1,1) + %52(2,0) then
T(v) = b(2,2) + (0,0).

3 (d) T'(v) = (0,1) = constant and (f) T'(v) = vyvy are not linear.
4 (a) T(S(vw))=w (b) T(S(v1) + S(v2)) =T(S(v1)) +T(S(ve)): linear.

5 Choose v = (1,1) and w = (—1,0). Then T'(v) + T(w) = (v+w) but T (v + w) =
T(0,1) = (0,0).

6 False, unless those n vectors are independent and thus a basis for R™.

7 (a) T(v) = v/||v|| does not satisfy T'(v + w) = T'(v) + T'(w) or T(cv) = ¢T'(v)

(b) and (c¢) are linear (d) satisfies T'(cv) = ¢T'(v) but T is not linear.

8 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes
onto a line (c) Vertical lines stay vertical because T'(1,0) = (a11,0).
0 ) 7T )
9 D= doubles the width of the house. A = projects the house (since
0 1 3.3

A? = Afromtrace = 1 and A = 0, 1). The projection is onto the column space of A =

1 1
line through (.7,.3). U = will shear the house horizontally: The point at
0 1

(z,y) moves over to (x + y, y).

a 0
10 (a) A= with d > 0 leaves the house AH sitting straight up (b) A=3I
0 d

cosf) —sinf
expands the house by 3 (c) A= rotates the house.

sin 6 cos
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1 0 55
11 compresses vertical distances by 10 to 1. projects onto the 45° line.

b5
rotates by 45° clockwise and contracts by a factor of v/2 (the columns have

-5 .5

11
length 1/ V2). has determinant —1 so the house is “flipped and sheared.” One

way to see this is to factor the matrix as LDLT:

1 1
= = (shear) (flip left-right) (shear).
1 0 1 1 -1 0 1

12 (a) ad —bc = 0 (b) ad — bc > 0 (©) |ad — be| = 1. If vectors to two
corners transform to themselves then by linearity 7' = I. (Fails if one corner is (0,0).)

13 Circles ||z|| = 1 are always transformed by A to ellipses (see figure in Section 7.1).

14 (a) T(v1) = v2,T(v2) = vy is its own inverse (b) T(vy) = vy, T (v2) = 0 has
T? =T (c) If T? = I for part (a) and T? = T for part (b), then 7" must be I.

2 1 3 -1 2
15 (a) (b) = inverse of (a) ) A must be 24
5 3 -5 2 6 3
r oS 1 0 r S o
16 (a) M = transforms and to and ; this is the “easy”
t u 0 1 t U
a b
direction. (b) N = transforms in the inverse direction, back to the stan-
c d
dard basis vectors. (c) ad = bc will make the forward matrix singular and the inverse
impossible.
-1
1 0|12 1 3 -1
17 MW = =
1 2 5 3 -7 3

18 Reordering basis vectors is done by a permutation matrix. Changing lengths is done by

a positive diagonal matrix.

. - . d -
19 Differentiation has no inverse because e (1) = derivative of a constant = 0.
T
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Problem Set 6.1, page 211

1 The eigenvalues are 1 and 0.5 for A, 1 and 0.25 for A2, 1 and 0 for A>°. Exchanging
the rows of A changes the eigenvalues to 1 and —0.5 (the trace is now 0.2 + 0.3).

Singular matrices stay singular during elimination, so A = 0 does not change.

2 Ahas \y = —1 and A\, = 5 with eigenvectors x; = (—2,1) and o = (1,1). The
matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.

That zero eigenvalue correctly indicates that A 4 I is singular.

3 Ahas \y = 2 and Ay = —1 (check trace and determinant) with ; = (1,1) and

@y = (2,—1). A~! has the same eigenvectors, with eigenvalues 1/A = § and —1.

4 det(A— M) =X2+X—6=(A\+3)(\—2). Then Ahas \; = —3 and \y = 2 (check
trace = —1 and determinant = —6) with z; = (3, —2) and 3 = (1,1). A? has the

same eigenvectors as A, with eigenvalues A3 = 9 and \3 = 4.
5 A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A + B

has A2 + 8\ + 15 = 0 and \; = 3, Ao = 5. Eigenvalues of A + B are not equal to

eigenvalues of A plus eigenvalues of B.

6 Aand Bhave A\; = land Ay = 1. AB and BA have \> —4)\+1 = 0 and the quadratic
formula gives A\ = 2 & v/3. Eigenvalues of AB are not equal to eigenvalues of A times
eigenvalues of B. Eigenvalues of AB and B A are equal (this is proved at the end of
Section 6.2).

7 The eigenvalues of U (on its diagonal) are the pivots of A. The eigenvalues of L (on its
diagonal) are all 1’s. The eigenvalues of A are not the same as the pivots.
8 (a) Multiply Ax to see Az which reveals A (b) Solve (A — AI)x = 0 to find .
9 (a) Multiply Az = A\ by A: A(Ax) = A(\x) = Mz gives A%z = N’z
(b) Multiplyby A~ !: 2z = A1 Ax = A~ hax = M lx gives A~z = %az
) AddIz=x: (A+x=(A+ 1)z
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10

11

12

13

14

15

16

17

18

det(A — M) = X2 — 1.4\ + 0.4 50 Ahas \; = 1 and Ay = 0.4 with z; = (1,2) and
2 = (1,—1). A% has \; = 1 and M2 = 0 (same eigenvectors as A). A% has \; = 1
and A2 = (0.4)1°° which is near zero. So A% is very near A*°: same eigenvectors

and close eigenvalues.

Proof 1. A — A;I is singular so its two columns are in the same direction.
Also (A — MI)x2 = (A2 — A1)x2. So x5 is in the column space and both columns
must be multiples of x5. Here is also a second proof: Columns of A — A1 [ are in the
nullspace of A — A21 because M = (A — Ao2I)(A — A\ T) is the zero matrix [this is
the Cayley-Hamilton Theorem in Problem 6.2.30]. Notice that M has zero eigenval-
ues (A1 — A2)(AM — A1) = 0and (A2 — A2)(A2 — A1) = 0. So those columns solve
(A — X\oI) & = 0, they are eigenvectors.

The projection matrix P has A = 1, 0, 1 with eigenvectors (1, 2,0), (2,—1,0), (0,0, 1).
Add the first and last vectors: (1,2,1) also has A\ = 1. The whole column space of P
contains eigenvectors with A = 1! Note P?> = P leadsto A> = Aso A = O or 1.

(@) Pu=(uul)u =u(uTu)=uso Pu=u (b) Pv=(uul)v=u(utv)=0
() @1 =(-1,1,0,0), 2 = (-3,0,1,0), 3 = (—5,0,0, 1) all have Px = 0x = 0.
det(Q — M) = A2 —2X\cosf+1 = 0when A\ = cosf £isind = e and e~*°. Check
M2 = cos? 0 +sin® 6 = 1 and A; + Ay = 2cosf. Two eigenvectors of this rotation
matrix are 1 = (1,¢) and &3 = (1, —i) (or cz; and dxe with cd # 0).

The other two eigenvalues are A = %(71 + i1/3). Those three eigenvalues add to

0 = trace of P. The three eigenvalues of the second P are 1,1, —1.

SetA=0indet(A —A)= (A —A)...(A\p, — A) tofinddet A = (A\1)(A2) - -+ (A\n).
0 3 2 2 2

These 3 matrices have A = 4 and 5, trace 9, det 20: , , .
0 5 -1 6 -3 7

(a) rank = 2 (b) det(BTB) =0 (d) eigenvalues of (B2 + 1) tare 1,1, 1.
2'5
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19

20

21

22

23

24

25

Solutions to Exercises

0 1
A= has trace 11 and determinant 28, so A = 4 and 7. Moving to a 3 by

—28 11
3 companion matrix, for eigenvalues 1,2, 3 we want det(C' — M) = (1 — A\)(2 — A)

(3 — ). Multiply out to get —A3 + 6A% — 11\ + 6. To get those numbers 6, —11,6
from a companion matrix you just put them into the last row :
0 10
C=10 0 1| Notice the trace 6 = 1 + 2 + 3 and determinant 6 = (1)(2)(3).
6 —11 6
(A — X\I) has the same determinant as (A — AI)T because every square matrix has

det M = det MT. Pick M = A — \I.

1 0 11 1 1
and have different eigenvectors and
1 0 0 0 1 0
0 0 0 1 -1 1 Always A? is the zero matrix if A = 0 and 0,
1 0 0 0 -1 1 by the Cayley-Hamilton Theorem in Problem 6.2.30.

A = 0,0, 6 (notice rank 1 and trace 6). Two eigenvectors of uv™ are perpendicular to
v and the third eigenvectoris u: 1 =(0,—2,1), 2 =(1,—2,0), xz3=(1,2,1).
When A and B have the same n A’s and x’s, look at any combination v = cyx; +
-+ cpx,. Multiply by A and B: Av = ci \ixy + -+ + cp Ay, equals Bv =
T + -+ cp Anx, for all vectors v. So A = B.

A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank

2 (ensuring two zero eigenvalues) and (1,1, 1, 1) is an eigenvector with A = 2. With

trace 4, the other eigenvalue is also A\ = 2, and its eigenvectoris (1, —1,1, —1).

A'is triangular: A\(A) = 1,4,6; \(B) = 2, v/3, —V/3; C has rank one : A\(C) = 0,0, 6.
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26 (a) w is a basis for the nullspace (we know Au = Ou); v and w give a basis for the
column space (we know Av and Aw are in the column space).
(b) A(v/3+w/5) = 3v/3+5w/5 =v+w. Sox = v/3+ w/5is a particular
solution to Ax = v + w. Add any cu from the nullspace to find all solutions.
(c) If Az = wu had a solution, w would be in the column space : wrong dimension 3.

T

27 Always (uvT)u = u(vTu) so u is an eigenvector of uv™ with A = vTu. (Watch

numbers v 1w, vectors u, matrices uv™ !!) If vTu = 0 then A2 = u(vTu)v? is the

zero matrix and A2 = 0,0 and A = 0,0 and trace (A) = 0. This zero trace also comes

from adding the diagonal entries of A = uv™ :

U1 U1V U1V2 T
A= vy Vg | = has trace u1v1 +usvgs = v u =0
U2 U2V1 U202

28 The six 3 by 3 permutation matrices include P = I and three single row exchange
matrices P2, P13, P>3 and two double exchange matrices like P2 P;3. Since PTp=1
gives (det P)? = 1, the determinant of P is 1 or —1. The pivots are always 1 (but there

may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange)

or 0 (for double exchange). The possible eigenvalues are 1 and —1 and e2™*/3 and

6_27Ti/3.

29 AB — BA = I can happen only for infinite matrices. If AT = A and BY = —B then

aTz =27 (AB — BA)z = 2" (ATB + BYA) z < ||Az|| || Bz|| + || Bz|| || Az]|.

Therefore || Az|| || Bz|| > 3||z[|* and (||Az]|/||z]|) (|| Bz||/||=]) > 3.
30 \; = €*™/3 and Ny = e 2™/3 give det \{\y = 1 and trace \; + \y = —1.

cosf) —sinf ) 27 .
A= with = 3 has this trace and det. So does every M ~1AM!

sin 6 cosf
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Problem Set 6.2, page 223

1 Eigenvectors in X and eigenvalues 1 and 3 in A. Then A = XAX s

1 2 1 1 1 0 1 -1 )
= . The second matrix has A = 0 (rank 1) and
0 3 0 110 3| (0 1
11 1 1] |o of |2 —%
A =4 (trace =4). Then A = XAX 1is =
3 3 -1 3] (0 4| |1 1
7 1
A3 =XA3Xltand A~' = XAIX L.
Put the eigenvectors in X 1 1112 0 1 -1 2 3
2 A=XAX"1= = .
and eigenvalues 2, 5 in A. 0 1] (0 5] 1|0 1 0 5

3 If A = XAX ! then the eigenvalue matrix for A + 27 is A + 2I and the eigenvector
matrix is still X. So A +2/ = X(A+2)X ' = XAX 1+ X(2)X 1= A+2I

4 (a) False: We are not given the \’s (b) True (c) True since X has independent columns.
(d) False: For this we would need the eigenvectors of X.

5 With X = I, A = XAX ! = A is a diagonal matrix. If X is triangular, then X ~! is
triangular, so X AX 1 is also triangular.

6 The columns of X are nonzero multiples of (2,1) and (0,1): either order. The same
eigenvector matrices diagonalize A and A~1.

b 1 A A A O 1 =X
1ol MRl o1 lo o a| -1 o

7 A=XAX"1=
1 A Ao )\]f 0 1 =X 1
M= lro1 o Ml |-1 a| o]

XARX—1 =

The second component is Fy, = (A\¥ — \5) /(A1 — \g).

G G b5 b
8 (a) The equations are AR A o with A = . This matrix
Gry1 Gy 1 0
has A\; =1, Ay = — with@ = (1,1), = = (1,-2)
T 12 1 2 1
1 1 1 0 3 3 3 3
(b) A" = XA"X~! = R L L
_ _E\n 1 1 2 1
1 2 0 (-.5) 113 -3 z 1
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9 Therule Fy42 = Fy41 + F}; produces the pattern: even, odd, odd, even, odd, odd, . ..

1 1 A 1 1 AM+A2 A=A
10 A = XAX ! = ! 2= |7 TR e
1 -1 Ao 1 -1 Al — A2 AL+ Ao
a b
These are the matrices , their eigenvectors are (1,1) and (1, —1).
b a

11 (a) True (no zero eigenvalues) (b) False (repeated A = 2 may have only one line of

eigenvectors) (c) False (repeated A may have a full set of eigenvectors)
12 (a) False: don’t know if A = 0 or not.
(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.

8 3 9 4 10 5 only eigenvectors
13 A= (or other), A = , A= ;
-3 2 -4 1 -5 0| arex = (c,—c).
14 The rank of A — 37 is » = 1. Changing any entry except a;o = 1 makes A

diagonalizable (the new A will have two different eigenvalues)

15 A* = XA¥X ! approaches zero if and only if every || < 1; A; is a Markov matrix
S0 Amax = 1 and A% — A3, A has A = .6 & .3 s0 A5 — 0.

6 .9 1 0 11
16 = XAX ! with A = and X = AR

4 1 0 .2 1 -1 0 0
101
Then A = XAFX 1 ? ? : steady state.
2 2
, , 9 0 3 -3 3 3
17 Ayis XAX ! with A = and X = ; A0 = (.9)t°
0 .3 1 1 1 1
3 3 6 3 3
A0 = (.3)10 . Then A° = (.9)1° + (.3)10 because
—1 —1 0 1 —1
6| 3 3
Uy = is the sum of +
0 1 -1
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19

20

21

22

23

24

25

26

Solutions to Exercises
2 -1 111 -1 1 0 1 1
=XAX1=2= and
-1 2 211 1| o 3||-1 1
111 -1 1 0 1 1
AF = XARX -1 =2
211 1] o 38| |-1 1
. . 1[|1+3F 1-3F
Multiply those last three matrices to get A¥ = ~
211-3k 143k
k
1 1|5 0 1 1 5k 5k — 4k
BfF = XAFX-1 = —
0 —-1| |0 4 0 -1 0 4k
det A = (det X)(det A)(det X 1) = det A = A; -+ \p. This proof (det = product

of \’s) works when A is diagonalizable. The formula is always true.

trace XY = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = traceY X.
Diagonalizable case: the trace of X AX ! = trace of (AX ~1)X = trace of A = L\,.
A = BAB™! when A has n independent eigenvectors. They go into the columns of
B = eigenvector matrix.

A 0 X 0 Xt 0

0 24 0 X
B has the original \’s from A and the additional eigenvalues 21, . .

A O
. So

0 2A 0 X!
., 2\, from 2A.

If A= XAX !then B =

The A’s form a subspace since cA and A; + As all have the same X. When X = [
the A’s with those eigenvectors give the subspace of diagonal matrices. The dimension
of that matrix space is 4 since the matrices are 4 by 4.

If A has columns 1, . . ., T, then column by column, A2 = A means every Ax; = x;.
All vectors in the column space (combinations of those columns x;) are eigenvectors
with A = 1. Always the nullspace has A = 0 (A might have dependent columns,
so there could be less than n eigenvectors with A = 1). Dimensions of those spaces
C(A) and N(A) add to n by the Fundamental Theorem, so A is diagonalizable
(n independent eigenvectors altogether).

Two problems: The nullspace and column space can overlap, so « could be in both.

There may not be r independent eigenvectors in the column space.



Solutions to Exercises 89

27

28
29

30

31

1 1 3 1 1 2 1
R=XVAX~!= /2 = has R? = A.
1 -1 1 1 -1 1 2
/B needs A = v/9 and v/—1, the trace (their sum) is not real so V/B cannot be real.
-1 0 . .
Note that the square root of has rwo imaginary eigenvalues v/—1 = 7 and
0 -1
0 1
—1, real trace 0, real square root R = .
-1 0

The factorizations of A and B into X AX ~! are the same. So A = B.

A= XA X 'and B = XA, X~!. Diagonal matrices always give AjAy = AgA;.
Then AB = BA from

XA X' XAX = XAJAoX ' = XAgA1 X1 = XA X ' XA X! = BA.

a b 0 b a—d b
(a) A= has A = aand A\ = d: (A—al)(A—dI) =
0 d 0 d—a 0 0

0 0 11 2 1 .
= . (b)) A= has A% = and A2 — A — I = 0 is true,
0 0 1 0 11

matching det(A — AI) = A2 — X\ — 1 = 0 as the Cayley-Hamilton Theorem predicts.
When A = XAX ! is diagonalizable, the matrix A — \;I = X (A — \; 1) X ! will
have 0 in the j, j diagonal entry of A — ;1. The product p(A) becomes

p(A) =(A—=\I)--- (A= X)) = XA =X\ I)--- (A= N\, )X L.
That product is the zero matrix because the factors produce a zero in each
diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices
approaching A.)
Comment 1 have also seen the following Cayley-Hamilton proof but I am not con-
vinced :

Apply the formula ACT = (det A)I from Section 5.1 to A — AI with variable \. Its

cofactor matrix C' will be a polynomial in A, since cofactors are determinants:
(A= ADNCT(\) = det(A — NI = p(\)I.
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32

33

34

35

Solutions to Exercises

“For fixed A, this is an identity between two matrix polynomials.” Set A = A to find
the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

I am not certain about the key step of substituting a matrix A for A. If other matrices
B are substituted for A, does the identity remain true ? If AB # BA, even the order

of multiplication seems unclear . . .

If AB = BA, then B has the same eigenvectors (1,0) and (0,1) as A. So B is also
diagonal b = ¢ = 0. The nullspace for the following equation is 2-dimensional :

1 0 a b a b 1 0 0 —-b 0 0
AB — BA = — — _
0 2 c d c d 0 2 c 0 00

Those 4 equations 0 = 0, —b = 0,c = 0,0 = 0 have a 4 by 4 coefficient matrix with
rank =4 — 2 = 2.

Bhas A =iand —7, so B*has A* = 1 and 1. Then B* = [ and B'0%4 = J.

C has A\ = (1 £ +/3i)/2. This X is exp(#7i/3) so A3 = —1 and —1. Then C® = —T
which leads to C19%4 = (—1)3C = —C.

) cosf —sinf , .
The eigenvalues of A = are A = e and e~ (trace 2 cos@ and

sinf  cosd
determinant \q A2 = 1). Their eigenvectors are (1, —i) and (1,7):

1 1 ein() 1 —1
AM = XAPX L= | /%
i e—mé 7 1
(e + ein0) /2 ... cosnf —sinnd
(e — e=in0) /2 ... sinnf  cosnd

Geometrically, n rotations by 6 give one rotation by nf.

Columns of X times rows of AX ~! gives a sum of r rank-1 matrices (r = rank of A).

Those matrices are Almlyrf to )\Tmry;f.
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36 Multiply ones(n) * ones(n) = n * ones(n). Then

AA~! = (eye(n) + ones(n)) * (eye(n) + C * ones(n))

=eye(n)+ (1 +C + Cn) xones(n) = eye(n) for C = —1/(n + 1).

37 B = A;l leads to Ax A1 = B(AlAg)B_l. Then As A1 is similar to A; As : they have

the same eigenvectors (not zero because A; and As are invertible).

38 This matrix has column 1 = 2 (column 2) so ;1 = (1, —2,0) is an eigenvector with
A1 = 0. Also A(1,1,1) = (1,1,1) and Ay = 1. Trace = zero so A3 = —1. Then
12920 = 1 and (—1)2°2° = 1 and (0)2°2° = 0. So A2?°!” has the same eigenvalues and

eigenvectors as A: A291° = A and A2020 = A2,
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Problem Set 6.3, page 238

1 (a) ASB stays symmetric like S when B = AT
(b) ASB is similar to S when B = A~!
To have both (a) and (b) we need B = AT = A~! to be an orthogonal matrix Q.
Then QSQ™ is similar to S and also symmetric like S.

2 \ = 0,4, —2; unit vectors (0,1, —1)/v/2 and +(2,1,1)/v/6 and £(1, —1,—1)/+/3.
Those are for S. The eigenvalues of 7" are A = 0, \/5, —v/5in A (trace = 0).
The eigenvectors of T"are £(2,2, —1) and (1+/5,1—+/5,2) and (1 —v/5,1+/5,4).

9 12

35 = has A = 0 and 25 so the columns of () are the two eigenvectors:
12 16
8 6 .
Q= or we can exchange columns or reverse the signs of any column.
—6 .8

1 2
4 (a) has A = —1and 3 (b) The pivots 1, 1 — b? have the same signs as the \’s
2 1

(c) The traceis A1 + A2 = 2, so S can’t have two negative eigenvalues.
5 (ATCA)T = ATCT(AT)T = ATCA. When A is 6 by 3, C will be 6 by 6 and the
triple product ATC' A is 3 by 3.

10 0 1
6 A=10and —5in A = , T = and have to be normalized to
0 -5 2 -1
. ) 1|1 2
unit vectors in Q = — . Then S = QAQT.
V5o 1

0 1
If A3 = 0thenall \> =0soall A\ =0asin A = . If A is symmetric then
0 0

A3 = QA2QT = 0requires A = 0. The only symmetric A is Q0QT = zero matrix.

31 3 -3 3 9 12 64 —.48 36 .48
7 =2 +4 : =0 +25
1 3 -1 1 1112 16 —48 .36 A8 .64
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8 l T1 T2 1 is an orthogonal matrix so P, + P, = x1T] + x2T3 =

T

T

T

1

[ T T2 ] =QQT =TI;also PP, = x1(x] x2)xs = zero matrix.
Lo

Second proof: PPy = Py(I — Py) = P, — P, = 0 since P2 = Py.

0 b A 0 0 A
9 A= has A = ¢b and —ib. The block matrices and are
-b 0 0 A A 0
also skew-symmetric with \ = ib (twice) and A = —ib (twice).

10 M is skew-symmetric and orthogonal; every ) is imaginary with [A| = 1. So \’s must
be 7, 7, —7, —1 to have trace zero.
1 1 . )
11 A = has A = 0,0 and only one independent eigenvector x = (i, 1).
1 —i
The good property for complex matrices is not AT = A (symmetric) but At =4

(Hermitian with real eigenvalues and orthogonal eigenvectors).

1 1 0 1 0 1 Perpendicular in )
12 Shas@ = |1 —1 0|;BhaaX =0 1 0. Notperpendicularin X
0 01 0 0 2d| since ST =Sbut BT #B
1 34+4i| . T .
13 § = is a Hermitian matrix (S~ = S). Its eigenvalues 6 and —4 are
3—4: 1

real. Here is the proof that A is always real when ?T =S5
Sx = Az leads to ST = A\x. Transpose to T1 S = T L\ using S'=s.
Thenz'Sx = Az and also T Sz = ' Ax. So A = ) is real.
2| (b) Truefrom AT = QAQT = A

1
14 (a) False. A = (d) False!
0 1| (c) TruefromS—!=QA QT

0 1
15 A and A" have the same \’s but the order of the x’s can change. A =
-1 0

has \; = i and Ay = —i with &1 = (1,4) first for A but £, = (1, —i) is first for AT.
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16

17

18

19

20

21

22

23

24

25

Solutions to Exercises

A is invertible, orthogonal, permutation, diagonalizable; B is projection, diagonaliz-

able. A allows QR, XAX 1, QAQT; B allows XAX ! and QAQ™.

Symmetry gives QAQT if b = 1; repeated X and no X if b = —1; singular if b = 0.
Orthogonal and symmetric requires |[A| = 1 and A real, so A = &1. Then S = +7 or

cosf —sinf 1 0 cosf sinf cos 26 sin 26
+5 = QAQT = =

sin 6 cosf| [0 —1 —sinf cosf sin20 — cos26
Eigenvectors (1,0) and (1, 1) give a 45° angle even with AT very close to A.

T

ai is |:q11 oo q1n:| |:>\1§11 ‘e )\nﬁln] S )\max (|Q11|2 +- |q1n|2) = )\max-
(@) z¥(Az) = (Az)Tz = 2TATe = —xT Az so xTAx = 0. (b) ZT Az is pure

imaginary, its real part is T Ax + yTAy = 04+0 (c) detA = X ...\, > 0 :
because pairs of \’s = ib, —ib multiply to give +b2.

Since S is diagonalizable with eigenvalue matrix A = 21, the matrix S itself has to be
XAX~! = X(2I)X~! = 2]. The unsymmetric matrix [2 1 ; 0 2] also has A = 2,2
but this matrix can’t be diagonalized.

(a) ST =Sand STS =TIleadto S? = 1I.

(b) The only possible eigenvalues of S are 1 and —1.

Qf
Q3

Suppose a > 0 and ac > b? so that also ¢ > b%/a > 0.

I 0
(c) A= soS=
0 —1I

= Q1Q7T — Q2Q7 with QT Q> =0.

Q1 Q2] A

(i) The eigenvalues have the same sign because A\; Ay = det = ac — b? > 0.

(ii) That sign is positive because A\; + Ay > 0 (it equals the trace a + ¢ > 0).

1 10
Only Sy = has two positive eigenvalues since 101 > 102,
10 101
xtS1x = 5% + 123179 + T2 is negative for example when 1 = 4 and x5 = —3:

Aj is not positive definite as its determinant confirms; Ss has trace cg; S3 has det = 0.
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27

28

29

30

31

32

33

34

35

Positive definite [ 1 0 17 1 b [ 1 0 17 1 0 1 0

= =LDLT
for—3<b<3 b 1|0 9—-10b2 b 1|0 9-v2||0 1
Positive definite 1 0] |2 4 1 0]1(2 0

= =LDILT.
forc > 8 2 1110 ¢—8 2 1 0 c—8](0 1
Positive definite 1 0 c 0

L = D= S=LDL"T.

for ¢ > |b] —b/e 1 0 c—b%/c

22 +4xy+3y? = (z+2y)? —y? = difference of squares is negativeat v = 2,y = —1,
where the first square is zero.

0 1 0 1 T
S = produces f(z,y) = |:x y} = 2xy. Shas A = 1 and
1 0 1 0 Y

A = —1. Then S is an indefinite matrix and f(x,y) = 2xy has a saddle point.

2 3 3
1 2 6 5 .. . .
ATA = and ATA = are positive definite; ATA= |3 5 4] is
2 13 5 6
3 4 5

singular (and positive semidefinite). The first two A’s have independent columns. The

2 by 3 A cannot have full column rank 3, with only 2 rows; third AT A is singular.

2 -1 0 2 -1 -1 1 0
has pivots o
S=1-1 2 -1 5 4 T=|-1 2 —1|issingular; T |1| =10
27_7_;
0 -1 2 273 —1 -1 2 1 0

Corner determinants | S| = 2,

Sa| =6,

S3| = 30. The pivots are 2/1,6/2,30/6.

S is positive definite for ¢ > 1; determinants ¢,c? — 1, and (¢ — 1)%(c + 2) > 0.
T is never positive definite (determinants d — 4 and —4d + 12 are never both positive).
L5, . . .
S = is an example with a + ¢ > 2b but ac < b?, so not positive definite.
5 10
The eigenvalues of S~ are positive because they are 1/A(S). Also the energy is

'S 1z = (S7'z)TS(S~1x) > 0 forall = # 0.

xSz is zero when (1, 22, 73) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally £ Sx goes negative for x = (1, —10,0) because the second pivot is negative.
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36

37

38

39

40

41

42

43

44

45

46

Solutions to Exercises

If aj; were smaller than all \’s, S — a;;1 would have all eigenvalues > 0 (positive
definite). But .S — a;;I has a zero in the (7, j) position; impossible by Problem 35.

(a) The determinant is positive; all A > 0  (b) All projection matrices except [
are singular  (c) The diagonal entries of D are its eigenvalues

(d) S = —1I has det = +1 when n is even, but this S is negative definite.

S is positive definite when s > 8; T is positive definite when ¢ > 5 by determinants.

1 —1| |9 11

A— |1 1 Vill-1 1 _ 2 1 A-0 4 0 o — 31
V2 V2 1 2 0 2 1 3
] 1 1/2 ) 1 3
The ellipse 2 + zy + y> = 1 comes from S = with A\ = = and —.
/2 1 22
The axes have half-lengths \/5 and /2/3.
S=CTC 9 3 4 8 1 0| |4 o1 2 2 4
— ; = and C =
S not A 3 5 8 25 2 1 0 9]0 1 0o 3
3 00 1 1 1
T
The Cholesky factors C' = (L\/E) =10 1 2landC = |0 1 1 | have
00 2 00 V5

square roots of the pivots from D. Note again CTC = LDLT = S.
(a) det S = (1)(10)(1) = 10; (b) A = 2 and 5; (¢) 1 = (cosfsinf) and
X2 = (—sin 6, cosf); (d) The \’s are positive, so S is positive definite.
ax® + 2bzxy + cy? has a saddle point if ac < b2. The matrix is indefinite (A < 0 and
A > 0) because the determinant ac — b? is negative.
If ¢ > 9 the graph of z is a bowl, if ¢ < 9 the graph has a saddle point. When ¢ = 9 the
graph of z = (2x + 3y)? is a “trough” staying at zero along the line 2z + 3y = 0.
A product ST of symmetric positive definite matrices comes into many applications.
The “generalized” eigenvalue problem Ka = AMx has ST = M ~' K. (Often we use
eig( K, M) without actually inverting M.) All eigenvalues A of ST are positive :

STx = M\ gives (Tx)"STx = (Tx)"A\z. Then A = ' TTSTx /=" Tx > 0.
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47

48

49

Put parentheses in zT ATC Az = (Az)TC(Ax). Since C is assumed positive definite,
this energy can drop to zero only when Az = 0. Sine A is assumed to have independent
columns, Az = 0 only happens when = 0. Thus ATC A has positive energy and is

positive definite.

My textbooks Computational Science and Engineering and Introduction to Ap-
plied Mathematics start with many examples of ATC A in a wide range of applications.

I believe positive definiteness of ATC A is a unifying concept from linear algebra.

(a) The eigenvalues of \yI — S are \; — A\, A1 — Ao, ..., A1 — A\y,. Those are > 0;

A1 — S is semidefinite.
(b) Semidefinite matrices have energy zT (MI—S)x2 > 0. Then A, zTx > 2T Sz.

(c) Part (b) says T Sx/xTx < \; for all . Equality at the eigenvector with Sz =

A1z. So the maximum value of zT Sz /zTx is \;.
Energy ' Sz = a (v1+x2+x3)? +c(v9—x3)? > 0ifa > 0 and ¢ > 0: semidefinite.

S has rank < 2 and determinant = 0; cannot be positive definite for any a and c.
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Problem Set 6.4, page 253

1
1 Eigenvalues 4 and 1 with eigenvectors (1,0) and (1, —1) give solutions u; = e*!
0
1 ) 1 1
and uy = e . If w(0) = =3 + 2 , then use those
-1 -2 0 -1

—_
—_

coefficients 3 and 2: u(t) = 3e*t + 2e¢?
0 -1

2 z(t) = 2¢! solves dz/dt = z with 2(0) = 2. Then dy/dt = 4y — 6e! with y(0) = 5

gives y(t) = 3e** + 2¢! as in Problem 1.

3 (a) If every column of A adds to zero, this means that the rows add to the zero row.

So the rows are dependent, and A is singular, and A = 0 is an eigenvalue.

-2 3
(b) The eigenvalues of A = are Ay = 0 with eigenvector z; = (3,2) and
2 -3
Ao = —5 (to give trace = —5)_with @2 = (1, —1). Then the usual 3 steps:
4 3 1
1. Write u(0) = as + = x; + x2 = combination of eigenvectors
1 2 -1
2. The solutions follow those eigenvectors: ¢”'x; and e~z
3. The solution u(t) = x1 + e 5tx; has steady state x; = (3,2) since e >* — 0.
4 dlv + w)/dt = (w—v) 4+ (v —w) = 0, so the total v + w is constant.
-1 1 A=0 1 1
A= has with 1 = , Loy =
I -1 Ay = =2 1 -1
v(0) 30 1 1 v(1) =20+ 10e72  v(o0) =2
= =20 +10 leads to
w(0) 10 1 -1 w(1) =20 — 10e=2  w(oo) =2
d |v 1 -1
5 — = has A = 0 and A = +2: v(t) = 20 + 10e?* — —o0 as
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a 1
6 A= has real eigenvalues a+1 and a — 1. These are both negativeifa < —1.

1 a
In this case the solutions of du /dt = Aw approach zero.

b —1
B = has complex eigenvalues b+ ¢ and b — i. These have negative real parts
1 b

if b < 0. In this case all solutions of dv /dt = Bwv approach zero.

7 A projection matrix has eigenvalues A = 1 and A = 0. Eigenvectors Px = « fill the

subspace that P projects onto: here = (¢, c¢). Eigenvectors with Px = 0 fill the

perpendicular subspace: here x = (¢, —c). For the solution to du/dt = —Pu,
3 2 1 . 2 ot 1 1
u(0) = = + u(t) =e” +e approaches
1 2 -1 2 -1 -1
6 — 2 1 ,
8 has A\ =5, ¢1 = c A =2, g = ; rabbits 7(t) = 20e% +10e?,
2 1 1 2

w(t) = 10e% + 20e?!. The ratio of rabbits to wolves approaches 20/10; (somewhat

against nature) > dominates.

4 1 1 1 , 1 4cost
9 (a) =2 +2 . (b) Thenu(t) = 2% +2e7 =
0 ) —1 ) —1 4sint
d ! 0 1
10 — L I L Y . This correctly givesy’ =y’ and y” = 4y+5y’.
dt y/_ _y// 4 5 Y/
0 1
A= has det(A — M) = A2 — 5\ — 4 = 0. Directly substituting y = e*! into
4 5
y’' =5y + Zly also gives A2 = 5\ + 4 and the same two values of \. Those values are

(5 £ v/41) by the quadratic formula.

N[
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0 1 1 ¢
11 The series for et is et = [ + ¢ + zeros =

0 0 0 1

then | Y0 = |1 YO YO HEOR y(t) = y(0) +y'(0)t

y'(t) 0 1] [¥(0) y'(0)
solves the equation—the factor ¢ tells us that A had only one eigenvector: not diago-

nalizable.

0 1
12 A = has trace 6, det 9, A = 3 and 3 with one independent eigenvector

-9 6
(1,3). Substitute y = te3! to show that this gives the needed second solution (y = €3

is the first solution).

13 (a) y(t) = cos 3t and sin 3¢ solve y”" = —9y. Itis 3 cos 3t that starts with y(0) = 3 and

01
y'(0) = 0. (b)y A= has det = 9: A = 3i and —3i with eigenvectors
-9 0
1 1 1 , 1 3 cos 3t
= and . Thenu(t) = %(33” +%e‘3"t = .
31 —3i 3% —31 —9sin 3t
14 When A is skew-symmetric, the derivative of | [u(t)||? is zero. Then ||u(t)|| = |[[e*u(0)]|

A

stays at ||u(0)||. So the matrix e!* is orthogonal when A is skew-symmetric (AT =—A).

15 wu, = 4and u(t) = ce’ +4. For the matrix equation, the particular solution u, = A~'b
|4 1 0 4
is and u(t) = c1et + coet +
2 t 1 2

16 d/dt(e™) = A+ A%+ S AM2 + G AP+ = AT+ At + 5 A2 + A3+ ).

This is exactly Ae“?, the derivative we expect from e“?.
o 1 —4t o 0 —4
17 Bt = I + Bt (short series with B2 = 0) = . Derivative = =
0 1 0 O

BeP' = B in this example.
18 The solution at time ¢ + T"is e*(*+7)44(0). Thus e times e4” equals eA(*+7),

19 A% = AgiveseM =T+ At + LA + TA3 + .. =T+ (¢! — 1)A
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21

22

23

24

25

26

27

101

e 4le—1) L - . o
et = from 21 and e® = from 19. By direct multiplication
0 1 0 1
A_B B, A A+B 0
e“e” £e et #e =
0 1
2 .
1 3
The matrix has A? = = = A. Then all A" = A. So e4t =
0 0 0 0
et 3(et —1) .
I+ @t+t2/2'+--)A=T+ (e —1)A= as in Problem 19.
0 0

—At (b) If Az = \a then eMa = eMx and e # 0.

(a) The inverse of et is e
To see ela, write (I + At + 2 A%2 + - )z = (L+ M+ A% + - )z = eMa.

de/dt = Ox — 4y dy/dt = —2x + 2y

becomes
dy/dt = —2x + 2y dx/dt =

I intend to give this example:
O0x — 4y

(z,y) = (e*,e*) is a growing solution. The correct matrix for the exchanged
yl. | 2 -2 : . .
u = is . It does have the same eigenvalues as the original matrix.
x -4 0
1 0 1 0 1 At 1 At
Invert toproduceU,,+1 = U, = U,.
At 1 At 110 1 —At 1 (At)?
At At = 1, has A = ¢™/3 and e~ /3, Both eigenvalues have A6 =150
-1 0
A® = I. Therefore Ug = AU, comes exactly back to Uy.
First A has A = +i and A* = I. 1—-2n —2n )
= (- Linear growth.
Second A has A = —1, —1 and 2n 2n+1

1 1—a? 2a

With a = At/2 the t idalstepis U 41 = —
ith a /2 the trapezoidal step is U 41 s

U,.

2

—2a 1—a

That matrix has orthonormal columns =- orthogonal matrix = ||U p41|| = ||[U ||
For proof 2, square the start of the series to see (I + A + 3 A% + $A3%)2 = I +2A+
1(24)*+ 1 (24)% + - - -. The diagonalizing proof is easiest when it works (but it needs

a diagonalizable A).
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Problem Set 7.1, page 267

0 0 O 1 00
1ATA =101 o0 AAT = | 0 64 0 | giveo; = 8 and oy = 1.
0 0 64 0 00
vy = (0,0,1), wy =(0,1,0), w3 = (0,1,0), w2 = (1,0,4). After removing
1
row 3 of A and column 3 of AT, still has 0 = 64 and 03 = 1.
0 64
2 det(B— M) = —X* 4+ 1= = 0gives A\ = 1 times 1 and /% and *™'/3.

The singular values are ¢ = 8 and 1 and 1/1000. So A changed by 1/5 and o only
changed by 1,/1000.

3 AT has the same singular values as A, and the singular vectors change from Av = ou

to Au = ow.
0 A Uk A’Uk (7% 0 A — Uk A’Uk — UL
4 = =0 and = =—0
AT 0 (A ATuk (3 AT 0 (A —ATuk (A

So the symmetric matrix .S reveals the u’s and v’s and ¢’s in the SVD of A.
5 AT A is symmetric with o; = 25 and Ay = 0 so A has oy = 5. Its eigenvectors are
vy = (2,1) and va = (—1,2): orthogonal. They are the v’sin A = UXVT.

6 The singular values 01,09 of A are the square roots of the eigenvalues A1, Ao of

2 1 ,
ATA = .Then \> =3\ +1=0giveso + 1 = 3\ = 302.
1 1

7 There are 20 singular values because a random 20 by 40 matrix almost surely has rank 20.

T 2 2
'Sz A1ci + -+ A . .

8 T S ; ;L ™ has its maximum \; when ¢; = 1 and the other ¢,
xr'xT cl+ -+

are zero. Then x = wv; = first singular vector of A. The ratio is a minimum A,

when ¢, = 1 and the other ¢, are zero. That means = v,, = last singular vector of A.

9 Requiring zTv; = 0 means ¢; = 0. Then the maximum ratio comes when ¢, = 1 and
the other ¢’s are zero. In that case * = w2 = second singular vector of A = second

eigenvector of S.
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10

11

12

5 3
The first matrix has ATA = with A = 8 and A = 2. The eigenvectors of
3 5

AT A = right singular vectors v1, v of A = (1,1)/v/2 and (1, —1)/+/2. The left sin-
gular vectors come fromu = Av /o = (4,0)/v/2v/8 = (1,0) and u = (0,2)/v/2v2 =
(0,1).

25 25

The second matrix has ATA = so A = 50 and A = 0. The right singular
25 25

vectors of A are again v; = (1, 1)/\/5 with o1 = v/50 and vy = (1, —1)/\/5 with no
o2 (or you could say o2 = 0 but our convention is no o3). Then u; = Av;/ V50 =
(3,4)/5.

1 10
This matrix has ATA= | 1 2 1 | witheigenvalues A\ = 3,1,0and o; = v/3 and

0 1 1
oo = 1 and no o3. The eigenvectors of ATA are v; = (1,2,1)/\/6_3 and
vy = (1,0,—1)/v2 and v3 = (1,—1,1)/v/3. Then Av = ou gives u = (1,1)/v/2
and ug = (1,—1)/v/2.
A:110:L1 1{|v3 o1 2 1| /v6
o1 1] V2|1 —1l]|o 1||t 0 —1| V2

This small question is a key to everything. It is based on the associative law (AAT)A =

A(AT A). Here we are applying both sides to an eigenvector v of ATA:
(AAT)Av = A(ATA)v = Alv = A\ Aw.

So Aw is an eigenvector of AAT with the same eigenvalue ).
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|1 3| [veo of [T 2

_ T_ 71 _ 13 -1 0 0|2 —1
13 A=USV =, 4, v, vy| =L 0 £
V10 NG

This A = is a 2 by 2 matrix of rank 1. Its row space has basis v, its nullspace
3 6
has basis wvo, its column space has basis w1, its left nullspace has basis us :
R Lt Null L 2
oW space —= ullspace —
5 |2 V5|1

Ll N(AT)L 3
V10 [5]° V10 | 4

Column space

14 (a) The main diagonal of AT A contains the squared lengths ||[row 1|2, - - | |[row m]|?.

So the trace of AT A is the sum of all a;.
(b) If A has rank 1, then ATA has rank 1. So the only singular value of A is
o1 = (trace ATA)'/2.

15 The number oyax (A7) max(A) is the same as opax(A)/omin(A). This is > 1.
It equals 1 if all o’s are equal, and A = UXV T is a multiple of an orthogonal matrix.
The ratio 0yax/Omin is the important condition number of A.

16 The smallest change in A is to set its smallest singular value o5 to zero.

17 The singular values of A 4 I are not o; + 1. They come from eigenvalues of

10
0 3

(A+ I)T(A + I). Test the diagonal matrix A =
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Problem Set 7.2, page 273

1 All the singular values of I are & = 1. We cannot leave out any of the terms u;-v;
without making an error of size 1. And the matrix A = [ starts with size 1! None of

the SVD pieces can be left out.

Notice that the SVD is I = (U)(I)(U") so that U = V. The natural choice for
the SVD is just UX VT = ITI. But we could actually choose any orthogonal matrix
U. (The eigenvectors of I are very far from unique—many choices! Any orthogonal

matrix U holds orthonormal eigenvectors of I.)

2 1 0 1 1
1 1 0 1 1
One possible rank 3 flag with a cross of zerosis A= |0 0 0 0 0
1 1 0 1 1
110 1 2]
2 1 21 1] [1o]]t 211
2 2 2 21=10 1 2 2 2 2
1 2 1 1_ _1 0_
1 2 2_ _ _1 2_ 1 0 0 _ pivot rows S A—CR
1 3 3_ _1 3_ 0 1 1 columns of R
1 2 2 1 1 9 13
3BBT= |1 3 3 2 3| = |13 19| . Trace 28, Determinant 2.
2 3
1 1 1 2 2 2 5 5
BTB= |2 3 1 3 3] = |5 13 13|. Trace 28, Determinant 0.

2 3 5 13 13

\/%_4’ B is compressible. But we don’t just keep the

With a small singular value o9 ~
first row and column of B. The good row v; and column wu, are eigenvectors of BT B

and BBT.
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7 10 7
4 My hand calculation produced ATA = [10 16 10| and det(ATA — \I) =

7T 10 7
—A3 4 30\ — 24). This gives A = 0 as one eigenvalue of AT A (correct). For the

others,
A2 —300+24=0 gives A=15++/152—-24~ 15+ 14 =29 and 1.

So 01 = v/29 and 05 = 1. The svd (A) command in MATLAB will give accurate o’s
and U and V.

5 A circle full of 1’s contains a square full of 1’s. The square touches the circle at angles
+45° and £135° measured from angle 0° at the x axis. The square of all 1’s only has

rank 1. Now look at the 1’s outside that square.

The shapes above and below the square each have about N — 1/2N/2 rows. The shapes
right and left of the square each have that same number of columns. (The rows below
copy the rows above, and the left columns copy the right columns.) Adding those two

equal numbers gives a rank of about (2 — 4/2) N which can be confirmed numerically.

6 For F} = xy the matrix entries A;; are ij/N?. This matrix has column j = j times
column 1, so the rank is 1. For F» = z + y the matrix has A;; = (¢ + j)/N. This is
the sum of two rank —1 matrices and its rank is 2. For F3 = 22 + y? the matrix has
Ai; = (i® 4 j%)/N?, again with rank 2. So A is positive semidefinite with o’s = \’s.
The trace of Ais 2(12+---+ N?)/N? ~ 2(N?3/3)/N? = 2N/3. That trace is A\; + A2
and numerical linear algebra would estimate A; and \s.

7 When A;; = F(i/N,j/N), this matrix is symmetric when F(z,y) = F(y,x). The
matrix A is antisymmetric when F'(z,y) = —F(y, ). The matrix is singular when

F(z,y) = F(x) F(y). The matrix has rank 2 when F'(z,y) = Fi(x) F1 (y)+Fa(z) F2(y).
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Problem Set 7.3, page 279

1 The row averages of Ay are 3 and 0. Therefore

21 0 -1 -2 AAT 1010 0
A= and S = =
110 1 -1 4 410 4

10
The eigenvalues of S are \; = T and Ay = 1= 1. The top eigenvector of S is

. I think this means that a horizontal line (the z axis) is closer to the five points
0

(2,-1),...,(—=2,—1) in the columns of A than any other line through the origin (0, 0).

2 Now the row averages of Ag are % and 2. Therefore

0
4

_1 T
2 and S = A4 = 1
-1 5 5

—_ ol
— NI
o wlw

o N

Again the rows of A are accidentally orthogonal (because of the special patterns of

0
those rows). This time the top eigenvector of S is . So a horizontal line is closer

1
to the six points (%, —1) ey (—%, —1) from the columns of A than any other line
through the center point (0, 0).
1 2 3 -1 0 1
3 Ay has row averages 2 and 3 so A =
5 2 2 2 -1 -1
1 1 2 -3
Then S = —AAT = =
2 2| _3 6

Then trace (S) =  (8) and det(S) = (%)2 (3). The eigenvalues A(S) are 1 times the

roots of A2 — 8\ + 3 = 0. Those roots are 4 + /16 — 3. Then the o’s are /A1 and
Vg
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2 0 0
. . . AAT 1
4 This matrix A with orthogonal rows has S = 1=3 0 8 0
n—
0 0 4

With \’s in descending order A1 > Ao > A3, the eigenvectors are (0,1, 0) and (0,0, 1)
and (1,0,0). The first eigenvector shows the u; direction = y axis. Combined with

the second eigenvector us in the z direction, the best plane is the yz plane.

These problems are examples where the sample correlation matrix (rescaling .S so all
its diagonal entries are 1) would be the identity matrix. If we think the original scaling
is not meaningful and the rows should have the same length, then there is no reason to

choose u; = (0,1, 0) from the 8 in row 2.

5 Ordinary least squares is different from PCA = perpendicular least squares.

. |3 0. 10 . 0 . 5
ATAZ=ATbis r= leads to = . Bestline is y = —+.
0 14 5 5/14 14

PCA finds the line through (0, 0) whose perpendicular distances to the points (—3, —1),
(1,0), (2, 1) is smallest. The computation finds the top eigenvector of AT A, where A

is now the 2 by 3 matrix of data points:

-3 -1
T -3 1 2 145 2
AAY = 1 01| = has A — 16A +3 = 0.
-1 0 1 5 2
2 1

Then A\ = 8 4 /61 and the top eigenvector of AA™T is in the direction of (5,/61 — 6)
1.8
~ (5,1.8). That is the direction of the line y = ?t.

6 See eigenfaces on Wikipedia.

7 The closest matrix A3 of rank 3 has the 3 top singular values 5,4, 3. Then A — A3 has
singular values 2 and 1.

8 If Ahas oy = 9and B has 01 = 4, then A + B has 07 < 13 because ||A + B|| <
||Al| + ||B||. Also o1 > 5 for A + B because ||A + B|| + || — BJ| > ||A]].
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Problem Set 7.4, page 285

1 1 T
1v= has v = and ||v||? =2andv' = { 1 — }and||§||2:2.
i —1i
cosf —sind 1 1 ) )
2 = [ cosf — isinf ] and its conjugate
sin 0 cos 6 i i
cosf —sinf 1 1
= [ cosf + isinf }
sin 0 cos 6 —1i —1
1 1 1

— has eigenvalues 1 and —1.

V21

3 Every permutation matrix has columns of length 1 and those columns are orthogonal.
Then PTP = I and P~' = PT. The inverse is also a permutation matrix.

4 The equation det(P — AI) = 01is A* = 1. Then the four \’s are 1,i,42,i%. The
eigenvectors of P are given in the problem and they are orthogonal (as they must be for
an orthogonal matrix like P with no repeated eigenvalues). In this case the eigenvector
matrix for P is the Fourier matrix !

5 The eight Haar wavelets are the columns of this matrix W5.

(1 1 1 0 1 0 o0 0]
1 1 1 0 -1 0 0 0
1 1 -1 0 0 1 0 0
e e A
1 -1 0 1 0 0 1 0
1 -1 0 1 0 0 -1 0
1 -1 0 -1 0 0 0 1
1 -1 0 -1 0 0 0 -l

Then WTW is a diagonal matrix D with diagonal entries (8,8,4,4,2,2,2,2). Also
WTW = D givesW—! = D~'WT. The 8 Harr wavelets are the 4 wavelets shown and
4 more wavelets (1,-1,0,0,0,0,0,0),(0,0,1,-1,0,0,0,0), (0,0,0,0,1,—1,0,0) and
(0,0,0,0,0,0,1, —1).
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Problem Set 8.3, page 319

1 P? =a(a%a)a’/(aTa)? = aa’/aa = P.
Pz = a(aTx) is a multiple of a.

Pa=asoa’(x — Px)=aTz — (Pa)Tz = 0.

T
b;a; a;a; c*

2 Equation (15) in Section 8.3 page 322 includes the term a2 = — because
a; a;a;
Ax* =b.

3

3 We have e3/e; = cosf and e3/eq = cosf. So es = eacosf = e; cos? 0. Every step

reduces the error by cos 6.

4 The gradient vector is VF = (0F/0z,0F/0y) = 2(x — y,2y — ) = (0,2) at
x = 1,y = 1. So the step starts at (1,1) and moves in the direction of (0, 2) to the
point (1,1 —25) = (1,0) = (x1,y1).

5 With B = 2 samples x; and zj, in a step, we minimize the loss F(x;) + F(zg) =
llafx — b;||*> + ||a} & — bi||*. The gradient of this sum is 2(a} a; + aj ay,).

6 Numerical experiment.

7 Numerical experiment.
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Problem Set 8.4, page 333

24 (17
1 = 20and S? = 0; u = 20. ds?=—1(=).
#=20and S* =0; 4 =20.5and S 3 <2)

10 E[z?] = E[(z — m)?] + 2mE[z] — m? = 02 4+ 2m? —m? = 0% + m>.
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