LINEAR ALGEBRA FOR EVERYONE

GILBERT STRANG

Massachusetts Institute of Technology

Errata in the First Printing

WELLESLEY - CAMBRIDGE PRESS Box 812060 Wellesley MA 02482

Linear Algebra for Everyone, Errata in the First Printing Copyright ©2020 by Gilbert Strang ISBN 978-1-7331466-3-0

All rights reserved. No part of this book may be reproduced or stored or transmitted by any means, including photocopying, without written permission from Wellesley - Cambridge Press. Translation in any language is strictly prohibited — authorized translations are arranged by the publisher.

LATEX typesetting by Ashley C. Fernandes (info@problemsolvingpathway.com)

Other texts from Wellesley - Cambridge Press

Linear Algebra and Learning from Data, 2019, Gilbert Strang	ISBN	978-0-6921963-8-0					
Introduction to Linear Algebra, 5th Ed., 2016, Gilbert Strang	ISBN	978-0-9802327-7-6					
Computational Science and Engineering, Gilbert Strang	ISBN	978-0-9614088-1-7					
Wavelets and Filter Banks, Gilbert Strang and Truong Nguyen	ISBN	978-0-9614088-7-9					
Introduction to Applied Mathematics, Gilbert Strang	ISBN	978-0-9614088-0-0					
Calculus Third Edition, Gilbert Strang	ISBN	978-0-9802327-5-2					
Algorithms for Global Positioning, Kai Borre & Gilbert Strang	ISBN	978-0-9802327-3-8					
Essays in Linear Algebra, Gilbert Strang	ISBN	978-0-9802327-6-9					
Differential Equations and Linear Algebra, Gilbert Strang	ISBN	978-0-9802327-9-0					
An Analysis of the Finite Element Method, 2008 edition, Gilbert Strang and George Fix							
	ISBN	978-0-9802327-0-7					

Wellesley - Cambridge Press	Gilbert Strang's page : math.mit.edu/~gs	
Box 812060, Wellesley MA 02482 USA	For orders : math.mit.edu/weborder.php	
www.wellesleycambridge.com	Outside US/Canada: www.cambridge.org	
LAFEeveryone@gmail.com	Select books, India: www.wellesleypublishers.com	

The website for this book (with Solution Manual) is **math.mit.edu/everyone** 2019 book : **Linear Algebra and Learning from Data (math.mit.edu/learningfromdata)** 2016 book : **Introduction to Linear Algebra, 5th Edition (math.mit.edu/linearalgebra)** 2014 book : **Differential Equations and Linear Algebra (math.mit.edu/dela)**

Linear Algebra is included in MIT's OpenCourseWare ocw.mit.edu/courses/mathematics Those videos (including 18.06SC and 18.065) are also on www.youtube.com/mitocw 18.06 Linear Algebra 18.06SC with problem solutions 18.065 Learning from Data

MATLAB® is a registered trademark of The MathWorks, Inc.

- p.9 Section 1.1, Change 'Problems 10-14' to 'Problems 11-14', and shift this line after Problem 10.
- p.10 Section 1.1, Problem 23 : Last sentence is 'A typical edge goes to (1, 0, 1, 0).'
- p.12 Section 1.2, Line 9, $\theta = 0^{\circ}$ (degree symbol was missing).
- p.14 Caption of Figure 1.8, 'Unit vectors: $\boldsymbol{u} \cdot \boldsymbol{i} = \cos \theta$ ' (\boldsymbol{i} , not \boldsymbol{U}).
- p.14 Paragraph immediately below Figure 1.8, 'The angle with $w_1 = (1,3)$ is less than 90° because $v \cdot w_1 = 6$ is positive.' (w_1 replaces w twice).
- p.15 Section 1.2, Line 6, spelling correction: 'Bunyakowsky' (not 'Buniakowsky').
- p.15 Section 1.2, Example 8, '... geometric mean $|ab| \leq arithmetic mean...$ ' (take absolute value of ab).
- p.18 Section 1.2, first line, Problems 17-20 (not 25).
- p.18 Section 1.2, Problem 17, change the first sentence: 'The vectors v = (4, 2) and w = (-1, 2) are two sides of a right triangle.'
- p.18 Section 1.2, Problem 18, last line : 'Use (1) and (2) with...
- p.18 Section 1.2, Problem 22, end: '... find $\boldsymbol{u} \cdot \boldsymbol{U}$. (not $\cos \theta$).
- p.19 New Problem 24 : Show that the squared diagonal lengths $\|v+w\|^2 + \|v-w\|^2$ in a parallelogram add to the sum of the four squared side lengths $2\|v\|^2 + 2\|w\|^2$.
- p.22 Section 1.3, Last line: 'The column space C(A) of A...' (insert 'C(A)').
- p.23 Section 1.3, below Equation (4): '... good place to start, because its column space $C(A_4)$ is the full...' (insert ' $C(A_4)$ ').
- p.24 Section 1.3, Second sentence: 'The last two columns give two more directions in \mathbf{R}^4 , and *the four columns are independent*.'
- p.24 Section 1.3, Line 9, start : Replace $A_2 x = v$ with $A_5 x = v$.
- p.25 Section 1.3, Fourth paragraph: Delete '... so the column rank is 1.' (we have no definition for 'column rank' yet).

- p.25 Section 1.3, Fifth paragraph: Delete last sentence 'So the row space is the line through row 2.'
- p.26 Section 1.3, First line: Replace 'This chapter introduces...' with 'This section introduces...'
- p.26 Section 1.3, Problem 2, new second sentence: 'The trivial combination (zero times every column) is not allowed.'
- p.28 Section 1.3, Problem 21, modified third sentence, 'Find $x \neq 0$ in Ax = 0:'
- p.28 Section 1.3, Problem 21, second row (modified) in line with matrix A:'A has only two independent rows'
- p.29 Section 1.4, Line 7 after the box : Replace 'm columns and p rows' with 'm rows and p columns'.
- p.40 Section 2.1, Remove (repeated) paragraph just after the first enumerated point : 'The best case has a square matrix A (m = n) with independent columns. Then there is one solution x (one combination of the columns of A) for *every* vector b.'
- p.46 Problem Set 2.1: First line of Problem 2, 'planes' should actually be 'lines'.

p.203 Line #7 should have
$$x_2$$
 thrice: $(A - \frac{1}{2}I)x_2 = 0$ is $\begin{bmatrix} .3 & .3 \\ .2 & .2 \end{bmatrix} x_2 = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \dots$

p.286 Paragraph above Equation (2): 'The key is **composition**: function of function of function... We have L + 1 layers $\ell = 0, 1, ..., L$ (layer 0 is input, layer L is output). Composition produces v_L from v_{L-1} and eventually from the input v_0 :'

- p.286 Line below Equation (2): Ends with $\dots A_1$ to A_L and the vectors b_1 to b_{L-1} .
- p.289 Line 7:1 Key operation Composition $F(x, v) = F_3(F_2(F_1(v)))$
- p.289 After Equation (1), fourth line: ' $\boldsymbol{x} = (A_1, \boldsymbol{b}_1, \dots, \boldsymbol{b}_{L-1}, A_L)$ in the central...'
- p.289 Line -2 (second-last line on page): 'composite function $F = F_L \cdots (F_2(F_1(v)))$ has an important...'

- p.290 End of line 4, Replace ' $A_0 v_0 + b_0$ ' with ' $A_1 v_0 + b_1$ '.
- p.290 Line after Equation (3), add parentheses : '... optimizing $\boldsymbol{x} = (A_1, \boldsymbol{b}_1, A_2)$ is...'
- p.296 First paragraph (twice) and second paragraph (once): $(A_1v_1 + b_1)$ should be replaced by $(A_2v_1 + b_2)$
- p.297 Problem #1, Last sentence : 'Describe the 12 (not 15) linear pieces of G = sum of these four ReLU's.'
- p.298 Problem #11: 'Does learning succeed for N = 4 neurons? What is the count r(N, 2) of flat pieces in F(v)? The white polygon shows where flat pieces in the graph of F(v) change...'
- p.302 First paragraph: Variable *B* is actually variable *H* (three times).
- p.303 Last line : Variable *B* is actually variable *H*.
- p.314 Second-last paragraph erroneously refers to Figure 8.5, should be Figure 8.9.
- p.317 Figure erroneously has ' $\cos(\theta_k)^2$ ', should have ' $\cos^2 \theta_k$ '.
- p.319 Problem #2: Replace $(P(x_k x^*))$ with $(I P)(x_k x^*)$
- p322 Fifth line : ... p_0 to p_{100} for each score.
- p.325 Fifth line below the figure caption, σ^2 : 'N $(0, \sigma^2)$ '
- p.325 Equation #8, σ^2 : 'Normal distribution N(m, σ^2)'
- p.327 Last line : Replace 'p(x)' with ' $N(0, \sigma^2)$ '

p.329	Example 5, 1 and 2 replaced by	/							
	Joint probability matrices	$P_4 =$	$\frac{1}{4}$	$\frac{1}{4}$	and	$P_5 =$	$\left[\frac{1}{2} \right]$	0]
	for Examples 4 and 5	-	$\frac{1}{4}$	$\left[\frac{1}{4}\right]$		0	0	$\frac{1}{2}$	

- p.329 Middle of the page, refers to Example 4 (not Example 1): Example 4 showed *independent* random variables.
- p.330 Line above Equation (15): 'Therefore the n^2 joint probabilities'...
- p.331 Equation (20), remove the ' \sum ' symbol.
- p.331 Third line after Equation (20) should refer to Equation (17).