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3.2 Computing the Nullspace by Elimination:A=CR✬

✫

✩

✪

1 The nullspace N(A) in Rn contains all solutions x to Ax = 0. This includes x = 0.

2 Elimination from A to R0 to R does not change the nullspace : N(A) = N(R0) = N(R).

3 The reduced row echelon form R0 = rref(A) has I in r columns and F in n− r columns.

4 If column j of R0 is free (no pivot), there is a “special solution” to Ax = 0 with xj = 1.

5 Every short wide matrix with m < n has nonzero solutions to Ax = 0 in its nullspace.

This section finds all solutions to Ax = 0. When A is a square invertible matrix (in this

case its rank is r = n), the only solution is x = 0. Then the nullspace only contains

the zero vector : the columns of A are independent. But in general A has r independent

columns (r = rank). The other n− r columns of A are combinations of those independent

columns. We will find n− r vectors in the nullspace—special solutions to Ax = 0.

With square invertible matrices, Chapter 2 simplified A to an upper triangular U . For

matrices of all shapes, elimination will now simplify Ax= 0 to an “echelon form”Rx= 0.

(Actually R = I when A is invertible, so elimination is now going further than before—

as far as it can.) We will start with two examples of R, to show where we are going.

Here is a matrix R of rank r = 2. It has n = 4 columns so we look for n − r =
4 − 2 = 2 independent solutions to Rx = 0. The nullspace N(R) will have dimension 2.

Example 1 R =

[

1 0 3 5
0 1 4 6

]

Rx = 0 is
x1+ 3x3 + 5x4 = 0
x2 + 4x3 + 6x4 = 0

Two “special solutions” are easy to find, when x3 and x4 are 1 and 0 or 0 and 1.

Set x3 = 1 and x4 = 0. Equation 1 gives x1 = −3. Equation 2 gives x2 = −4.

Set x3 = 0 and x4 = 1. Equation 1 gives x3 = −5. Equation 2 gives x2 = −6.

These two special solutions s1= (−3,−4, 1, 0) and s2= (−5,−6, 0, 1) are in the nullspace

of R. They give Rs1 = 0 and Rs2 = 0. Any combination of those two solutions will also

be in the nullspace. The matrix R times the vector x = c1s1 + c2s2 produces zero.

Soon we will call those vectors s1 and s2 a basis for the nullspace : the plane of all

solutions to Rx = 0.

In this example, the matrix R was easy to work with. Its first two columns contained

the identity matrix. It is an example of a matrix in “reduced row echelon form”. We will

give one more example to show a variation R0 that is still in reduced row echelon form

and still simple. The subscript in R0 indicates that there is also a row of zeros.
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Example 2 R0 =





1 7 0 8
0 0 1 9
0 0 0 0



 R0x = 0 is

x1 + 7x2 + 0x3 + 8x4 = 0
x3 + 9x4 = 0

0 = 0

Now the identity matrix is in columns 1 and 3. And row 3 is all zero. This still counts

as a reduced row echelon form—elimination can’t make it simpler. The 1’s in the identity

matrix are still the first nonzeros in their rows. The word “echelon” refers to the “staircase”

of 1’s. Any zero rows always come last in R0.

The special solutions still have 1 and 0 for the “free variables”—which are x2 and x4.

Set x2 = 1 and x4 = 0. Equation 1 gives x1 = −7. Equation 2 gives x3 = 0.

Set x2 = 0 and x4 = 1. Equation 1 gives x1 = −8. Equation 2 gives x3 = −9.

Those special solutions are now s1 = (−7, 1, 0, 0) and s2 = (−8, 0,−9, 1). For the free

variables x2 and x4, we freely choose 1, 0 and then 0, 1. Then the equations R0x = 0
tell us x1 and x3.

Here is the plan for this section of the book. We start with any m by n matrix A.

We apply elimination (to be explained). That changes A into its reduced row echelon form

R0 = rref (A). Our two examples showed the simplest form R0 = R, and then the most

general form when R0 may have zero rows. Removing all zero rows of R0 leaves R.

r,m, n = 2, 2, 4 Simplest case R =
[

I F
]

as in

[

1 0 3 5
0 1 4 6

]

r,m, n = 2, 3, 4 General case R0 =

[

I F

0 0

]

P as in





1 7 0 8
0 0 1 9
0 0 0 0





I and F have r rows. The reduced matrix R0 and the original A have m rows. So R0

has m − r rows of zeros. When we remove those zero rows, we have R =
[

I F
]

P .

The identity I has r columns and F has n− r columns. The permutation P is n by n.

P =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









exchanges columns 2 and 3. Then

I goes into columns 1 and 3 of R0 and R.

Example 1 had P = I and we didn’t notice P . Columns 1 and 2 were independent in A.

Example 2 had column 2 = 7 (column 1). The first independent columns were 1 and 3.

An important job of elimination is to find independent columns. Here is the key to A=CR :

A=CR=C
[

I F
]

P =
[

C CF
]

P =[[[Indep cols Dependent cols]]] Permute cols

The dependent columns of A are combinations CF of the independent columns in C.

Chapter 1 described C and R. But we need elimination (to be explained next) to actually

find the column matrix C and the row matrix R =
[

I F
]

P .
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Elimination from A to rref(A) : Reduced Row Echelon Form

How does elimination work ? In any order, we may execute these three different steps :

1. Subtract a multiple of one row from another row (above or below !)

2. Multiply a row by any nonzero number

3. Exchange any rows.

Let me stay with these two examples, the simplest case and then the general case.

Here is a 2 by 4 matrix A that elimination reduces to our 2 by 4 example R =
[

I F
]

.

A =

[

1 2 11 17
3 7 37 57

]

→

[

1 2 11 17
0 1 4 6

]

→

[

1 0 3 5
0 1 4 6

]

= R

Elimination starts with column 1. It subtracts 3 times row 1 from row 2. That produces the

zero in the middle matrix. Now column 1 is set (the corner pivot was A11 = 1 which is

what we want). Moving to column 2, we subtract 2 times the new row 2 from row 1.

That produces the second zero in R. Now R starts with the r by r identity matrix I .

The rank is r = 2 and elimination on this matrix A is complete.

What did elimination actually do ? It inverted the leading 2 by 2 matrix W =

[

1 2
3 7

]

.

W at the start of A became I at the start of R :

Multiply W−1A = W−1
[

W H
]

to produce R =
[

I W−1H
]

=
[

I F
]

.

We always knew that the dependent columns of A (in H) would be some combination

of the independent columns (in W ). Now we see that H = WF . The matrix F is telling

us how to combine the independent columns of A to produce the dependent columns.

We can understand the echelon form R and the role of F !

Dependent

columns
H =

[

11 17
37 57

]

=
Independent

columns
W =

[

1 2
3 7

]

times F =

[

3 5
4 6

]

.

This is a key step in showing that however you compute R from A, you always reach

the same R. Each piece of R is completely determined by A (even if there are different

elimination steps that lead from A to R).

1 The first r independent columns of A locate the columns of R containing I

2 The remaining columns F in R are determined by the equation H = WF :

(Dependent columns of A) = (Independent columns of A) times F

3 The last m− r rows of R0 are rows of zeros.
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Example 2 continued Here is a matrix A that leads to our second reduced echelon form

R0. Both A and R0 are 3 by 4 matrices of rank r = 2. Watch each step :

A =





1 7 3 35
2 14 6 70
2 14 9 97



→





1 7 3 35
0 0 0 0
0 0 3 27



→





1 7 0 8
0 0 0 0
0 0 3 27



→





1 7 0 8
0 0 1 9
0 0 0 0



= R0

This example shows again the three allowed row operations in elimination from A to R0 :

1) Subtract a multiple of one row from another row (below or above)

2) Divide a row like
[

0 0 3 27
]

by its first nonzero entry (to reach pivot = 1)

3) Exchange rows (to move all zero rows to the bottom of R0)

A different series of steps could reach the same R0. But that result R0 = rref(A)
can’t change. The pieces of R0 are all fully determined by the original matrix A.

R0 has a zero row because A has rank r = 2

I is in columns 1 and 3 of R0 because those are the first independent columns of A

F in columns 2 and 4 combines columns 1, 3 of A to give its dependent columns 2, 4

C times F =





1 3
2 6
2 9





[

7 8
0 9

]

=





7 35
14 70
14 97



 =
dependent

columns

2 and 4 of A

The Matrix Factorization A = CR and the Nullspace

This is our chance to complete Chapter 1. That chapter introduced the factorization

A = CR by small examples : We learned the meaning of independent columns, but we

had no systematic way to find them. Now we have a way : Apply elimination to reduce A

to R0. Then I in R0 locates the column matrix C in A. And removing any zero rows

from R0 produces the row matrix R.

A = CR is





1 7 3 35
2 14 6 70
2 14 9 97



 =





1 3
2 6
2 9





[

1 7 0 8
0 0 1 9

]

(1)

We could never have seen in Chapter 1 that (35, 70, 97) combines columns 1 and 3 of A.

Please remember how the matrix R shows us the nullspace of A. To solve Ax = 0
we just have to solve Rx = 0. This is easy because of the identity matrix inside R.
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We find two special solutions s1 and s2—one solution for every column of F in R.

Rs1 = 0

[

1 7 0 8
0 0 1 9

]









−7
1
0
0









=

[

0
0

]

Put 1 and 0
in positions 2 and 4

Rs2 = 0

[

1 7 0 8
0 0 1 9

]









−8
0

−9
1









=

[

0
0

]

Put 0 and 1
in positions 2 and 4

I think s1 and s2 are easiest to see using the matrix R =
[

I F
]

or
[

I F
]

P .

The special solutions to
[

I F
]

x = 0 are the columns of

[

−F

I

]

in Example 1

The special solutions to
[

I F
]

P x = 0 are the columns of PT

[

−F

I

]

in Example 2

The first one is easy because the permutation is P = I . The second one is correct because

PPT is the identity matrix for any permutation matrix P :

[

I F
]

P times PT

[

−F

I

]

reduces to
[

I F
]

[

−F

I

]

=
[

0
]

Review Suppose the m by n matrix A has rank r. To find the n− r special solutions to

Ax = 0, compute the reduced row echelon form R0 of A. Remove the m − r zero rows

of R0 to produce R =
[

I F
]

P and A = CR. Then the special solutions to Ax = 0

and Rx = 0 are the n− r columns of PT

[

−F

I

]

.

Example 3 Elimination on A gives R0 and R. Then R reveals the nullspace of A.

A =





1 2 1
2 4 5
3 6 9



→





1 2 1
0 0 3
0 0 6



→





1 2 0
0 0 1
0 0 0



 = R0 with rank 2

Then R =

[

1 2 0
0 0 1

]

and the independent columns of A and R0 and R are 1 and 3.

To solve Ax = 0 and Rx = 0, set x2 = 1. Solve for x1 = −2 and x3 = 0. Special

solution s = (−2, 1, 0). All solutions x = (−2c, c, 0). And here is A = CR.

A =





1 2 1
2 4 5
3 6 9



 = CR =





1 1
2 5
3 9





[

1 2 0
0 0 1

]

= (column basis) (row basis)

Can you write each row of A as a combination of the rows of R ?
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For many matrices, the only solution to Ax = 0 is x = 0. The columns of A

are independent. The nullspace N(A) contains only the zero vector : no special solutions.

The only combination of the columns that produces Ax=0 is the zero combination x=0.

This case of a zero nullspace Z is of the greatest importance. It says that the columns

of A are independent. No combination of columns gives the zero vector (except x = 0).

But this can’t happen if n > m. We can’t have n independent columns in Rm.

Important Suppose A has more columns than rows. With n > m there is at least

one free variable. The system Ax = 0 has at least one nonzero solution.

Suppose Ax = 0 has more unknowns than equations (n > m). There must be

at least n − m free columns. Ax = 0 has nonzero solutions in N(A).

The nullspace is a subspace. Its “dimension” is the number of free variables. This

central idea—the dimension of a subspace—is explained in Section 3.5 of this chapter.

Example 4 Find the nullspaces of A,B,M and the two special solutions to Mx = 0.

A =

[

1 2
3 8

]

B =

[

A

2A

]

=









1 2
3 8
2 4
6 16









M =
[

A 2A
]

=

[

1 2 2 4
3 8 6 16

]

.

Solution The equation Ax = 0 has only the zero solution x = 0. The nullspace is Z.

It contains only the single point x = 0 in R2. This fact comes from elimination :

Ax =

[

1 2
3 8

]

→

[

1 2
0 2

]

→

[

1 0
0 1

]

= R = I No free variables

A is invertible. There are no special solutions. Both columns of this matrix have pivots.

The rectangular matrix B has the same nullspace Z. The first two equations in Bx = 0
again require x = 0. The last two equations would also force x = 0. When we add extra

equations (giving extra rows), the nullspace certainly cannot become larger. Extra rows

impose more conditions on the vectors x in the nullspace.

The rectangular matrix M is different. It has extra columns instead of extra rows.

The solution vector x has four components. Elimination will produce pivots in the first

two columns of M . The last two columns of M are “free”. They don’t have pivots.

M =

[

1 2 2 4
3 8 6 16

]

R =

[

1 0 2 0
0 1 0 2

]

=
[

I F
]

For the free variables x3 and x4, we make special choices of ones and zeros. First x3 = 1,

x4 = 0 and second x3 = 0, x4 = 1. The pivot variables x1 and x2 are determined by

the equation Rx = 0. We get two special solutions in the nullspace of M . This is also the

nullspace of R : elimination doesn’t change solutions.

Special solutions to Mx = 0

R =

[

1 0 2 0
0 1 0 2

]

Rs1 = 0 Rs2 = 0

s1 =









−2
0
1
0









and s2 =









0
−2
0
1









← 2 pivot

← variables

← 2 free

← variables
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Elimination in Three Steps

The special value of matrix notation is to show the big picture. So far we have described

elimination as it is usually executed, a small step at a time. But if we work with matrices

(blocks of the original A), then block elimination can be described in three steps.

Start with an m by n matrix A of rank r.

Step 1 Exchange columns of A by PC and exchange rows of A by PR to put r indepen-

dent columns first and r independent rows first in PRAPC .

PRAPC =

[

W H

J K

]

C =

[

W

J

]

and B =
[

W H
]

have full rank r

Step 2 Multiply the r top rows by W−1 to produce W−1B =
[

I W−1H
]

=
[

I F
]

Step 3 Subtract J
[

I W−1H
]

from the m−r lower rows
[

J K
]

to produce
[

0 0
]

The result of Steps 1, 2, 3 is the reduced row echelon form R0

PRAPC =

[

W H

J K

]

→

[

I W−1H

J K

]

→

[

I W−1H

0 0

]

= R0 (2)

There are two facts that need explanation. They led to Step 2 and Step 3 :

1. The r by r matrixW is invertible 2. The blocks satisfy JW−1H = K.

1. For the invertibility of W , we look back to the factorization A = CR. Focusing on

the r independent rows of A that go into B, this is B = WR. Since B and R have rank r

and W is r by r, W must have rank r and be invertible.

2. We know that the first r rows
[

I W−1H
]

are linearly independent. Since A has

rank r, the lower rows
[

J K
]

must be combinations of those upper rows. The

combinations must be given by J to get the first r columns correct : JI = J . Then

J times W−1H must equal K to make the last columns correct.

The conclusion is that PRAPC =

[

W

J

]

W−1
[

W H
]

= CW−1B

We need that middle factor W−1 because the columns C and the rows B both contain W .

To end this important section of the book, here is a note about computational linear

algebra. Linear equations Ax = b are obviously fundamental. In practice, the steps

of elimination are reordered for the sake of speed and numerical stability. We can solve

systems of order 1000 on a laptop (allowing roundoff errors in single precision or double

precision). Supercomputers can solve much larger systems. But there is a limit on the

matrix size. What to do beyond that limit ?

The surprising answer is randomized linear algebra. We sample the columns of A.

We accept the errors involved. In practice matrices are not completely random, and the final

results are remarkably good. Often the approximation to A is expressed in the 3-factor form

A ≈ CUR. C comes from sampling the columns of A and R comes from the rows of A.
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The smaller mixing matrix U is constructed as we go. With high probability, the

approximate solution is surprisingly accurate.

Linear algebra is alive. The demands of computation (speed and accuracy) lead to

new ideas. The same will be true for eigenvalues and singular values—later in this book.

The Steps from A to R0 = rref(A) and R

Finally we describe the individual steps from A to R0. One important output is a list L

of column numbers for the first r independent columns of A. That list decides the permu-

tation matrix P . Then R =
[

I F
]

P has the columns of I in the right places.

Suppose the 4 by 3 matrix A has the form shown below. The matrix has seven zeros.

What steps would a row elimination code take to reach R0 ?

A =









0 0 0
0 X x

0 x X

0 x 0









4 rows and 3 columns, rank 2

Large entries X, small entries x

Here are the 9 small steps

1 Find the first nonzero column of A. Answer : 2 starts the column list L.

2 Choose the first nonzero or largest nonzero X in column 2 as the pivot.

3 By row exchanges, move that pivot row into row 1.

4 Subtract multiples of row 1 from all other rows so that the rest of column 2 is zero .

5 Divide row 1 by X to change the first pivot of A2 to 1.

A2=









0 1 y

0 0 0
0 0 Y

0 0 y









6 In the next nonzero column, find the first or largest pivot Y.

7 The independent column list L is 2, 3. The rank of A is r = 2.
8 By row exchanges, move that pivot row

[

0 0 Y
]

into row 2.
9 Divide row 2 by Y to change the second pivot of R0 to 1.

R0 =









0 1 0
0 0 1
0 0 0
0 0 0









=









1 0 0
0 1 0
0 0 0
0 0 0













0 1 0
0 0 1
1 0 0





=

[

I F

0 0

]

P with F =

[

0
0

]

Question Do the steps from A to R0 = rref(A) and to R preserve the column space

or row space or nullspace or nullspace of AT (or none of the above) ?

Answer Those operations will preserve the row space of A and the nullspace of A.

The rows themselves are changed (into the rows of R0).

We will soon say : The rows of R are a basis for the row space. This concept empha-

sizes the importance of independent rows. Even better—as Chapters 4 and 7 will show—

is to have basis vectors that are perpendicular.


