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The   Application   of   Singular   Value  
Decomposition   to   Image   Compression  

Hanquan   (Harry)   Qiao  

1   Introduction  
Singular   Value   Decomposition   (SVD)   is   one   of   the   most   important   concepts   in   linear   algebra.   For  

anybody   who   is   taking   a   linear   algebra   course,   the   words   eigenvalue   and   eigenvector   should   be   familiar.  
For   symmetric   matrices   S,   the   eigenvalues   and   orthogonal   eigenvectors   are   not   difficult   to   compute.  
However,   to   extend   this   to   a   rectangular   matrix   A   requires   a   different   approach.   

SVD   is   a   continuation   of   eigendecomposition   that   can   be   used   on   any   rectangular   matrix   A.   Just  
like   the   many   important   factorizations   of   matrices   ( ,   ),   SVD   breaks   matrix   A   into RA = C UA = L  
rank-one   pieces   and   in   addition   puts   rank-one   pieces   in   order   of   importance.   The   idea   of   using   SVD   to  
compress   matrices   comes   naturally,   since   the   goal   is   to   compress   the   matrix   while   maintaining   the   most  
important   features.   

With   the   advancement   of   technology   and   the   arrival   of   the   era   of   big   data,   the   use   of   images   has  
skyrocketed.   Whether   it   is   medical   imaging   used   in   patients’   treatment   [15,   17],   data   used   for   recognition  
in   machine   learning   [2,   6],   or   other   purposes   [8,   9],   the   large   amount   of   digital   images   not   only   requires   a  
substantial   amount   of   energy   to   process,   it   also   occupies   valuable   memory   space.   Since   images   are   large  
matrices,   SVD   can   be   a   useful   tool   to   compress   images   while   maintaining   an   acceptable   quality.  

This   paper   will   examine   how   SVD   is   used   in   image   compression.   Specifically,   it   will   investigate  
the   effect   of   using   SVD   on   different   matrices   and   images   with   code   developed   by   Tim   Baumann   and  
published   online   ( http://timbaumann.info/svd-image-compression-demo/ )   [1].   

2   Tim   Baumann’s   Page  
Since   a   large   portion   of   this   paper   involves   using   Tim   Baumann’s   webpage,   it   is   necessary   to  

explain   how   the   page   functions.   Fig.   1   is   the   setup   of   the   page:  
There   are   15   images   built   into   this   page.   Ten   of   these   are   stock   images,   easily   found   online,   and  

selected   by   using   the   right   and   left   arrows   and   clicking   on   an   image.   The   other   five   are   identified   only  
with   question   marks   and   contain   images   that   can   only   be   seen   by   using   the   demo.   Users   can   upload   their  
own   images,   using   the   “file   picker”   button,   and   experiment   on   them   with   SVD.   Uploading   images   that   are  
larger   than     pixels   is   not   recommended,   because   they   slow   down   the   computer. 000 000  1 × 1   

Once   an   image   is   selected,   users   can   adjust   the   slider   left   or   right   to   experiment   how   many  
singular   values   are   required   to   get   a   clear   image.   On   the   right-hand   side   of   the   image,   the   calculation   of  
compressed   size   and   compression   ratio   will   change   as   the   slider   is   moved.   The   line   of   calculation   under  
“compressed   size”   also   shows   how   many   singular   values   are   selected.   There   is   a   checkbox   at   the   bottom  
right   of   the   displayed   image   next   to   “hover   to   see   the   original   picture.”   Checking   the   box   enables  
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comparison   of   the   compressed   image   to   the   original   to   see   the   difference.   The   singular   values   of   the  
image   can   be   shown   by   hitting   the   “show   singular   values”   button.   Details   regarding   what   happens   when  
the   “show   singular   values”   button   is   selected   will   be   explained   later   in   this   paper   with   an   example.   

 
Figure   1.   Tim   Baumann’s   webpage  

3   SVD   on   Low-Rank   Matrix  
Knowing   that   the   key   feature   of   SVD   is   to   break   large   matrices   into   a   sum   of   rank   1   pieces   in  

order   of   decreasing   importance,   let’s   first   look   at   some   simple   matrices.   SVD   works   well   on   low-rank  
matrices   just   because   of   their   very   nature,   as   seen   in   the   following   examples:  

Rank   1   matrix  
Matrices   of   rank   1   are   in   themselves   rank   1   pieces:   A   =   .   A   rank   1   matrix   A   has   1 u vσ1 1 1

T  
independent   column   and   one   independent   row.   If   rank   1   matrix   A   has   dimension   ,   then   it   is  m × n  
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possible   to   factor   .   By   doing   so,   the   total   number   of   entries   in   A   has   been R m )(1 )  A = C = ( × 1 × n nm  
replaced   by   a   reduced   number   of   entries,   while   still   maintaining   the   values   of   each   entry   in   matrix m + n  
A.   While   there   are   not   many   rank   1   matrices   in   the   natural   world,   there   are   a   few.   There   are,   in   fact,    more  
than   35   countries   with   flags   consisting   only   of   stripes,   some   vertical   and   some   horizontal,   with   different  
color   combinations   [3].   On   page   270   of   Gilbert   Strang’s    Linear   Algebra   for   Everyone ,   there   is   a  
well-crafted   example   explaining   why   these   pictures   can   be   compressed   effectively   using   SVD.   Tim  
Baumann’s   published   SVD   demo   can   be   used   on   a   picture   of   the   Russian   flag.   

 
Figure   2a.   Russian   flag   compressed   to   1   singular   value  

 
Figure   2b.   Russian   flag   compressed   to   10   singular   values  
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Figure   2c.   Russian   flag  

The   number   of   singular   values   can   be   selected   by   adjusting   the   slider.   In   this   specific   case,   the  
Russian   flag   is   an   image   of   rank   1.   There   is   only   1   nonzero   singular   value.   That   is   why   Fig.   2a   looks  
exactly   like   Fig.   2b   and   Fig.   2c.   The   main   difference   here   is   the   compression   size   shown   in   the   top   right  
corner.   The   original   image   has     pixels   (entries   in   a     matrix).   After   the 200 00 60000  1 × 8 = 9 200 00  1 × 8  
image   is   compressed   with   1   singular   value   selected,   it   is   a   product   of   three   matrices   which   only   has  

entries,   calculated   from   the   equation   .   The   new   compressed 200 00 001  1 × 1 + 1 + 1 × 8 = 2 ΣVA = U T  
image   has   only     the   size   of   the   original   image,   while   keeping   all   the   features. 1

479.76   
Other   countries   have   flags   consisting   of   colored   stripes   and   symbols.   For   example,   the   Chinese  

flag   has   five   yellow   stars   on   the   top   left   corner,   the   Japanese   flag   has   a   red   circle   on   a   white   background,  
and   the   flag   of   Israel   has   a   blue   Star   of   David   (a   hexagram)   between   two   blue   lines.   Those   symbols   make  
the   rank   infinite,   but   compression   is   still   possible,   as   will   be   discussed   later   in   this   paper.   

Low-Rank   Matrix  
Although   low-rank   matrices   are   a   bit   more   complicated   than   rank   1,   they   can   be   compressed   as  

well.   Take   the   flags   of   Finland   and   Greece,   for   example:   

 
Figure   3.   The   flag   of   Finland Figure   4a.   The   flag   of   Greece  

Fig.   3   on   the   left   is   rank   2.   There   are   two   different   columns   and   two   different   rows.   At   first  
glance,   Fig.   4a   on   the   right   has   five   different   rows,   while   it   has   only   three   different   columns.   Since   the  
number   of   independent   columns   always   equals   the   number   of   independent   rows,   the   flag   must   be   rank   3.  
Taking   a   closer   look,    though,   some   rows   seem   to   be   the   sum   of   two   other   rows.   If   the   rows   are   numbered  
by   looking   at   the   alternating   blue   and   white   stripes   on   the   right   of   the   flag,   row   1   will   appear   to   be   the  
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first   blue   stripe,   row   2   the   first   white   stripe,   and   so   on.   However,   row   1   is   actually   the   sum   of   row   2   and  
row   3.   This   means   that   in   the   first   five   rows   there   are   only   two   independent   rows.   Though   row   6   and   row  
8   have   different   colors   than   row   7   and   row   9,   the   four   rows   are   all   full   stripes,   which   means   there   is   only  
one   independent   row.   This   is   how   it   looks   with   SVD   compression:  

 
Figure   4b.   The   flag   of   Greece   compressed   to   2   singular   values  

Clearly,   Fig.   4b   is   not   a   good   compression.   Features   such   as   the   cross   at   the   top   left   are   lost  
because   the   compression   is   only   rank   2.   The   flag   of   Greece   is   rank   3.   If   three   singular   values   are   selected  
on   the   slide   bar,   the   compressed   image   should   look   just   like   the   original.   

 
Figure   4c.   The   flag   of   Greece   compressed   to   3   singular   values  

Just   as   expected,   the   compressed   image   in   Fig.   4c   is   perfect   compared   to   the   original.   The   size  
(entries)   is   reduced   from   97665   to   1917,     of   the   original   number. 1

50.95   
There   are   other   real-life   images   besides   national   flags   that   behave   similarly.   Some   of   them   might  

not   be   exactly   rectangular,   but   only   a   few   singular   values   are   required   for   a   good   SVD.   Tartan   is   a   fabric  
pattern   that   consists   of   mostly   horizontal   and   vertical   color   bands.   On   Wikipedia,   there   are   more   than   80  
different   tartans,   including   the   well-known   Royal   Stewart   tartan   and   the   Burberry   check.   Although   the  
color   bands   are   not   strictly   rectangular   (due   to   the   weaving   technique),   it   is   very   compressible.   One   of   the  
15   pictures   built   in   the   demo   is   the   Royal   Stewart   tartan   pattern.   Applying   SVD   to   this   image   shows   the  
following:  
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     Figure   5a.   Royal   Stewart   tartan                          Figure   5b.   Tartan   compressed   to   1   singular   value  

                     
   Figure   5c.   Tartan   compressed   to   3   singular   values          Figure   5d.   Tartan   compressed   to   5   singular   values  

                     
Figure   5e.   Tartan   compressed   to   10   singular   values                   Figure   5f.   Tartan   singular   value   graph  
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From   Fig.   5b   to   Fig.   5e,   the   tartan   image   was   compressed   to   1,   3,   5,   and   10   singular   values.   The  
arbitrary   limit   of   10   singular   values   was   selected   because   it   results   in   a   compressed   image   that   is   hard   to  
distinguish   from   the   original   picture   (Fig.   5a)   with   the   naked   eye.  

Baumann’s   demo   also   allows   the   selection   of   “show   singular   value,”   which   displays   the  
calculated   singular   values.   Although   the   y-axis   is   not   labeled,   the   curve   shows   the   descending   pattern   of  
the   singular   values.   Fig.   5f   was   made   using   selected   10   singular   values,   with   the   band   of   grey   starting   on  
the   left   of   the   graph.   The   original   image   has   size     pixels.   There   are   at   most   404   singular   values 81 04  4 × 4  
possible.   The   total   width   of   the   graph,   therefore,   is   404,   and   the   grey   coloring   begins   at   10,   the   number  
selected.   The   curve   is   very   steep   and   begins   to   turn   right   around   where   the   grey   color   begins.   This   means  
that   even   if      is   omitted   for   ,   the   loss   of     would   be   minimal,   because     is   so u vσj j j

T 1  j ≥ 1 ΣVA = U T σj  

small.   The   narrow   band   of   magenta   between   white   and   dark   grey   is   the   result   of   the   demo’s   design;   since  
the   demo   is   designed   to   handle   all   images,   it   must   be   able   to   perform   SVD   on   RGB   images.   The   code   first  
breaks   the   RGB   image   into   three   separate   matrices   (separate   R,   G,   and   B)   and   performs   SVD   on   each  
individually.   Then   it   reconstructs   the   three   matrices   into   a   colored   image   again.   In   this   case,   the   singular  
values   of   the   red   and   blue   channel   matrices   are   greater   than   the   singular   values   of   the   green   channel  
matrix,   hence   the   thin   band   of   magenta.   In   other   images,   for   example,   narrow   bands   of   cyan,   yellow,   or  
even   red,   green,   or   blue   might   appear.   What   the   demo   does   is   graph   the   singular   values   of   the   three  
different   matrices   (RGB),   sketch   three   smooth   curves   through   those   points,   and   color   the   area   below   the  
curves   accordingly.   

4   SVD   for   Matrices   with   Geometric   Shapes  
Now   that   the   full   function   of   Tim   Baumann’s   demo   has   been   described,   the   investigation   of   using  

SVD   on   matrices   and   images   can   proceed   in   greater   depth.   As   discussed   above,   national   flags,   such   as   the  
Chinese   flag,   the   Japanese   flag,   and   the   flag   of   Israel,   all   have   symbols   that   make   the   rank   infinite.   Many  
images   in   our   daily   life   contain   simple   shapes   such   as   triangles,   circles,   stars,   or   just   diagonal   lines.   These  
shapes   are   all   full   rank,   but   some   might   compress   more   efficiently   than   others.  

Of   those   three   flags   mentioned,   the   Chinese   flag   has   five   yellow   stars   on   the   top   left   corner,   the  
Japanese   flag   has   a   red   circle   on   a   white   background,   and   the   flag   of   Israel   has   a   blue   Star   of   David   (a  
hexagram)   between   two   blue   lines.   Circle   and   star   are   very   primitive   shapes   and   the   Star   of   David   is  
formed   with   horizontal   and   diagonal   lines.   It   is   important   to   know   the   result   of   using   SVD   to   compress  
primitive   shapes   before   compressing   more   complex   matrices.   To   better   understand   the   compression   of  
those   shapes,   a   code   was   written   that   allowed   loading   images   of   primitive   shapes   and   converting   the   area  
of   the   shapes   to   0s   and   the   background   to   1s.   The   singular   values   were   calculated   and   plotted   on   graphs  
with   regular   scale   and   log   scale   y   axis.   Below   are   a   solid   and   a   hollow   equilateral   triangle,   a   45-45-90  
triangle,   a   circle,   a   solid   and   a   hollow   hexagon,   and   lastly,   a   star:   
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              Figure   6a.   Solid   equilateral   triangle                              Figure   6b.   Solid   equilateral   triangle   

                         
   Figure   6c.   Equilateral   triangle   compressed   to   100   singular   values          Figure   6d.   Details   of   Fig.   6c   

                  
  Figure   6e.   Equilateral   triangle   compressed   to   400   singular   values           Figure   6f.   Equilateral   triangle   
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Fig.   6f   is   an   image   of   an   equilateral   triangle.   With   the   code,   the   image   was   converted   to   a  
  matrix   with   the   0s   in   the   triangle   area   and   1s   in   the   background.   The   920   singular   values   of 20 20  9 × 9  

the   matrix   are   calculated   and   plotted   on   a   normal   scale   in   Fig.   6a   and   on   a   log   scale   in   Fig.   6b.   While   the  
normal   scale   graph   shows   a   pattern   of   decreasing   singular   values,   the   log   scale   graph   suggests   that   the  
singular   values   decrease   at   a   very   slow   rate   between     to   until   where   is   around   700.   This 101 10­2 σj j  
means   that   with   fewer   than   700   singular   values   for   an   image   compression,   the   image   might   lose   some  
significant   features.   In   the   demo,   the   original   image   of   the   equilateral   triangle   was   uploaded.   Driven   by  
the   graph   of   singular   values,   100   singular   values   were   selected   at   first.   Although   the   compression   doesn't  
look   bad   (Fig.   6c),   the   image   shows   many   thin   and   dim   stripes   of   black   parallel   to   the   two   sides   of   the  
triangle   (Fig.   6d).   It   was   not   until   400   singular   values   were   selected   that   the   tiny   stripes   became   invisible  
to   the   naked   eye   (Fig.   6e).   

 
              Figure   7a.   Hollow   equilateral   triangle                        Figure   7b.   Hollow   equilateral   triangle  

 
       Figure   8a.   Solid   45-45-90   triangle                            Figure   8b.   Solid   45-45-90   triangle  

Fig.7a   and   Fig.   7b   depict   the   singular   values   of   a   hollow   equilateral   triangle,   and   Fig.8a   and   Fig.  
8b   depict   the   singular   values   of   a   solid   45-45-90   triangle   matrix   with   the   triangle   positioned   like   that   of   a  
lower   triangular   matrix.   Both   sets   show   a   pattern   of   slowly   decreasing   singular   values   between     to 101  

  after   the   first   of   all   singular   values.   In   fact,   the   singular   values   of   lower   triangular   matrix   of   1s 10­2 0%1  

and   0s   with   diagonal   1s   can   be   found   using   the   formula   where   is   the   size   of   the  σk = [2sin( )]2(2n+1)
π(2k­1) ­1

n  

matrix   [11].   From   this   formula,   we   get   :   every   singular   value   of   a   lower   triangular   matrix   of   1s   and  σn ≥ 2
1  

0s   with   diagonal   1s   is   greater   than     [11,   12]. 2
1   
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The   only   difference   among   the   three   sets   of   graphs   is   the   end   patterns.   For   the   solid   equilateral  
triangle,   there   are   more   than   200   singular   values   ranging   from     to   .   However,   there   are   only 10­14 10­17  
two   data   points   in   that   range   from   the   graph   of   the   45-45-90   triangle,   and   nothing   from   the   graph   of   the  
hollow   equilateral   triangle.   One   explanation   is   that   the   original   images   of   the   equilateral   triangle   have   a  
large   stripe   of   white   above   and   below   the   black   triangle   that   might   affect   the   calculation   of   singular  
values.   The   image   of   the   45-45-90   triangle   has   a   tiny   stripe   of   white   below   it   that   was   not   removed.   The  
image   of   the   hollow   triangle   has   no   extra   white   above   and   below   the   triangle.   Perhaps   those   extra   rows   of  
1s   in   the   converted   matrix   created   those   very   small   singular   values   at   the   end.  

Using   the   demo,   these   two   images   of   triangles   also   show   the   similar   thin   stripes   parallel   to   the  
sides   that   are   not   horizontal   or   perpendicular.   In   this   case,   it   is   possible   to   conclude   that   triangles   are  
difficult   to   compress   using   SVD.   In   Fig.   9a,   an   image   of   the   flag   of   South   Africa   of   pixels 00 00  9 × 6  
requires   at   least   300   singular   values   for   a   good   compression   (that   is   to   say,   no   visual   difference   from   the  
original   image).   The   compression   size   with   300   singular   values   is   00 00 00 00 00  9 × 3 + 3 + 3 × 6

,   only   decreased   from   the   original     by   a   factor   of   1.20. 50300= 4 00 00 40000  9 × 6 = 5  

 
Figure   9a.   Russian   flag   compressed   to   300   singular   values  

 
      Figure   10a.   Circle                                                             Figure   10b.   Circle  
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                              Figure   10c.   Circle   compressed   to   240   singular   values  

For   an   image   of   a   circle,   the   singular   value   plotted   on   the   log   scale   graph   (Fig.   10b)   shows   an  
interesting   decreasing   pattern.   While   the   first   300   singular   values   show   slow   descent   around   ,   there   is 100  
a   sudden   drop   and   then   a   slower   decrease   until   around   the   600   singular   value,   when   the   singular   values  
begin   to   rapidly   drop   again.   From   the   graphs   of   the   singular   values,   it   is   reasonable   to   guess   that   the  
image   of   a   circle   compresses   considerably   better   than   that   of   a   triangle.   MIT   Opencourseware,   lecture   17,  
course   18.065   includes   a   method   of   finding   the   rank   of   a   circle   which   shows   that   the   rank   of   a   circle   is  

where     is   the   size   of   the   matrix.   This   result   is   confirmed   by   the   graphs   of   the   singular   values. r  2
1 + 1 r  

Although   the   singular   values   in   the   log   graph   don't   rapidly   decrease   until   around   600,   the   curve   really  
becomes   steep   at   around   500.   Theoretically,   where   ,   but   because   the   image   is   not   perfect σj = 0 nj > 2

1 + 1  
and   there   are   some   values   between   0   and   1   on   the   edge   of   the   circle,   the   result   is   acceptable.   In   the   demo,  
a   good   compression   (Fig.   10c)   can   be   achieved   with   only   240   singular   values.   SVD   compresses   the   image  
by   a   factor   of   2.04   and   potentially   higher   if   more   error   is   allowed.   

 
Figure   11a.   The   Japanese   flag   compressed   to   50   singular   values  
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Figure   11b.   The   Japanese   flag   singular   value   graph  

An   almost   perfect   compression   of   the   Japanese   flag,   a   red   circle   on   a   white   background,   requires  
only   50   singular   values.   Better,   only   about   one   third   of   the   93750   entries   from   the   matrix   of   the   original  
image   has   to   be   stored.   

 
                      Figure   12a.   Solid   hexagon                                             Figure   12b.   Solid   hexagon  

 
                     Figure   13a.   Hollow   hexagon                                      Figure   13b.   Hollow   hexagon  

Fig.   12a   and   Fig.   12b   depict   the   singular   values   of   a   solid   regular   hexagon,   and   Fig.   13a   and   Fig.  
13b   depict   a   hollow   regular   hexagon.   From   the   conclusion   above   about   triangles,   it   is   reasonable   to  
anticipate   that   a   hexagon   would   not   be   very   easy   to   compress,   since   it   has   four   diagonal   lines.   The   two  
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sets   of   graphs   of   the   solid   and   hollow   regular   hexagon   show   a   similar   decreasing   pattern.   The   pattern   of  
decreasing   is   slow   between     to     Rapid   decreasing   doesn’t   occur   until   about   the   last   40%   of   the 101 .10­2  
singular   values.   

 
Figure   13c.   Hollow   regular   hexagon   compressed   to   280   singular   values   

In   Fig.   13c,   the   hollow   regular   hexagon   needs   about   280   of   the   768   singular   values   to   achieve   a  
very   good   compression.   Still,   the   compression   size   with   280   singular   values   is  

,   decreased   from   the   original     by   a   factor   of 68 80 80 80 10 70120  7 × 2 + 2 + 2 × 9 = 4 68 10 98880  7 × 9 = 6  
1.49.   In   conclusion,   hexagons   are   inefficient   to   compress   using   SVD:   more   efficient   than   triangles   but  
less   efficient   than   circles.   Moreover,   after   using   the   demo   on   dozens   of   convex   polygons,   including  
regular   n-gons   and   irregular   n-side   polygons,   a   conclusion   can   be   made.   Convex   polygons   with   more  
horizontal   or   vertical   edges,   such   as   a   regular   octagon,   are   more   efficient   to   compress   with   SVD,   whereas  
shapes   such   as   random   triangles,   regular   pentagons,   regular   heptagons,   and   enneadecagons,   on   the   other  
hand,   are   inefficient   to   compress   with   SVD.   

 
                               Figure   14a.   Star                                                            Figure   14b.   Star  

The   last   shape   investigated   is   a   star,   an   example   of   a   concave   polygon.   Just   like   that   of   convex  
polygons,   the   singular   values   of   the   star   (Fig.   14a   and   Fig.   14b)   show   a   slow   initial   decrease.   The  
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concavity   of   the   polygon   isn’t   a   deciding   factor   here   at   all.   The   demo   shows   similar   results.   The   image   of  
the   star   is   not   really   efficient   to   compress   with   SVD.   

5   SVD   on   Random   Matrix  
Random   matrices   are   widely   studied   by   mathematicians   and   physicists.   Random   matrices   are  

very   intriguing   in   the   sense   that   all   the   entries   in   the   matrix   are   randomly   generated.   The   rank   of   random  
matrix   and   random   binary   matrix   has   been   investigated   before   [5,   7].   It   is   possible   for   a   random   matrix   to  
have   dependent   columns   and   rows.   In   the   section   below,   the   efficacy   of   SVD   on   random   matrices   will   be  
examined.   To   better   understand   the   compression   of   a   random   matrix,   a   code   was   written   that   can   generate  
a   random   square   matrix,   plot   the   singular   values   and   convert   the   matrix   into   an   image   for   Tim   Baumann’s  
demo.   In   the   section   below,   random   binary   matrices   and   random   matrices   will   be   analyzed.   The   first  
random   matrices   analyzed   are   random   binary   square   matrices   of   different   sizes.   The   singular   values   are  
plotted   with   regular   scale   and   log   scale   y   axis.  

 
        Figure   15a.   Random   binary   matrix   of   size   10              Figure   15b.   Random   binary   matrix   of   size   10  

 
       Figure   16a.   Random   binary   matrix   of   size   50              Figure   16b.   Random   binary   matrix   of   size   50  
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      Figure   17a.   random   binary   matrix   of   size   200              Figure   17b.   random   binary   matrix   of   size   200  

 

     Figure   18a.   Random   binary   matrix   of   size   1000           Figure   18b.   Random   binary   matrix   of   size   1000  

Here,   the   singular   values   of   four   random   binary   square   matrices   of   different   sizes   are   calculated  
and   plotted   from   Fig.   15   to   Fig.   18.   As   the   size   of   the   matrix   increases,   the   descending   pattern   of   the  
singular   values   becomes   highly   consistent,   especially   in   Fig.   17b   and   Fig.   18b.   The   descending   pattern   is  
almost   exactly   the   same.   On   the   other   hand,   every   time   a   new   random   binary   matrix   of   size   10   is  
generated,   the   singular   value   graph   has   visible   differences.   Occasionally,   the   final   singular   value   or  
singular   values   is   0   because   there   are   dependent   columns   and   rows   in   the   matrix.   Although   the  
descending   curve   in   the   log   scale   graphs   is   very   flat,   it   is   decreasing   faster   and   faster,   unlike   the   singular  
value   graphs   of   a   triangle   (Fig.   6,   7,   and   8).   Now   the   question   is   how   effective   it   is   to   apply   SVD   onto   a  
random   binary   matrix.   For   better   visualization,   the   entry   of   a   random   binary   matrix   of   size   200   is  
multiplied   by   255   and   the   size   of   the   image   is   enlarged   by   a   factor   2.  

Figure   19a.   Image   of   random   binary   matrix   of   size   200  
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Figure   19b.   Image   of   random   binary   matrix   of   size   200   compressed   to   160   singular   values   

For   the   image   in   Fig.   19a,   a   good   compression   (no   visual   difference)   can   be   obtained   when   the  
image   is   compressed   to   160   singular   values.   The   original   image   has     pixels.   The 00 00 60000  4 × 4 = 1  
image   that   is   compressed   to   160   singular   values   has   size   , 00 60 60 60 00  4 × 1 + 1 + 1 × 4 28160= 1  
decreased   from   the   original   by   a   factor   of   1.25.   SVD   is   not   really   efficient   on   this   image.   On   other  
random   binary   matrices,   SVD   also   works   similarly   or   worse.   On   a   random   binary   matrix   of   size   1000,   it  
has   to   compress   to   at   least   400   to   500   singular   values   to   get   a   good   compression.   This   means   that   the   , U  

  ,   and matrices   have   more   entries   than   the   original   matrix.   After   multiple   trials,   it   can   be   concluded Σ  V T  
that   SVD   works   ineffectively   on   random   binary   matrices.   

The   image   of   a   random   binary   matrix   simply   consists   only   of   random   black   and   white   pixels.  
Random   matrices   that   contain   randomly   generated   entries   between   0   and   255   are   constructed   and  
analyzed.   After   converting   to   an   image   file,   it   will   show   pixels   of   random   colors   on   the   greyscale.   First,  
the   singular   values   are   plotted   with   regular   scale   and   log   scale   y   axis   and   analyzed.  

 
              Figure   20a.   Random   matrix   of   size   10                       Figure   20b.   Random   matrix   of   size   10  
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             Figure   21a.   Random   matrix   of   size   50                         Figure   21b.   Random   matrix   of   size   50  

 
            Figure   22a.   Random   matrix   of   size   200                       Figure   22b.   Random   matrix   of   size   200  

 

           Figure   23a.   Random   matrix   of   size   1000                       Figure   23b.   random   matrix   of   size   1000  

Here,   the   singular   values   of   four   random   binary   square   matrices   of   different   sizes   are   calculated  
and   plotted   from   Fig.   20   to   Fig.   23.   Similar   to   a   random   binary   matrix,   as   the   size   of   the   matrix   increases,  
the   descending   pattern   of   the   singular   values   becomes   highly   consistent   (Fig.   22   and   Fig.   23).   More  
importantly,   the   descending   pattern   looks   very   similar   to   that   of   a   random   binary   matrix.   Similar   to   the  
procedure   on   random   binary   matrices,   a   random   matrix   of   size   200   is   converted   to   an   image   and   enlarged  
by   a   factor   of   two   for   better   visualization.   
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Figure   24a.   Image   of   random   matrix   of   size   200  

 
Figure   24b.   Image   of   random   matrix   of   size   200   compressed   to   50   singular   values   

From   the   experience   with   a   random   binary   matrix,   we   anticipate   that   a   high   number   of   singular  
values   has   to   be   selected.   For   the   image   in   Fig.   24a,   a   good   compression   can   be   obtained   when   the   image  
is   compressed   to   140   singular   values.   In   comparison   with   Fig.   20a,   Fig.   24a   is   slightly   more   efficient   to  
compress   with   SVD.   Tim   Baumann’s   demo   yields   similar   results   for   other   random   matrices.   For   a   random  
matrix   of   size   1000,   a   good   compression   requires   around   400   singular   values.   After   experimenting   with  
images   converted   from   random   matrices   on   the   demo,   a   conclusion   can   be   made   that   random   matrices   are  
inefficient   to   compress   using   SVD.  
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6   SVD   on   Matrix   of   Numerical   Low-Rank  
After   examining   SVD   on   all   types   of   matrices,   it   is   important   to   look   back   at   what   SVD   is.   The  

key   to   SVD   is   that   it   breaks   a   matrix   into   rank-one   pieces   and   puts   those   rank-one   pieces   in   order   of  
importance.   This   is   the   reason   why   this   paper   started   by   discussing   rectangular   shapes,   because   the  
images   are   low-rank.   The   vast   majority   of   images   are   not   matrices   of   low   rank,   in   fact,   mostly   are   full  
rank.   However,   some   matrices   are   numerical   low-rank.  

The   definition   of   numerical   rank   of   a   matrix   is   very   similar   to   the   definition   of   rank.   The   main  
difference   is   when   numerical   rank   of   a   matrix   is   defined,   tolerance     is   allowed.   Tolerance   can   be ε  
interpreted   as   “wiggle   room.”   The   numerical   rank   of   matrix   A   is   defined   as     when (A)rankε = k  

  and     [11].   In   this   section,   rumerical   low-rank   will   be   investigated. (A) (A)  σk+1 ≤ ε × σ1 (A) (A)  σk > ε × σ1  
Two   of   the   most   well-known   numerical   low-rank   matrices   are   the   Hilbert   matrix   and   the   Vandermonde  
matrix.   Below,   the   singular   values   of   the   two   matrices   are   plotted   and   analyzed.   

 
                        Figure   25a.   Hilbert   matrix                                          Figure   25b.   Hilbert   matrix  

 
                Figure   26a.   Vandermonde   matrix                                 Figure   26b.   Vandermonde   matrix  

A   sharp   difference   can   be   noticed   immediately   when   examining   the   singular   values   graphs.   In  
Fig.   25b   and   Fig.   26b,   the   singular   values   decrease   rapidly,   unlike   any   other   singular   value   graph   shown  
in   the   previous   sections.   The   decreasing   pattern   singular   values   of   these   two   matrices   almost   look   linear  
in   the   log   scale   graphs.   The   previous   experience   relating   singular   value   graphs   with   image   compression  
efficacy   shown   on   Tim   Baumann’s   site   has   shown   that   the   rapidly   decreasing   singular   value   can   be   the  
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perfect   setup   for   effective   singular   value   decomposition.   Eckart-Young   states   that   the   singular   values   can  
tell   us   how   well   the   matrix   can   be   approximated   with   a   low-rank   matrix.   Specifically,  

[11].   In   other   words,   the   Hilbert   matrix   and   the   Vandermonde   matrix   can   be (A) σk+1 =   x |  
|  
 |  
|   ­ xk

 |  
|  
 |  
|  2  

approximated   with   low-rank   matrices   with   a   very   small   tolerance   at   the   same   time.   Unfortunately,   the  
ways   the   two   matrices   are   defined   limit   the   visualization   and   the   use   of   Baumann’s   demo.   

7   SVD   on   Real-Life   Image  
Last   but   not   least,   the   efficacy   of   applying   SVD   on   real-life   images   was   investigated.   On   Tim  

Baumann’s   page,   there   are   15   images   that   he   built   in.   Of   those   15   images,   five   are   identified   only   with  
question   marks   and   contain   images   that   can   only   be   seen   by   using   the   demo.   One   of   them   is   Vincent   van  
Gogh’s   S tarry   Night .   The   singular   values   of   the   image   of    Starry   Night    are   calculated   and   plotted   below:  

 
                      Figure   27a.    Starry   Night                                                Figure   27b.    Starry   Night  

 

Figure   27c.    Starry   Night  
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Fig.   27a   and   Fig.   27b   depict   the   singular   values   of   the    Starry   Night    matrix.   Fig.   27b   shows   a  
pattern   of   slowly   decreasing   singular   values   between     to   .   In   comparison   with   graphs   of   some   of 105 101  
the   hexagon   and   triangular   matrices,   the   singular   values   of   the    Starry   Night    matrix   decrease   at   about   the  
same   rate.   Surprisingly,   the   singular   values   seem   to   diminish   at   a   slightly   slower   rate   compared   to   that   of  
a   random   matrix.   However,   for   the   random   matrices,   the   singular   values   begin   to   decrease   faster   towards  
the   end,   whereas   the   curve   in   Fig.   27b   remains   smooth   and   flat.   The   features   of   the   singular   value   graphs  
make   sense   because   the   painting   is   so   complex   and   consists   mostly   of   small   diagonal   strokes,   as   shown   in  
Fig   27c.   Based   on   Fig.   27a   and   Fig.   27b,   it   can   be   anticipated   that   the   image    Starry   Night    is   not   very  
effective   to   compress   with   SVD.   

 
Figure   27d.    Starry   Night    compressed   to   300   singular   values  

 
Figure   27e.    Starry   Night    compressed   to   200   singular   values  
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Figure   27f.    Starry   Night    compressed   to   100   singular   values 

 

Figure   27g.    Starry   Night    compressed   to   50   singular   values  

For   the   image   in   Fig.   27c,   a   good   compression   (no   visual   difference)   can   be   obtained   when   the  
image   is   compressed   to   300   singular   values.   The   original   image   has     pixels.   The 00 33 06400  8 × 6 = 5  
image   that   is   compressed   to   300   singular   values   has   size   , 00 00 00 00 33  8 × 3 + 3 + 3 × 6 30200= 4  
decreased   from   the   original   by   a   factor   of   1.18.   SVD   is   not   really   efficient   on   this   image.   Nevertheless,  
Fig.   27e   and   Fig.   27f   show   how   good   an   approximation   can   result   when   fewer   number   singular   values   are  
selected.   Although   some   features   of   the   original   image   are   lost,   the   overall   structure   and   the   most  
significant   details   remain.   When   the   image   of    Starry   Night    is   compressed   to   200   singular   values   and   100  
singular   values,   the   compression   size   reduces   from   the   original   size   by   a   factor   of   1.77   and   3.53.   It   is  
really   about   what   quality   of   the   approximation   is   considered   acceptable.   For   a   real-life   image,   the   curve   of  
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the   decreasing   singular   values   is   mostly   flat   and   smooth.   The   efficacy   of   using   SVD   differs   from   image   to  
image,   but   not   by   a   great   deal.   For   example,   an   image   of   a   Broadway   musical   advertisement   can   have   a  
better   approximation   with   lower   rank   than   an   image   of   a   rainforest,   because   it   is   simpler   and   often  
contains   English   letters   with   vertical   and   horizontal   edges,   sometimes   curved   edges.   However,   SVD   can  
never   be   used   as   effectively   on   real-life   images   as   on   numerical   low-rank   matrices,   because   the   singular  
values   of   real-life   images   never   decrease   rapidly.   

8   Conclusion  
After   investigating   the   effect   of   SVD   on   different   matrices   and   images   using   Baumann’s   code,   the  

following   observations   can   be   made.   While   matrices   of   low-rank   and   numerical   low-rank   compress   well  
with   SVD,   matrices   with   geometric   shapes,   such   as   triangles   and   hexagons,   and   random   matrices   do   not.  
Real-life   images   cannot   be   approximated   with   low-rank   matrices   with   a   very   small   tolerance   at   the   same  
time.     Nevertheless,   in   our   daily   lives,   there   are   many   big   data   matrices   that   turn   out   to   be   numerical  
low-rank   [14].   For   example,   they   appear   in   movie   preferences,   text   documents,   survey   data,   medical  
records,   etc.   Since   these   datasets   are   often   very   large,   it   is   important   to   know   when   and   how   they   can   be  
approximated   with   a   low-rank   matrix.   SVD   can   be   a   useful   tool   for   those   approximations.   
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