New Ideas in "Linear Algebra for Everyone"

Gilbert Strang

These notes are a chapter-by-chapter comparison of the 2020 Linear Algebra for Everyone with the 2016 Introduction to Linear Algebra, 5th edition. Both are full textbooks for a linear algebra course. Both books include important applications to least squares and differential equations. Eigenvalues lead directly to singular values.

Chapter 1 The course begins with vectors. Their combinations $c\mathbf{v} + d\mathbf{w}$ fill a plane. Their dot products give length and angle: $\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| \, ||\mathbf{w}|| \cos \theta$. Then matrices multiply vectors in two ways: $A\mathbf{x}$ contains dot products of \mathbf{x} with the **rows** of A, and also $A\mathbf{x}$ is a **combination of the columns of** A. The first way is for hand computation. The second way is for understanding.

LAFE extends those linear combinations Ax to matrix multiplication AB in Chapter 1:

Column of AB = A times column of B = combination of the columns of A.

Those combinations of columns lead directly to essential ideas. This is our new start.

- 1 Independent columns versus dependent columns
- 2 The number of independent columns (the rank of A)
- 3 All combinations of the columns (the column space of A)
- 4 A = CR All columns of A from the independent columns in C

$$\boldsymbol{A} = \begin{bmatrix} \mathbf{1} & \mathbf{3} & \mathbf{4} \\ \mathbf{2} & \mathbf{2} & \mathbf{4} \\ \mathbf{5} & \mathbf{1} & \mathbf{6} \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} \end{bmatrix} = \boldsymbol{C}\boldsymbol{R}$$
 Column 3 = Columns 1 + 2 Column space = plane in \mathbf{R}^3 A, C, R all have rank 2

The examples are small matrices of integers. All students detect dependent columns. The special case of rank 1 has one independent column in C. Then R has one row. The great fact that column rank = row rank becomes clear for rank 1:

The new start multiplies matrices for a purpose: Dependent columns are combinations of independent columns.

Please see the Table of Contents and the Preface: math.mit.edu/everyone

Chapter 2: Elimination Ax = b reduces to an upper triangular system Ux = c. Then back substitution for x is easy. The elimination steps go into a lower triangular matrix L with A = LU. ILA5 gives a proof of this formula and LAFE adds a second explanation (using columns of L times rows of U, the fourth way to multiply matrices).

Chapter 3: Vector spaces Both books introduce vector spaces, especially the four fundamental subspaces associated with A (m by n). The row space and column space have dimension r (the rank). The nullspaces of A and $A^{\rm T}$ have dimensions n-r and m-r.

m rows and n columns r independent rows and columns

BIG PICTURE OF LINEAR ALGEBRA

row space \bot null space of A \bot null space of A^{T} row rank = column rank = r

Elimination produces the matrix R for A = CR in Chapter 1. LAFE explains the structure $R = \begin{bmatrix} I & F \end{bmatrix} P$ of this row echelon form—not seen elsewhere.

$$A = CR = C \begin{bmatrix} I & F \end{bmatrix} P = \begin{bmatrix} C & CF \end{bmatrix} P = \begin{bmatrix} \text{Indep cols} & \text{Dependent cols} \end{bmatrix}$$
 Permute cols.

A related "magic factorization" is $A = CW^{-1}R^*$, where the mixing matrix W is the r by r intersection of independent columns in C with independent rows of A in R^* .

Chapter 4: Orthogonality The row space is orthogonal to the nullspace. This leads to the normal equation $A^{T}A\hat{x} = A^{T}b$ for the least squares solution \hat{x} to Ax = b. The best example is fitting data points by the closest straight line.

If the columns of Q are orthonormal then $\mathbf{Q^TQ} = \mathbf{I}$. These are very valuable matrices! Constructing Q from the columns of A by "Gram-Schmidt" has become an essential algorithm. Orthogonalization is A = QR with orthogonal Q and triangular R.

Chapter 5: Determinants ILA5 approaches determinants by their properties, not their formulas. LAFE explains 3 by 3 determinants in detail. Either way leads to this hard-to-compute number with $\det AB = (\det A)(\det B)$. LAFE identifies $\det A$ as the volume of an n-dimensional tilted box. The simple proof of that volume formula was new to me.

Key point Each linear transformation T(v) connects to a matrix multiplication Av.

Chapter 6: Eigenvalues An eigenvector x keeps the same direction when multiplied by A. Then $Ax = \lambda x$ and $(A - \lambda I)x = 0$. Therefore $A - \lambda I$ has determinant zero. If the eigenvectors go into the columns of X, then $AX = X\Lambda$. The eigenvalues λ are on the diagonal of the matrix Λ .

Both ILA5 and LAFE show how eigenvalues lead to powers $A^n = X\Lambda^n X^{-1}$. Both books solve differential equations $d\mathbf{u}/dt = A\mathbf{u}$. And both books emphasize symmetric matrices S (real eigenvalues λ with orthonormal eigenvectors in Q). Then $S = Q\Lambda Q^{\mathrm{T}} = S^{\mathrm{T}}$.

The best matrices of linear algebra are symmetric positive definite matrices (with positive eigenvalues). This topic beautifully connects eigenvalues to energy $x^{T}Sx > 0$.

Chapter 7: Singular Values The SVD is highly important to linear algebra. It expresses every matrix as $A = U\Sigma V^{\mathrm{T}}$ with $U^{\mathrm{T}}U = I$ and $V^{\mathrm{T}}V = I$ and a diagonal matrix Σ of decreasing singular values $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$. Then A multiplies an orthogonal basis in the row space to produce an orthogonal basis in the column space:

 $Av_i = \sigma_i u_i$ instead of eigenvectors $Sq_i = \lambda_i q_i$. Two bases instead of one!

The extra bonus from $A = U\Sigma V^{\mathrm{T}} = u_1\sigma_1v_1^{\mathrm{T}} + u_2\sigma_2v_2^{\mathrm{T}} + \cdots$ is that the first k terms give the rank k matrix A_k that comes closest to A. Perfect for data science and image compression. ILA5 gives examples in many fields. LAFE links to a remarkable website that compresses photographs supplied by the user. An excellent project for the class. Chapter 7 of LAFE ends with an original essay on the victory of orthogonality:

orthogonal vectors, bases, subspaces, and matrices.

Chapter 8: Learning from Data This very optional chapter of the new book explains deep learning—the creation of a function F that fits the known training data. The matrix weights are chosen to fit that data—then they give good results on unseen test data. The website **playground.tensorflow.org** shows the construction of F.

Chapters 8 to 12 of ILA5 (a longer book) show applications to graphs and networks and linear programming and Markov matrices and statistics.

Both books aim to explain the important ideas of linear algebra, *clearly and usefully*. A matrix becomes just as familiar as a derivative. To learn mathematics in the 21st century, this is the right goal.

For orders: math.mit.edu/weborder.php