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Chapter 1. First Order Equations

Problem Set 1.1, page 3

1

Draw the graph of y = e’ by hand, for —1 < ¢t < 1. What is its slope dy/dt at
t = 07? Add the straight line graph of y = et. Where do those two graphs cross ?

Solution The derivative of e has slope 1 at t = 0. The graphs meet at t = 1 where
their value is e. They don’t actually “cross” because the line is tangent to the curve:
both have slope y’ = eatt = 1.

Draw the graph of 3; = €% on top of 5o = 2e'. Which function is larger at t = 0?
Which function is largerat ¢ = 17

Solution From the graphs we see that at t = 0, the function 2¢’ is larger whereas at
t = 1,e% is larger. (e times e is larger than 2 times e).

What is the slope of y = e at ¢ = 0? Find the slope dy/dt att = 1.
Solution The slope of e~ is —e~!. Att = 0 thisis —1. The slope at t = 1is —e 1.
What “logarithm” do we use for the number ¢ (the exponent) when ef = 4 ?

Solution We use the natural logarithm to find ¢ from the equation e! = 4. We get that
t =1n4 ~ 1.386.

State the chain rule for the derivative dy/dt if y(¢t) = f(u(t)) (chain of f and w).

Solution The chain rule gives:

dy _ df(u(t)) du(t)
dt ~ du(t) dt

The second derivative of e’ is again ef!. So y = e’ solves d?y/dt? = y. A sec-

ond order differential equation should have another solution, different from y = Cet.
What is that second solution ?

Solution The second solution is y = e~ '. The second derivative is —(—e~ %) = e,

Show that the nonlinear example dy/dt = y? is solved by y = C/(1 — Ct)
for every constant C'. The choice C' =1 gave y = 1/(1 — t), starting from y(0) = 1.

Solution Giventhaty = C/(1 — Ct), we have:
y? =C?/(1-Ct)?
v — . (=1)- (=0)1/(1 = Ct)2 = C?/(1 — Ct)?

dt
Why will the solution to dy/dt = y? grow faster than the solution to dy/dt =
(if we start them both from y = 1 at ¢ = 0)? The first solution blows up at ¢t =
The second solution e grows exponentially fast but it never blows up.

Y
1.

Solution The solution of the equation dy /dt = y? fory(0) = 1isy = 1/(1—t), while
the solution to dy/dt = y for y(0) = 11is y = e'. Notice that the first solution blows
up at ¢t = 1 while the second solution ¢! grows exponentially fast but never blows up.
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9 Find a solution to dy/dt = —y? starting from y(0) = 1. Integrate dy/y* and —dt.
(Or work with z = 1/y. Then dz/dt = (dz/dy) (dy/dt) = (—1/y?*)(—y?) = 1.
From dz/dt = 1 you will know 2(t) and y = 1/z.)

Solution The first methc?d has
Y

Yy t
du . . .
il dv (u,v are integration variables)
4(0) 0
-1 1
= _t
y  y(0)
-1
— =—t-1
Y
1
YT

The approach using z = 1/y leads to dz/dt = 1 and z(0) = 1/1.

Thenz(t) =1+4+tandy =1/z = 1+_t

10 Which of these differential equations are linear (in y) ?
@y’ + siny=t Oy =t>(y—1t) (c)y' +ey=1t".
Solution (a) Since this equation solves a sin y term, it is not linear in y.
(b) and (c) Since these equations have no nonlinear terms in y, they are linear.

11 The product rule gives what derivative for e?e~* ? This function is constant. Att = 0
this constant is 1. Then e’e~! = 1 for all ¢.
Solution (efe )’ =ele™t —ele™t =0 so ele”! isaconstant (1).

12 dy/dt = y + 1is not solved by y = e! + . Substitute that y to show it fails. We can’t
just add the solutions to 4’ = y and y’ = 1. What number ¢ makes y = e! + cinto a
correct solution ?

t,—t

Solution

%:y—!—l —d(e;:rc):et—kc—kl

Wrong @ £el+t+1 Correctc= —1

Problem Set 1.3, page 15

1 Set ¢+ = 2 in the infinite series for e2. The sum must be e times e, close to 7.39.

How many terms in the series to reach a sum of 7 ? How many terms to pass 7.3 ?

22 2% 2t
Solution The series for e hast = 2: €2 = 1+2+§+§+Z+---
. 9 8 16
If we include five terms we get: e* ~ 1 +2 4+ 2 + 6 + 1= 7.0
9 22 23 24 29 20
If we includ t tte~ 1424+ —+—+—+-—+-— ="7.35556.
we include seven terms we get: e +2+ 5 + 30 + m + 120 + 20
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2 Starting from y(0) = 1, find the solution to dy/dt = y at time ¢ = 1. Starting from
that y(1), solve dy/dt = —y to time ¢ = 2. Draw a rough graph of y(¢) from
t = 0 to t = 2. What does this say about e~! times e ?
Solution y = e’ up tot = 1, so that y(1) = e. Then for ¢ > 1 the equation
dy/dt = —yhasy = Ce~'. Att = 1, this becomes e = Ce~! so that C = e2.
The solution of dy/dt = —yuptot = 2isy = e2~t. Att = 2 we have returned to
y(2) = y(0) = 1. Then (e~ 1)(e) = 1.

3 Start with y(0) = $5000. If this grows by dy/dt = .02y until ¢ = 5 and then jumps to
a = .04 per year until ¢ = 10, what is the account balance at ¢ = 10 ?

Solution d
t§5:d—i=.02y 5§t§10:d—2=.04ygivesy=Ce'04t
y = 5000e:02 y(5) = Ce=2 = 5000e! gives C = 5000e~-!
y(5) = 5000e* y(t) = 5000 (e 04t=0-1)

y(10) = 5000e-3
4 Change Problem 3 to start with $5000 growing at dy/dt = .04y for the first five years.
Then drop to @ = .02 per year until year ¢ = 10. What is the account balance at ¢ = 107

Solutiond .,
d_?i = .04y d—:g = .02y for 5 <t <10
Yy — 016'04t y — 026.0215
y(0) = C1 = 5000 y(5) = Che! = 5000e2
y(t) = 5000e 4 fort <5 Cy = 5000et
y(5) = 5000e? y(t) = 5000(e02+0-1)

y(10) = 5000e® = same as in 1.3.3.

Problems 5-8 are about y = e°* and its infinite series.
5 Replace t by at in the exponential series to find e :
eat:1+at+—(at)2+-~-+—'(at)"+-~-
Take the derivative of every term (keep five terms). Factor out a to show that
the derivative of et equals ae®. At what time T does e*' reach 2 ?

Solution The derivative of this series is obtained by differentiating the terms individ-
ually:

@ —atat+---+ amthl 4L
dt (n—1)!
1
=a <1+at+ i(at)Q —i—ln2 + e 1)!a"*1t"*1 —|—) = ae®

If T =2 then aT =In2and T = —.
a

6 Start from y’ = ay. Take the derivative of that equation. Take the n' derivative.
Construct the Taylor series that matches all these derivatives at ¢ = 0, starting from
1+ at + $(at)?. Confirm that this series for y(t) is exactly the exponential series for

e,

Solution The derivative of y/ = ayis y” = ay’ = a?y. The next derivative is

y"" = ay” which is a3y. When y(0) = 1, the derivatives at t = 0 are a, a?, a3, ... so

1
the Taylor series is y(t) = 1 + at + §a2t2 + o= e,
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7 At what times ¢ do these events happen ?
() et — o (b) et — 2 (©) ea(t+2) — eote2a.
Solution
@e*=¢c at t=1/a.
(b) e =¢? at t =2/a.
(c) e¥t+2) — gate2a e q)] ¢,
8 If you multiply the series for e* in Problem 5 by itself you should get the series for
€29, Multiply the first 3 terms by the same 3 terms to see the first 3 terms in e2%*.

1 1 11
Solution (1 + at + §a2t2)(1 +at + 5aztz) =1+2at+ (1 +5+ 5) a’t> + .-

1
This agrees with 2% = 1 4 2at + 3 (2at)? + -
9 (recommended) Find y(t) if dy/dt = ay and y(T) = 1 (instead of y(0) = 1).

dt
Solution - W gives y(t) = Ce®. When Ce®r = 1 at t = T, this gives
C =e¢ T and y(t) = e*t=T),
10 (a) If dy/dt = (In2)y, explain why y(1) = 2y(0).

(b) If dy/dt = —(In2)y, how is y(1) related to y(0) ?

Solution
dy n n
@ = (m2)y = y(t) = y(0)e'™? = y(1) = y(0)e* = 24/(0).
d 1
(b) =2 = —(n2)y — y(t) = y(0)e "2 — y(1) = y(0)e 2 = Zy(0).
11 In a one-year investment of y(0) = $100, suppose the interest rate jumps from

6% to 10% after six months. Does the equivalent rate for a whole year equal 8%,
or more than 8%, or less than 8% ?

Solution 'We solve the equation in two steps, first from ¢ = 0 to £ = 6 months, and
then from ¢ = 6 months to ¢ = 12 months.

y(t) =y(0)e y(t) = y(0.5)e
y(0.5) = $100e0-06%0:5 — 10003 y(1) = $103.05¢0-1%0-5 = §103.05¢:05
— $103.05 — $108.33

If the money was invested for one year at 8% the amount at ¢t = 1 would be:
y(1) = $100e%98x1 = §108.33.
The equivalent rate for the whole year is indeed exactly 8%.

12 If you invest y(0) = $100 at 4% interest compounded continuously, then
dy/dt = .04y. Why do you have more than $104 at the end of the year ?

Solution The quantitative reason for why this is happening is obtained from solving
the equation: d
d_:g = 0.04y — y(t) = y(0)e ¥
y(1) = 100e%%* ~ $104.08.

The intuitive reason is that the interest accumulates interest.
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Chapter 1. First Order Equations

What linear differential equation dy /dt = a(t)y is satisfied by y(t) = et 2
Solution The chain rule for f(u(t)) has y(t) = f(u) = € and u(t) = sint:
dy _ df(u(t)) _ df du

- & CamaC cost = ycost. Then a(t) = cos(t).

If the interest rate is @ = 0.1 per year in 4’ = ay, how many years does it take for
your investment to be multiplied by e ? How many years to be multiplied by €2 ?

Solution 1f the interest rate is a = 0.1, then y(t) = y(0)e’!%. For ¢ = 10, the value is
y(t) = y(0) e. For t = 20, the value is y(t) = y(0) 2.

Write the first four terms in the series for y = et”. Check that dy/dt = 2ty.

Solution ) 1 1
y=e =1+t2+ -t 4+ 5 ...

d 2 6 1

ot 44 =2t (1+t2+§t4+---> — 2te"”.

Find the derivative of Y () = (1 + %)n If n is large, this dY/dt is close to Y'!

Solution The derivative of Y'(t) = (1 + £)" with respect to t is n(2) (1 + %)n_l =
(1 + %)nfl. For large n the extra factor 1 + % is nearly 1, and dY/dt is near Y.
(Key to future sections). Suppose the exponent in y = e*(*) is u(t) = integral of a(t).
What equation dy/dt = y does this solve ? If u(0) = 0 what is the starting
value y(0) ?

Solution Differentiating y = e/ *() 4 with respect to ¢ by the chain rule yields 3’ =

a(t)el @t dt Therefore dy/dt = a(t)y. If u(0) = 0 we have y(0) = ¢*(0) = 1.
The Taylor series comes from e/ f(x), when you write out e/ = 1 + d/dx +
2(d/dz)? + - as a sum of higher and higher derivatives. Applying the series to f(x)
at z = 0 would give the value f + f'+ 2 f” + .- atx = 0.

The Taylor series says : This is equal to f(z) atz =

] 1
Solution ¢ 1y = F(0) 4+ 1£(0) + 51£"(0) + -+ Thisis exactly
d 1(d\°
f(1) = (1—1—%—%5 (£> +--->f(x)at x =0.
(Computer or calculator, 2.xx is close enough) Find the time ¢ when e = 10.
The initial y(0) has increased by an order of magnitude—a factor of 10. The
exact statement of the answer is ¢ = . At what time ¢ does e’ reach 100 ?

Solution The exact time when e! = 10is ¢t = In 10. Thisis ¢t ~ 2.30 or 2.3026.
Then the time when ¢T = 100is T = In 100 = In 102 = 21n 10 ~ 4.605.
Note that the time when ef = L is t = —In10 andnot ¢ = —

10 In10"
The most important curve in probability is the bell-shaped graph of et/
With a calculator or computer find this function at ¢ = —2,—1,0,1,2. Sketch

the graph of e /2 fromt = —co to t = oc. It never goes below zero.
Solution Att—=1landt—= —1, wehave e t/2 = ¢~ 1/2 = 1/\/e ~ .606
Att =2andt = —2, we have e ¥'/2 = ¢2 ~ .13,
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Explain why 3; = e(@t0F9)t is the same as yo = e®ebe’. They both start at

y(0) = 1. They both solve what differential equation ?
Solution The exponentrule is used twice to find e(¢t0+e)t = gattbitet — pat+btoct

eat ebiﬁecif

This function must solve dy = (a 4+ b + ¢)y. The product rule confirms this.

For y' = y with a = 1, Euler s first step chooses Y7 = (1 + At¢)Yp. Backward
Euler chooses Y1 = Yy /(1 — At). Explain why 1 4 At is smaller than the exact e
and 1/(1 — At) is larger than e®*. (Compare the series for 1/(1 — x) with e®.)

Solution 1+ At is certainly smaller than e®! =1+ At + $(At)? + +(At)3 +

= 14+ At + (At)2 4+ (At)3 +- - - is larger than e?, because the coefficients drop
At

— At
below 1ine

Problem Set 1.4, page 27

1

All solutions to dy/dt = —y + 2 approach the steady state where dy/dt is zero and
Y = Yoo = ___. That constant y = y is a particular solution y,,.

Which y,, = Ce™" combines with this steady state y, to start from y(0) = 47?
This question chose ¥y, + Y, to be Yoo+ transient (decaying to zero).

Solution 1y, = 2 = y, at the steady state When = 0. Then y, = 2e~t gives
Y=Yn+yp=2+2e"=4att=0.
For the same equation dy/dt = —y + 2, choose the null solution y,, that starts from

y(0) = 4. Find the particular solution y,, that starts from y(0) = 0.
This splitting chooses y;, and y,, as e*'y(0) + integral of et=T) ¢ in equation (4).

Solution For the same equation as 11.4.1, y,, = 4e~¢ has the correct y(0) = 4. Now
yp must be 2 — 2e ™~ to start at y,(0) = 0. Of course y,, + y,, is still 2 4 2e~*

The equation dy/dt = —2y+ 8 also has two natural splittings ys + yr = yn + yp:
1. Steady (ys = Yoo) + Transient (yr — 0). What are those parts if y(0) = 6 ?
2. (y§ = —2yn from yn(0) = 6) + (yj, = —2yp + 8 starting from yp(0) = 0).
Solution 1. yg =4 (when 44 = 0: steady state) and yr = 2¢~ 2.

2. yy =6e” and yp = 4 — 4e~ % starts at yp(0) = 0.
Again ys + yT = yn + yp: two splittings of y.

All null solutions to u — 2v = 0 have the form (u, v) = (e, ).

One particular solution to v — 2v = 3 has the form (u,v) = (7 ).

Every solution to u — 2v = 3 hasthe form (7, ) +¢ ).

But also every solution has the form (3, ) 4+ C(1, 7) forC =c+4.

Solution All null solutions to u — 2v = 0 have the form (u, v) = (c, %c)
One particular solution to w — 2v = 3 has the form (u,v) = (7, 2).

Every solution to u — 2v = 3 has the form (7, 2) + ¢(1, %

But also every solution has the form (3,0) + C(1, %) Here C' = c + 4.
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The equation dy/dt = 5 with y(0) = 2 is solved by y = __ . A natural split-
ting y,,(t) = __ and y,(t) = __ comes from y,, = e*'y(0) and y, = [ e**=T)54T.
This small example has @ = 0 (so ay is absent) and ¢ = 0 (the source is ¢ = 5¢%%).
When a = ¢ we have “resonance.” A factor ¢ will appear in the solution y.
Solution dy/dt =5 with y(0) = 2 is solved by y = 2+ 5t. A natural splitting y,,(¢t) =
2 and y,(t) = 5t comes from y,,(0) = y(0) and y, = [ e*!=*)5ds = 5t (since a = 0).
Starting with Problem 6, choose the very particular y,, that starts from y,(0) = 0.
For these equations starting at y(0) = 1, find y,(¢) and y,(¢) and y(t) = yn + Yp-
@ vy —9 =90 (b) y¥+9y =90
Solution (a) Since the forcing function is a we use equation 6:

Yn(t) = e

yp(t) = P (e —1) =10(e” — 1)

y(t) = yn(t) +yp(t) = ¥ +10(e” — 1) = 11 — 10.

(b) We agai; 15;: equeafi&n 6, noting that a = —9. The steady state will be y, = 10.

yp(t) = Z5(e™™ = 1)
y(t) = yn(t) +yp(t) = e 2 — 10(e™ — 1) = 10 — 9e~°*.

Find a linear differential equation that produces yy, (t) = €' and y,,(t) = 5(e3 — 1).

Solution y, = e* needs a = 2. Then y, = 5(e¥ — 1) starts from y,(0) = 0,

telling us that y(0) = y,,(0) = 1. This y,, is a response to the forcing term (e + 1).

So the equation for y = e + 5¢5 — 5 must be % = 2y + (% + 1). Substitute y :
2e% + 40e¥ = 22" +10e3 — 10 + (¥ +1).

Comparing the two sides, C' = 30 and D = 10. Harder than expected.

Find a resonant equation (a = c) that produces y,, (¢) = €' and y,,(t) = 3te?".

Solution Clearly a = ¢ = 2. The equation must be dy/dt = 2y + Be?!. Substituting

y = et + 3te? gives 2e?! + 3e?! + 6te?t = 2(e?! + 3te?!) + Be?' and then B = 3.

y’ = 3y + €3* has y,, = 3%y(0). Find the resonant y,, with y,,(0) = 0.

Solution The resonant y,, has the form Cte3? starting from y,(0) = 0. Substitute in

the equation:

dy

i 3y + €3t is Cedt + 3Cte3 = 3Cte3t + €3t andthen C = 1.

Problems 10-13 are about ¥y’ — ay = constant source q.

Solve these linear equations in the form y = y,, + vy, with y,, = y(0)e®".

@y —4y=-8 (b) y+4y=238 Which one has a steady state ?

Solution (a) y' —4y = —8 has a = 4 and y, = 2. But 2 is not a steady state at
t = oo because the solution y,, = y(0)e*" is exploding.

(b) y' +4y = 8 has a = —4 and again y, = 2. This 2 is a steady state because
a < 0andy, — 0.
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Find a formula for y(¢) with y(0) = 1 and draw its graph. What is yoo ?

@y +2y=6 () y +2y=-6

Solution (a) y' +2y =6 has a = —2 and yo, =3 and y = y(0)e 2 + 3.

() ¥ +2y=—6 has a = —2 and yoo = —3 and y = y(0)e 2! — 3.

Write the equations in Problem 11 as Y/ = —2Y with Y = y — yoo. Whatis Y/(0) ?
Solution With' Y = y — yo and Y (0) = y(0) — Yoo, the equations in 1.4.11 are
Y’ = —2Y. (The solutions are Y (t) = Y (0)e~2! which is y(t) — yoo = (y(0) —
Yoo ) or y(t) = y(0)e ™ + yoo (1 — ™).

If a drip feeds ¢ = 0.3 grams per minute into your arm, and your body eliminates the

drug at the rate 6y grams per minute, what is the steady state concentration ¥, ? Then
in = out and Y is constant. Write a differential equation for Y = y — yoo.

Solution The steady state has ¥in = Yout Or 0.3 = 6Yso OF Yoo = 0.05. The equa-
tion for Y = y — yo is Y/ = aY = —6Y. The solution is Y (t) = Y (0)e® or
Y(t) = Yoo + (4(0) = yoo)e .

Problems 14-18 are about y’ — ay = step function H(t — T') :

Why is yoo the same fory’ +y = H(t —2) and y' + y = H(t — 10)?

Solution Notice a = —1. The steady states are the same because the step functions
H(t — 2) and H(t — 10) are the same after time ¢ = 10.

Draw the ramp function that solves y’ = H(t — T') with y(0) = 2.

Solution The solution is a ramp with y(t) = y(0) = 2 up to time T and then
y(t) =2+t — T beyond time T'.

Find y,,(t) and y,(¢) as in equation (10), with step function inputs starting at T = 4.
(@ y —by=3H(t—4) b))y +y=TH({t—4) (Whatisys?)

Solution (a) y,(t) = %(85()574) — 1) for ¢t > 4 with no steady state.

(b) yp(t) = (e =4 —1) for t >4 witha=—1 and yo = 7.

Suppose the step function turns on at 7 = 4 and off at T = 6. Then ¢(t) =

H(t —4) — H(t — 6). Starting from y(0) = 0, solve ¥’ + 2y = q¢(t). What is

Yoo ?

Solution The solution has 3 parts. First y(t) = y(0) = Ouptot = 4. Then H(t — 4)

turns on and y(t) = -5 (e2*=% — 1). This reaches y(6) = —2(e~* — 1) at time

t = 6. After t = 6, the source is turned off and the solution decays to zero: y(t) =

y(6)€72(t76).

Method 2: We use the same steps as in equations (8) - (10), noting that y(0) = 0.
(e?'y) = e H(t —4) — e H(t — 6)

t t

e?y(t) — e*y(0) = /e%d:v - /e%dac

6

W

L(e¥* — ) H(t — 4) + $(e*5<")H(t - 6)
y(t) = —3(e¥ 2 = 1)H(t — 4) + (72 = 1)H(t — 6)
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For t — oo, we have:
1

Yoo = (570~ DH(E— 4) 4 S( 7~ DH( ~6) =0,

Suppose y’ = H(t — 1)+ H(t — 2) + H(t — 3), starting at y(0) = 0. Find y(¢).

Solution 'We integrate both sides of the equation.
t t

/y’(t)dt = /(H(t — 1)+ H(t—2)+ H(t —3))dt
0 0
y(t) —y(0) =R(t—1)+ R(t—2)+ R(t - 3)
y(t) =Rt —1)+ R(t—2)+ R(t —3)
R(t) is the unit ramp function = max (0, t).

Problems 19-25 are about delta functions and solutions to y’ — ay = q6(t — T).

For all ¢ > 0 find these integrals a(t), b(t), ¢(t) of point sources and graph b(t) :
¢ ¢ ¢
() /J(T— 2)dT  (b) / (5(T —2) — 8(T - 3))dT  (c) / 8(T —2)8(T —3)dT
0 0 0
Solution For t < 2, the spike in §(¢ — 2) does not appear in the integral from 0 to ¢ :
t
@ [ar—zar-{{ 1153
0

The integral (b) equals 1 for 2 < ¢ < 3. This is the difference H (¢ — 2) — H(t — 3).
The integral (c) is zero because 6(T — 2)6(T — 3) is everywhere zero.

Why are these answers reasonable ? (They are all correct.)
(a) / e's(t)dt =1 (b) / (5(t))%dt =00 (c) / el'o(t — T)dT = €

Solution (a) The difference e'§(t)—J(t) is everywhere zero (notice it is zero at t = 0).
So e'd(t) and &(t) have the same integral (from —oo to oo that integral is 1). This
reasoning can be made more precise.

(b) This is the difference between the step functions H(t — 2) and H(t — 3). So it
equals 1 for 2 < ¢ < 3 and otherwise zero.

(c) As in part (a), the difference between e7'6(t — T') and €!6(t — T) is zeroatt = T
(and also zero at every other ¢). So

/ el's(t — T)dT = €' /OO §(t —T)dT = €.

The solution to y' = 2y + §(t — 3) jumps up by 1 att = 3. Before and after t = 3,

the delta function is zero and y grows like e?. Draw the graph of y(t) when

(a) y(0) =0and (b) y(0) = 1. Write formulas for y(¢) before and after ¢t = 3.
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Solution (a) y(0) = 0 gives y(t) = 0 until ¢ = 3. Then y(3) = 1 from the jump.
After the jump we are solving ¥y’ = 2y and y grows exponentially from y(3) = 1. So
y(t) = 29,
(b) y(0) = 1 gives y(t) = €* until t = 3. The jump produces y(3) = €® + 1. Then
exponential growth gives y(t) = e2(*=3) (&8 + 1) = 2t + e2(t=3)_ One part grows
from ¢ = 0, one part grows from ¢ = 3 as before.
Solve these differential equations starting at y(0) = 2:
@y —y=0t—2) ®) ¢y +y=95t—2). (Whatisys?)
Solution (a) y' —y = §(t — 2) starts with y(t) = y(0)e! = 2¢’ up to the jump at
t = 2. The jump brings another term into y(¢) = 2e? + e*~2 fort > 2. Note the jump
ofel=2 =latt =2.
(®) y' +y = 6(t — 2) starts with y(¢) = y(O) “t = 2e tuptot = 2. The jump
of 1 at t = 2 starts another exponential e~(*~2) (decaying because a = —1). Then
y(t) =2e~t + e~ (t=2),
Solve dy/dt = H(t — 1) 4+ 6(¢t — 1) starting from y(0) = 0: jump and ramp.
Solution Nothing happens and y(¢t) = 0 until ¢ = 1. Then H(t — 1) starts a ramp
in y(t) and there is a jump from 6(¢t — 1). So y(t) = ramp + constant =
max(0,t —1) + 1.
(My small favorite) What is the steady state yo, fory’ = —y + 6(t — 1) + H(t — 3) ?
Solution dy/dt = 0 at the steady state yss. Then —y + §(t — 1) + H(t — 3) is
—Yoo + 0+ 1land yoo = 1.
Which ¢ and y(0) in ' — 3y = ¢(¢) produce the step solution y(t) = H(t — 1) ?
Solution 'We simply substitute the particular solution y(¢) = H (¢—1) into the original
differential equation with y(0) = 0):

5(t—1)—3H(t—1)=q(t)
Notice how §(¢ — 1) in ¢(¢) produces the jump H (¢t — 1) in y, and then —3H (¢ — 1) in
q(t) cancels the —3y and keeps dy/dt = 0 after ¢ = 1.
Problems 26-31 are about exponential sources g(t) = Qe and resonance.

Solve these equations y' — ay = Qe as in (19), starting from y(0) =
(@ y —y=8e (b) y +y =83 (What is Yoo )
Solution
(@ a=1,c=3 and y(0) =2 (b) a=—1,c=—3 and y(0) =2
ect _ eat 67315 _ eft
t) = y(0)e™ + 8 t) = y(0)e™ +8— —
y(t) = y(0)e*" + 8—— y(t) = y(0)e* + 8——r
e3t _ ot =3t _ o—t
t) =2 8 t et 88— ——
y(t) = 26"+ 85— ) = 27 + 85"
y(t) = 2t + 4(e3t — et) y(t) = —4(e3t — et
y(t) = 4e3 — 2¢t y(t) = 3t 4 2¢t

Yy goes tooco as t — oo Yy goes toO as t — 00
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27 When ¢ = 2.01 is very close to a = 2, solve 3y — 2y = e°t starting from y(0) = 1. By
hand or by computer, draw the graph of y(¢) : near resonance.

Solution 'We substitute the values a = 2, ¢ = 2. 01 and y(0) = 1 into equation (18):

e —e
(1) = y(0)e + =
o2t _ p2.01t
) =get 4 £ ¢
y() =2e*" + 2.01 ~2

y(t) = 2e* +100(e?t — e2-01t)
y(t) = 1012 — 100201t

The graph of this function shows the “near resonance” when ¢ ~ a.

28 When ¢ = 2 is exactly equal to a = 2, solve 3y — 2y = e?! starting from y(0) = 1.

This is resonance as in equation (20). By hand or computer, draw the graph of y(¢).
Solution We substitute a = 2, ¢ = 2 (resonance) and y(0) = 1 into equation (19):
y(t) = y(0)e™ + te® = e 4 te?
29 Solve ¢’ + 4y = 8¢~ + 20 starting from y(0) = 0. What is yo ?
Solution We have a = —4,¢ = —4 and y(0) = 0. Equation (19) with resonance

leads to 8te=*'. The constant source 20 leads to 20(e % — 1). By linearity
y(t) = 8te™* +20(e~* — 1). The steady state is yoo = —20.

30 The solution to 4’ — ay = e didn’t come from the main formula (4), but it could.

Integrate e~ ?*¢e“® in (4) to reach the very particular solution (et — %) /(c — a).
Solution t
) = ey(©) + et [ e ToT)ar
0
t
= ey(0) + e / —aleclqr
0
¢
— eaty(o) +e /e(c a)TdT
0
(e(c a)t __ )
= e y
= e"y(0) + ———— =y + Yup

C a
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31 The easiest possible equation y' = 1 has resonance! The solution y = t shows the
factor t. What number is the growth rate a and also the exponent c in the source ?

Solution The growth rate in y’ = 1 or dy/dt = €° is a = 0. The source is e

with ¢ = 0. Resonance a = c. The resonant solution y(t) = te® isy = t, certainly
correct for the equation dy/dt = 1.

32 Suppose you know two solutions y; and y» to the equation y’ — a(t)y = q(t).

(a) Find a null solution to y’ — a(t)y = 0.
(b) Find all null solutions ¥,,. Find all particular solutions y,,.

Solution (a) y = y1 — y2 will be a null solution by linearity.

(b) y = C(y1 —y2) will give all null solutions. Then y = C'(y1 — y2) + y1 will give all
particular solutions. (Also y = ¢(y1 — y2) + y= will also give all particular solutions.)

33 Turn back to the first page of this Section 1.4. Without looking, can you write down a
solution to y’ — ay = ¢(t) for all four source functions g, H (t), 6(t), et ?

Solution Equations (5), (7), (14), (19).

34 Three of those sources in Problem 33 are actually the same, if you choose the right
values for ¢ and ¢ and y(0). What are those values ?

Solution The sources ¢ = 1 and ¢ = H(t) and ¢ = € are all the same for t > 0.

35 What differential equations y’ = ay+q(t) would be solved by y; (¢) and y2(¢) ? Jumps,
ramps, corners—maybe harder than expected (math.mit.edu/dela/Psetl.4).

a y1(t)

0 1 2

Solution (a) % =1-6(t—1)—0(t—2)witha =0.

d
(b) % =ys+luptot =1. Addin —2e (¢t — 1) to drop the slope from e to —e at
t =1. Aftert = 1 we need dyo/dt = —y2 — 1 to keep y2 = €27 — 1.
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Problem Set 1.5, page 37

Problems 1-6 are about the sinusoidal identity (9). It is stated again in Problem 1.

1 These steps lead again to the sinusoidal identity. This approach doesn’t start with
the usual formula cos (wt — ¢) = cos wt cos ¢ + sin wt sin ¢ from trigonometry.
The identity says :

If A+ iB = Re'* then A coswt + Bsinwt = R cos(wt — ¢).
Here are the four steps to find that real part of Re*(“*~%)_ Explain Step 3 where R e~
equals A —iB:

R cos (wt — @) =Re [Re'@=9)] =Re [e“!(Re )] = (whatis Re™"?)

= Re[(cos wt + i sin wt) (A —iB)] = A coswt + B sinwt.
Solution The key point is that if A +iB = Re'® then A — iB = Re ™' (the complex
conjugate).

2 To express sin 5t + cos 5t as R cos (wt — ¢), what are R and ¢ ?

Solution The sinusoidal identity has A =1, B =1, and w = 5. Therefore:
R?=A’4+B?’=2 3 R=+2 and tan¢ = % - ¢ = % Answer /2 cos (5t— g) .

3 To express 6 cos 2t + 8 sin 2t as R cos (2t — ¢), what are R and tan ¢ and ¢ ?

Solution Use the Sinusoidal Identity with A =6, B =8 and w = 2.
R? = A+ B> =62 +82 =100 and R =10
8 _ 4

tang = & =8 =2 and ¢ isin the positive quadrant 0 to I ( not m to )

4
6 cos(2t) + 8sin(2t) = 10 cos (2t — arctan <§ )

4 Integrate cos wt to find (sin wt)/w in this complex way.
(1) dypeq1/dt = coswt is the real part of dYcomplex /dt = et

(ii) Take the real part of the complex solution.
iwt
Solution (i) The complex equation 3y’ = €' leads to y =

w '
(ii) Take the real part of that solution (since the real part of the right side is cos wt).

Re—— =Re

w 1w w w

eiwt {cos wt  sin wt] sinwt

- + = .

5 The sinusoidal identity for A = 0 and B = —1 says that — sinwt = R cos(wt — ¢).
Find R and ¢.

Solution p2 _ 42 . g2 _ 2112 -1 4, R=1
tan(i):%:oo—ﬂbzgor 37773 Here it is 37”’ since A +iB = —
Therefore we have

SOLUTION: — sinwt = cos(wt — 37”)

CHECK: t =0 gives 0 =0,wt = 5 gives —1=—1.
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6

Why is the sinusoidal identity useless for the source ¢(t) = cos ¢ + sin 2t ?

Solution The sinusoidal identity needs the same w in all terms. But the first term has
w = 1 while the second term has w = 2.

Write 2+ 3i as re’?, so that o=tz = Le~*®. Then write y = €’** /(2434 in polar form.
Then find the real and imaginary parts of y. And also find those real and imaginary parts

directly from (2 — 3i)e™! /(2 — 3i)(2 + 3i).
Solution r=+/22+32=1/13 and ¢ = arctan(3/2)
9+ 3i = /13 ¢ arctan(3/2)
y = ei“’t/(2 4 3i) — \/ﬁei arctan(3/2)+iwt
Writing this in cartesian (rectangular) form gives
real part = /13 cos(arctan(3/2) + wt) = 2 cos(wt) — 3sin(wt)
imag part = v/13 sin(arctan(3/2) + wt) = 3 cos(wt) + 2sin(wt)
We can also find the real and imaginary parts from:
(2—3i)e™  2-3i ,, 2-3i

G a2t 13 et = E (cos(wt) + isin(wt)).

Write these functions A coswt + B sinwt in the form R cos(wt — ¢) : Right triangle
with sides A, B, R and angle ¢.

(1) cos3t — sin 3t (2) V/3cosmt — sint (3) 3cos(t — @) + 4sin(t — ¢)
Solution (1) cos3t — sin3t = v/2cos(3t — I&) = /2 cos(3t + ).

Check t = 0: 1= v2cos(—IF) = v/2cos(%).

(2) V3cosmt —sinmt = 2cos(mt + ).

Check: (v/3)2 4 (=1)2=22 At t=0:v3 =2cos30°.

(3) 3cos(t — ¢) + 4sin(t — ¢) = 5cos(t — ¢ — tan™' 3).

Problems 9-15 solve real equations using the real formula (3) for M and IN.

9

10

Solve dy/dt = 2y + 3 cost + 4 sint after recognizing a and w. Null solutions C'e?t.

Solution % =2y + 3cost+4sint =2y + 5cos(t — @) with tan¢ = %.

Method 1: Look for y = M cost + N sint.

Method 2: Solve % = 2Y + 5¢(*=%) and then y = real part of Y.

Y = 2oett=9) = 3(—j — 2)e'*=%) and y = —2cos(t — ¢) + sin(t — ¢).

Find a particular solution to dy/dt = —y — cos 2t.

Solution Substitute y = M cost + N sint into the equation to find M and N

—Msint 4+ N cost = —M cost — N sint — cos 2t

Match coefficients of cos¢ and sin ¢ separately to find M and N.

N=—-M—-1ad — M =—-N give M:N:—1

2
Note: This is called the “method of undetermined coefficients” in Section 2.6.
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11 What equation iy’ — ay = A coswt + B sinwt is solved by y = 3 cos 2t + 4 sin 2t ?

Solution Clearly w = 2. Substitute y into the equation:
—6sin 2t + 8 cos 2t — 3a cos 2t — 4a sin 2t = A cos 2t + B sin 2t.

Match separately the coefficients of cos 2¢ and sin 2¢:
A=8—-3a and B=—6—4a
12 The particular solution to y’ = y + cost in Section 4 is y, = e’ [ e~ * cos s ds. Look
this up or integrate by parts, from s = 0 to ¢. Compare this y,, to formula (3).

Solution That integral goes from 0 to ¢, and it leads to y, = 2 (sint — cost + ¢!)

If we use formula (3) witha = 1,w =1,4A =1, B = 0 we get

M= aA+wB  —1 _wA-aB 1
 w?+4ae? 2  w?24a? 2
— t int
This solution y = M cost + N sint = %—i—sm is a different particular solution

(not starting from y(0) = 0). The difference is a null solution $e’.
13 Find a solution y = M cos wt + N sin wt toy’ — 4y = cos 3t + sin 3t.

Solution Formula (3) witha = 4,w =3, A = B =1 gives
443 7 3—4 1

T 9+16 25 T9+16 25
14 Find the solution to y’ — ay = A cos wt + B sin wt starting from y(0) = 0.
Solution One particular solution M coswt + N sinwt comes from formula (3). But

this starts from y,,(0) = M. So subtract off the null solution y,, = Me® to get the very
particular solution y,, = y, — ¥y, that starts from ,,,(0) = 0.

15 If a = 0 show that M and N in equation (3) still solve y’ = A cos wt + B sin wt.
Solution Formula (3) still applies with ¢ = 0 and it gives

M-8 oA

B A
5 Yy = —— coswt + — sin wt.
w w w

w2
w
This is the correct integral of A coswt + B sinwt in the differential equation.
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Problems 16-20 solve the complex equation y’ — ay = Re*(“wt—9),

16

17

18

19

20

Write down complex solutions y, = Y e to these three equations :
@ y' =3y =>5e""  (b) y' =R (o) y' =2y~ e
Solution (a) y' — 3y = 5e?* has iw Ye™t — 3Y et = 5¢2%,

_ _ _5
Sow=2andY = ;2.

(b) y' = Re'“*=%) has iwYe™! = Re'“*=%). SoY = fLe~"® and the solution is
y = Yeiwt — R ei(wtfqb).

w

() y'=2y—e" has w=1and iYe" =2Ye — e,

ThenY = = = ;& = ZH and y = Ye'.

Find complex solutions z, = Ze™" to these complex equations :
(@) z' + 4z = €8 (b) 2" + 4iz = 3% )z +4iz = eBt
Solution (a) 2’ + 4z = €% has z = Ze8" with 8iZ +4Z =1 and Z = - =

118i
4-8i _ 11 _ o
16164 50 (1 — 2i).

(b) 2" + 4iz = €% is like part (a) but 4 changes to 4i. Then Z = g5 = 157 = —

(¢) 2" +4iz = €% has z = Ze®. Then 8Zeb +4iZe® gives Z = gl = 37

=

Start with the real equation 3y’ —ay = R cos (wt — ¢). Change to the complex equation
2! —az = Re@*=%). Solve for z(t). Then take its real part y,, = Re z.

Solution Put z = Ze'“'=%) in the complex equation to find Z:

w7 —aZ = R gives 7 — — 1t~ Bla—iw)
—a+iw a? + w?

The real part of z = Z(cos(wt — ¢) + isin(wt — ¢)) is
(—acos(wt — @) + wsin(wt — @)).

R
a?+w?
What is the initial value y,(0) of the particular solution y, from Problem 18?

If the desired initial value is y(0), how much of the null solution y, = Ce*
would you add to y,, ?

Solution That solution to 18 starts from y,(0) = WRMQ (—acos(—¢) 4+ wsin(—¢)) at

t = 0. So subtract that number times e to get the very particular solution that starts
from y,,(0) = 0.

Find the real solution to ' — 2y = cos wt starting from y(0) = 0, in three steps : Solve
the complex equation z’ — 2z = ™! take y, = Rez and add the null
solution 7/, = Ce? with the right C.

Solution Step 1. z' — 27 = €' is solved by z = Ze™! with iwZ — 2Z = 1 and

_ 1  _ =2—w
Z = —2+iw ~ 44w?

Step 2. The real part of Ze™" is y, = 7 (—2 coswt + wsinwt).

2t

Step 3. yp(0) = 4;% SO Yup = Yp + ﬁe includes the right y, = Ce?! for

Yup(0) = 0.
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Problems 21-27 solve real equations by making them complex. First a note on c.

Example 4 was 4y’ — y = cost — sint, with growth rate a = 1 and frequency w = 1.
The magnitude of iw — a is v/2 and the polar angle has tanc = —w/a = —1. Notice:
Both o = 37 /4 and o = —7 /4 have that tangent ! How to choose the correct angle o ?

The complex number iw — a = i — 1 is in the second quadrant. Its angle is o« = 37 /4.

We had to look at the actual number and not just the tangent of its angle.

21

22

23

Find r and « to write each iw — a as re‘®. Then write 1/re’® as Ge ™.

@V3i+1  BV3i—-1 (0)i—+3

Solution (a) \/3i + 1 is in the first quadrant (positive quarter 0 < 0 < m/2) of the
complex plane. The angle with tangent v/3/1 is 60 ° = 7/3. The magnitude of v/3i + 1
isr = 2. Then /3i + 1 = 2€%7/3,

(b) V/3i — 1is in the second quadrant 7/2 < 6 < 7. The tangent is —/3, the angle is
6 = 27 /3, the number is 2e2™%/3,

(c) i — /3 is also in the second quadrant (left from zero and up). Now the tangent

is —1/+/3, the angle is # = 150° = 57/6. The magnitude is still 2, the number is
26571'1'/6.

Use G and « from Problem 21 to solve (a)-(b)-(c). Then take the real part of each
equation and the real part of each solution.

@y +y=ev By —y=eV' (0 y -V3y=e"

Solution (a) y' +y = €'V3! is solved by y = Ye'V3 when iv/3Y + Y = 1. Then
= \/31“ = Ze~"™/3 from Problem 21(a). The real part yycal = & cos(v/3t — 7/3)

of YeiV3 solves the real equation y,.,) + Yrea1 = cos(v/3t).

(b) y'—y = V3 issolved by y = Ye'V3 when iv/3Y —Y = 1. Then Y = Le=2m/3

from Problem 21(b). the real part Yy = % cos(\/gt — 27 /3) solves the real equation

Y1 — Yreal = cos(V/3t).

() y' — 3y = e is solved by y = Ye'* when iY —/3Y = 1. ThenY =

2e757/6 from Problem 21(c). The real part yea1 = 5 cos(t — 57/6) of Ye'* solves

Yreal — V/3Yreal = COSL.

Solve y’ — y = cos wt + sin wt in three steps : real to complex, solve complex, take
real part. This is an important example.

Solution Note: I intended to choose w = 1. Then y’ — y = cost + sint has the
simple solution y = —sint. I will apply the 3 steps to this case and then to the harder
problem for any w.

(1) Find R and ¢ in the sinusoidal identity to write cos wt + sin wt as the real part of
Re“'=%) This is easy for any w.
T

1 T
tanqS:I so ¢:Z cos wt + sinwt = v/2 cos (wt—z)

(2) Solve y/ —y = et by y = Ge @t Multiply by Re™® to solve
2! — z = Ret(wi—9),
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24

25

26

27

w=1 y'—y=ehasy=Ye" withi¥ =Y =1.ThenY = 15 = \%637”'/4 =

Ge ™,

z = (V2eilt=m/4) (%63”/4) = e™e™/2 = je'*. The real part of z is y = — sint.
) 1 1 ,

Anyw y'—y=c“leadstoiwy —Y = landY = ——— = me_w‘

with tana = w. Then 2(¢) = (sze_w‘) (V2eiwt=m/9)),

(3) Take the real part y(¢) = Re z(¢). Check that y’ — y = cos wt + sin wt.

y(t) = Re z(t) = —2; cos(wt — o — 7). Now we need tana = w, cosa = \/117,

14+w?
sino = —==—=. Finally y = 11;2 [cos(wt — §) cos a + sin(wt — F ) sina.

Solve y’ — /3y = cos t + sin t by the same three steps with a = v/3 and w = 1.
Solution (1) cost +sint = v/2cos(t — Z).

Q) y=Ye" withiV —/3Y =1 and Y = Z_jﬁ = 2e75/6 from 1.5.21(c).
Then z(t) = (v/2e't=™/9)(Le=5m/6),

(3) The real part of z(t) is y(t) = % cos(t — £27).

(Challenge) Solve y’ — ay = A coswt + B sin wt in two ways. First, find
R and ¢ on the right side and GG and « on the left. Show that the final real solution
RG cos (wt — ¢ — «) agrees with M cos wt + N sin wt in equation (3).

Solution The first way has R = v A? + B2 and tan ¢ = B/A from the sinusoidal
identity. On the left side 1/(iw—a) = Ge™ ' from equation (8) with G = 1/v/w? + a2
and tan & = —w/a. Combining, the real solution is y = RG cos(wt — ¢ — «).

This agrees with y = M coswt 4+ N sin wt (equation (3) gives M and V).

We don’t have resonance for 4’ — ay = Re™? when a and w # 0 are real. Why not ?
(Resonance appears when y,, = Ce® and y,, = Ve share the exponent a = c.)

Solution Resonance requires the exponents a and iw to be equal. For real a this only
happens if a = w = 0.

If you took the imaginary part y = Im z of the complex solution to 2’ —az = Re*“t=%),
what equation would y(t) solve ? Answer first with ¢ = 0.

Solution Assuming a is real, the imaginary part of 2’ —az = Re*(“!=%) is the equation
y' — ay = Rsin(wt — ¢). With ¢ = 0 thisis y’ — ay = Rsinwt.

Problems 28-31 solve first order circuit equations : not RLC but RL and RC.

V coswt L R V coswt
‘_@AVW_' 7

current I (t) q(t) = integral of I(t)
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28 Solve LdI/dt + RI(t) = V cos wt for the current I(t) = I,, + I, in the RL loop.

Solution Divide the equation by L to produce dI /dt—al = X coswt witha = —R/L
and X = V/L. In this standard form, equation (3) gives the real solution:

X
I = Mcoswt+ Nsinwt with M = ——2 _ and N = ——2
w2+a2 w2+a2

29 With . = 0 and w = 0, that equation is Ohm’s Law V' = [R for direct current.
The complex impedance Z = R + iwL replaces R when L # 0 and I(t) = Ie™".

LdI/dt+ RI(t) = (iwL + R)Ie®t = Vet gives ZI=1V.

What is the magnitude |Z| = |R + iwL|? What is the phase angle in Z = |Z|e®? ?
Is the current |I| larger or smaller because of L ?

Solution |Z| = VR? +w?L? and tanf = 2=

Since | Z| increases with L, the current || must decrease.

d 1
30 Solve Rd_‘z + EQ(t) =V cos wt for the charge ¢(t) = g, + ¢ in the RC loop.

Solution Dividing by R produces % —aq = X coswt with a = —R—lc and X = %.
As in Problem 28, equation (3) gives M and N from w and this a.
31 Why is the complex impedance now Z = R + 15 ? Find its magnitude |Z|.

Note that mathematics prefers : = v/—1, we are not conceding yetto 5 = +/—1!

Solution The physical RC equation for the current I = 49 is RI + % [Idt =

: dat
V coswt = Re (Ve™?).

The solution I has the same frequency factor X e, and the integral has the factor
e™! /iw. Substitute into the equation and match coefficients of e?* :

RX + ﬁX =V is ZX =V with impedance Z = R + iu}c.

Problem Set 1.6, page 50

1 Solve the equation dy/dt = y + 1 up to time ¢, starting from y(0) = 4.

Solution 'We use the formula y(t) = y(0)e* 4 £(e* — 1) witha = 1 and s = 1 and
y(0) = 4:
y(t) =4e' +e' —1=>5e" — 1
2 You have $1000 to invest at rate a = 1 = 100 %. Compare after one year the result of

depositing y(0) = 1000 immediately with no source (s = 0), or choosing y(0) = 0 and
s = 1000/ year to deposit continually during the year. In both cases dy/dt = y + q.

Solution We substitute the values for the different scenarios into the solution formula:
y(t) = 1000e = 1000e at one year
y(t) = 1000e? — 1000 = 1000(e — 1) at one year

You get more for depositing immediately rather than during the year.
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38 If dy/dt = y — 1, when does your original deposit y(0) = 3 drop to zero?

Solution Again we use the equation y(t) = y(0)e® +2(e**—1) with a =1 and s =
—1. We set y(t) = 0 and find the time ¢ :
y(t) =y(0)e' —e' +1=¢'(y(0)—1)+1=0
1
el=———~=2and t=In2.
1—y(0)

Notice! If y(0) > 1, the balance never drops to zero. Interest exceeds spending.

d
4 Solve d—:g = y + t2 from y(0) = 1 with increasing source term #2.

Solution Solution formula (12) with a = 1 and y(0) = 1 gives
t

y(f)Zet—i—/et_sszds:et—t(t+2)+26t—2:36t_t(t+2)_2
0

d
Check: d—z =3¢’ + 2t — 2 equals y + t°.
dy

5 Solve i y + et (resonance a = c¢!) from y(0) =1 with exponential source e’.
Solution The solution formula with ¢ = 1 and source e’ (resonance!) gives:
t t
y(t) = e + /etfsesds =el + /etds =e'(1+1)
0 0

d
Check by the product rule : d—:g =el(1+t)+e =y +e.

d
6 Solve d—:g = y — t? from an initial deposit y(0) = 1. The spending q(t) = —t? is
growing. When (if ever) does y () drop to zero ?

Solution

t

y(t) = e — /etfsszds =e' +t(t+2) —2e" +2 = —e’ + t(t + 2). This definitely
0

drops to zero (I regret there is no nice formula for that time t).

d
Check: d—i = e +2A+2=y— %

d
7 Solve d—z =y — ¢! from an initial deposit (0) = 1. This spending term —e! grows at

the same e? rate as the initial deposit (resonance). When (if ever) does y drop to zero ?
t t
Solution y(t /et Sefds = e — /etds =e'(1—1t) (thisis zeroat t = 1)
0 0

Check by the product rule : d—lt’ =el(l1—t)—el =y —el.
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d
8 Solve d—z =y — e2! from y(0) = 1. At what time T'is y(T) = 0 ?

¢ ¢
Solution y(t) = et — /et_sezsds =e' - /et+5ds =elfef(1—el) =2e" — e
0 0
This solution is zero when 2e’ = €?/ and 2 = ¢! and t = In 2.
Check that y = 2e! — 2! solves the equation : % = 2! — 2e% =y — %,
9 Which solution (y or Y) is eventually larger if y(0) = 0and Y (0) =0 ?
%Zy-i-% or %zﬂ’—i—t.
Solution
% =y+2 % =2Y +1
¢ ¢
y(t) = /et_s - 2sds Y() = /e2t—25 - sds
’ -1
y(t) =2(—t+e' —1) Y(t) =

In the long run Y'(¢) is larger than y(t), since the exponent 2¢ is larger than ¢.

10 Compare the linear equation 3’ = y to the separable equation iy’ = y? starting from
y(0) = 1. Which solution y(¢) must grow faster ? It grows so fast that it blows up to
y(T) = oo at what time T ?

Solution
dy _ dy _
Ccllt Ccllt
Y Y at
Y Y
y(t)d t y(t)d t
u u
y(0) 0 y(0) 0
In(y(t)) —In(y(0)) =t ——t— =1
(v(0)) — n( <(t>)> @
—_— = et y(t) = =
y(0) ﬁ -t 1—t

y(t) =y(0)e' = e*
The second solution grows much faster, and reaches a vertical asymptote at 7" = 1.
11 Y/’ = 2Y has a larger growth factor (because a = 2) than y' = y + q(t).
What source ¢(t) would be needed to keep y(t) = Y (¢) for all time ?

Solution % =2Y + 1 with for example Y (0) =y(0) =0

et —1

t
Y(t) = /th*QSdS -
0
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Put this solution into % =y + ¢(t):

2t
-1
e = - 5— +alt)
82t + 1
=q(t
5 q(t)
Starting from y(0) = Y(0) = 1, does y(t) or Y (¢) eventually become larger ?
dy ¢ Y 2t
—_— = 2 — = Y .
o y+e n +e
Solution dy ¢
29
o y+e
¢
y(t) = e + /€2t—2585d5 — o2t 2t ot 92t gt
0
Solving the second equation:
dy V4 e
bl e
dt

¢
Y(t) =€+ /et*SeQSds =e' +e* — e =e?' is always smaller than y(t).
0

Questions 13-18 are about the growth factor G(s, t) from time s to time ¢.

13

14

15

What is the factor G(s, s) in zero time ? Find G(s,o0) ifa = —1 and if a = 1.

Solution The solution doesn’t change in zero time so G(s,s) = 1. (Note that the
integral of a(t) from ¢t = stot = s is zero. Then G(s,s) = € = 1. We are talking
about change in the null solution, with 3y = a(t)y. A source term with a delta function
does produce instant change.)

If @ = —1, the solution drops to zero at t = co. So G(s, 00) = 0.
If @ = 1, the solution grows infinitely large as ¢ — co. So G(s,00) = 0.

Explain the important statement after equation (13): The growth factor G(s,t) is the
solution to y’ = a(t)y + §(t — s). The source §(t — s) deposits $1 at time s.

Solution When the source term §(t — s) deposits $1 at time s, that deposit will grow
or decay to y(t) = G(s,t) at time ¢ > s. This is consistent with the main solution
formula (13).

Now explain this meaning of G(s,t) when t is less than s. We go backwards in time.
Fort < s, G(s,t) is the value at time t that will grow to equal 1 at time s.

When t = 0, G(s,0) is the “present value” of a promise to pay $1 at time s. If the inter-
est rate is a = 0.1 = 10% per year, what is the present value G(s,0) of
a million dollar inheritance promised in s = 10 years ?

Solution 1In fact G(t,s) = 1/G(s,t). In the simplest case y’ = y of exponential
growth, G(s, t) is the growth factor €' ~* from s to t. Then G(t, s) is e~ = 1/e!™%.
That number G(t, s) would be the “present value” at the earlier time ¢ of a promise to
pay $1 at the later time s. You wouldn’t need to deposit the full $1 because your deposit
will grow by the factor G(s,t). All you need to have at the earlier time is 1/G(s, t),
which then grows to 1.
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16 (a) What is the growth factor G(s, t) for the equation y’ = (sin t)y + Q sin ¢ ?
(b) What is the null solution y,, = G(0,t) to y’ = (sin t)y when y(0) = 1?

t
(c) What is the particular solution y, = [ G(s,t) Q sin sds?
0

t
Solution (a) Growth factor: G(s,t) = exp / sinTdT | = exp(cos s — cost).
(b) Null solution: y,, = G(0,t) y(0) = el=cost,
t
(¢) Particular solution: y, = / eCos 58t O sin s ds
0
= Qe et [—e35]0 = @ (€'t — 1) . Check y,(0) = Q(e® — 1) = 0.
17 (a) What is the growth factor G(s, t) for the equationy’ = y/(t + 1) + 10 ?
(b) What is the null solution y,, = G(0,¢) toy’ = y/(t + 1) with y(0) = 1?2

t
(c) What is the particular solution y, = 10 [ G(s,t) ds ?
0

t+1
—explIn(t+1) = In(s + 1)] = 311'

Solution (a) G(s,t) = exp /

S

Null solution y,, = G(0,t) y(0) = exp [In(t + 1)] = ¢t 4 1 since In(0 + 1) = 0.

T+1

ds
s+1

¢ ¢
Particular solution ¥, = IO/exp [In(t +1) —In(s + 1)]ds = 10(t + 1)/
0

10(¢ + 1) In(t + 1).
18 Whyis G(t,s) = 1/G(s,t) ? Whyis G(s,t) = G(s, S)G(S,t) ?

Solution Multiplying G(s,t) G(t, s) gives the growth factor G(s, s) from going up
to time ¢ and back to time s. This factor is G(s,s) = 1. So G(t,s) = 1/G(s,t).
Multiplying G(s, S) G(S,t) gives the growth factor G(s, t) from going up from s to S
and continuing from S to t. In the example y’ = y, thisis e5~%e! = = et~ = G(s,1).

Problems 19-22 are about the “units” or ‘“dimensions” in differential equations.

19 (recommended) If dy/dt = ay + qe™?, with ¢ in seconds and y in meters, what are
the units for @ and ¢ and w ?

Solution a is in “inverse seconds”—for example a = .01 per second.
q is in meters.

w is in “inverse seconds” or 1/seconds—for example w = 2 radians per second.
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20

21

22

23

24

The logistic equation dy/dt = ay — by? often measures the time ¢ in years (and y
counts people). What are the units of ¢ and b ?

Solution a is in “inverse years”—for example a = 1 percent per year.
b is in “inverse people-years” as in b = 1 percent per person per year.

Newton’s Law is m d?y/dt?> + ky = F. If the mass m is in grams, y is in meters,
and ¢ is in seconds, what are the units of the stiffness k& and the force F' ?

Solution ky has the same units as m d?y/dt? so k is in grams per (second)?.

F is in gram-meters per (second)?’—the units of force.

Why is our favorite example y’ = y + 1 very unsatisfactory dimensionally ? Solve it
anyway starting from y(0) = —1 and from y(0) = 0.

The three terms in ' = y + 1 seem to have different units. The rate @ = 1 is hidden
(with its units of 1/time). Also hidden are the units of the source term 1.

Solution y(t) = y(0)e'+ 1 (e’ —1). Thisis e’ —1 if y(0) = 0. The solution stays at
steady state if y(0) = —1.
The difference equation Y,, 1 = ¢Y,, + Q,, produces Y7 = cYy + Qp. Show that the
next step produces Y, = Yy +cQo + Q1. After N steps, the solution formula for Yy
is like the solution formula for ' = ay + q(¢). Exponentials of a change to powers of
¢, the null solution e%*y(0) becomes ¢V Yy. The particular solution

t

Yy =c""1Qo+ -+ Qn_y islike y(t) = /e“(t_s)q(s)ds.
0
Solution Yo = cY1 + Q1 = c(cYo + Qo) + Q1 = ¢*Yy + cQo + Q1.

The particular solution c@Qo + @)1 agrees with the general formula when N = 2. The
null solution c?Yj is Step 2 in Yo, Yo, ¢?Yo, ¢*Yo, . . . like e**y(0).

Suppose a fungus doubles in size every day, and it weighs a pound after 10 days. If
another fungus was twice as large at the start, would it weigh a pound in 5 days ?

Solution This is an ancient puzzle and the answer is 9 days. Starting twice as large
cuts off 1 day.

Problem Set 1.7, page 61

1

If y(0) = a/20b, the halfway point on the S-curve is at ¢ = 0. Show that d = b and

()= g3 = 3
YW = et xb " beot+1°

fromy_oc =010 Yoo = %. Mark the inflection point.

Sketch the classic S-curve — graph of 1(e=% + 1)

Solution a a
d=——=—>band y(0) = — leadto d=— —-b=20—-b=b
20) and y(0) 5 lead to
a a

a 1
Therefore y(t) = de—at1b be-a+b be-atrl

§|®| S
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2 If the carrying capacity of the Earth is K = a/b = 14 billion people, what will be the
population at the inflection point ? What is dy/d¢ at that point ? The actual population
was 7.14 billion on January 1, 2014.

Solution The inflection point comes where y = a/2b = 7 million. The slope dy/dt is

dy a a\2 a2 a\2
at =W T T \%) T R PG J

3 Equation (18) must give the same formula for the solution y(¢) as equation (16).
If the right side of (18) is called R, we can solve that equation for y :
b b R
=R(1-—- — 1+ R- =R — = —.
Y < ay> < a) 4 Y (1 + R%)

Simplify that answer by algebra to recover equation (16) for y(t).

Solution This problem asks us to complete the partial fractions method which inte-
grated dy/(y — 2y?) = adt. The result in equation (18) can be solved for y(t). The
right side of (18) is called R :

R = eat y(O) — ata y(O) — eatg
1—2y(0) a —by(0) d
Then the algebra in the problem statement gives
R et et a
= = = ltiply b = .
YTy RY 14 eatt TP DY Ge=at T de—at 4 b

4 Change the logistic equation to 4’ = y + y2. Now the nonlinear term is positive,
and cooperation of y with y promotes growth. Use z = 1/y to find and solve a linear
equation for z, starting from z(0) = y(0) = 1. Show thaty(7') = co whene~ 7 = 1/2.
Cooperation looks bad, the population will explode att = T'.

Solution Puty = 1/z and the chain rule % = ;—21 % into the cooperation equation

y' =y+y*
1dz 1 n . dz 1
——=— =>4 = gives — =—z—1.
2dt 2 28 dt
The solution starting from z(0) = 1is z(¢) = 2¢~* — 1. This is zero when 2¢=7 = 1
ore’ =2o0rT = In2.

At that time z(T") = 0 means y(T") = 1/z(T) is infinite: blow-up at time 7' = In 2.

5 The US population grew from 313, 873, 6851n 2012 to 316, 128, 8391in 2014. If it were
following a logistic S-curve, what equations would give you a, b, d in the formula (4) ?
Is the logistic equation reasonable and how to account for immigration ?

Solution 'We need a third data point to find all three numbers a, b, d. See Problem
(23). There seems to be no simple formula for those numbers. Certainly the logistic
equation is too simple for serious science. Immigration would give a negative value for
h in the harvesting equation y’ = ay — by? — h.
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6 The Bernoulli equation y' = ay — by™ has competition term by™. Introduce
z = y'~™ which matches the logistic case when n = 2. Follow equation (4) to

show that z’ = (n — 1)(—az + b). Write z(t) as in (5)-(6). Then you have y(t).
Solution 'We make the suggested transformation:

y = ylfn
2 =1-n)y "y
&2 = (1—n)y "(ay — by") = (1 —n)(ay' " — b)

4z — (1 —n)(az —b)

/

b de(lfn)at +b
t) = (1—n)at 0) — = (1—n)at _ 1) =
() = e s(0) - S y= b
d=uaz(0)—0 b
AT

y(t) = de(1—n)at +b

Problems 7-13 develop better pictures of the logistic and harvesting equations.

7 y' =y —y?is solved by y(t) = 1/(de~* + 1). This is an S-curve when y(0) = 1/2
and d = 1. But show that y(¢) is very different if y(0) > 1 or if y(0) < 0.

If y(0) =2thend = 3 — 1 = —1. Show that y() — 1 from above.
Ify(0) = —1thend = %~ — 1 = —2. At what time T is y(T') = —00?

Solution First, y(0) = 2 is above the steady-state value yoo = a/b = 1/1. Then
d=—%andy(t) = 1/(1 — e~") is larger than 1 and approaches y(co) = 1/1 from
above as et goes to zero.

Second, y(0) = —1 is below the S—curve growing from y(—oc) = 0 to y(co) = 1.
The value d = —2 gives y(t) = 1/(—2e~* +1). When e~* equals 3 thisis y(t) = 1/0
and the solution blows up. That blowup time is £ = 1n 2.

8 (recommended) Show those 3 solutions to ' = y — 32 in one graph ! They start from
y(0) = 1/2 and 2 and —1. The S-curve climbs from %1 to 1. Above that,
y(t) descends from 2 to 1. Below the S-curve, y(¢) drops from —1 to —oo.

Can you see 3 regions in the picture ? Dropin curves above y = 1 and S-curves
sandwiched between O and 1 and dropoff curves below y = 0.

Solution The three curves are drawn in Figure 3.3 on page 157. The upper curves and
middle curves approach y., = a/b. The lowest curves reach y = —oo in finite time:
blow-up.

9 Graph f(y) = y — y? to see the unstable steady state Y = 0 and the stable Y = 1.
Then graph f(y) = y — y? — 2/9 with harvesting h = 2/9. What are the steady
states Y7 and Y2 ? The 3 regions in Problem 8 now have Z-curves above y = 2/3,
S-curves sandwiched between 1/3 and 2/3, dropoff curves below y = 1/3.

Solution The steady states are the points where Y — Y2 = 0 (logistic) and Y — Y2 —

2 = 0 (harvesting). That second equation factors into (Y — £)(Y — 2) to show the

3
1 2
steady states 3 and 3



28 Chapter 1. First Order Equations

10 What equation produces an S-curve climbing to ¢y, = K fromy_o, = L?

Solution We can choose y' = ay — by? — h with steady states K and L. Then
aK —bK? —h = 0and aL — bL? — h = 0. If we divide by h, these two linear
equations give

K+ L 1
KL K
K
L

b 1
h KL

a b L L

=0and —L——L*-1=—=—-=

me Lt K K

S e
~

b
Check : %K 2K 1=

=0
h

=~ =

1y =y—y?— 1 = —(y— 3)? shows critical harvesting with a double steady state

aty =Y = % The layer of S-curves shrinks to that single line. Sketch a dropin
curve that starts above y(0) =  and a dropoff curve that starts below y(0) = 3.

Solution The solution to y’ = —(y — £)? comes from integrating —dy/(y — 3)? = dt

toget1/(y — 3) = t + C. Then y(t) :%—l—t_’_%. If y(0) > % then C > 0 and

this curve approaches y(co) = %; it is a hyperbola coming down toward that horizontal
line. If y(0) < 1 then C is negative and the above solution y = § + HLC blows up
(or blows down! since y is negative) at the positive time ¢ = —C. This is a dropoff
curve below the horizontal line y = 3. (If y(0) = 4 the equation is dy/dt = 0 and the
solution stays at that steady state.)

12 Solve the equation y’ = —(y — 3)? by substituting v = y — 5 and solving v/ = —v?,
Solution This approach uses the solutions we know to dv/dt = —v?. Those solutions

are v(t) = —~. Then v = y —  gives the same y = 1 + —~ as in Problem 11.
t+C 28 2T +C

13 With overharvesting, every curve y(t) drops to —oo. There are no steady states.
Solve Y — Y2 — h = 0 (quadratic formula) to find only complex roots if 4k > 1.

The solutions for & = 2 are y(t) = 1 — tan(t + C). Sketch that dropoff if C' = 0.

Animal populations don’t normally collapse like this from overharvesting.

Solution Overharvestingis y’ = y — y* — h with h larger than } (Problems 11 and 12
had h = % and critical harvesting). The fixed points come from Y — Y2 — h = 0. The

quadratic formula gives Y = %(1 + +/1 — 4h). These roots are complex for h > % :
No fixed points.

For h = 2 the equationisy’ =y —y?> — 2 = —(y— 3)> — 1. Thenv =y —
has v/ = —v? — 1. Integrating dv/(1 + v?) = —dt gives tan v = —t — C or
v=—tan(t+C). y=v+ 1 =1 —tan(t + C). The graph of — tant starts at zero
and drops to —oo at t = /2.

1 1
14 With two partial fractions, this is my preferred way to find A = ,B=
Tr—S S—rT

1 1 1
PF2 =

W-—rw—»5 W-1—s m-sE—1

Check that equation : The common denominator on the rightis (y — 7)(y — s)(r — s).
The numerator should cancel the 7 — s when you combine the two fractions.
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Separate —; ! and — ! into two fractions + B .
y* -1 Yy -y y—r y-—s
Note When y approaches r, the left side of PF2 has a blowup factor 1/(y — r).
The other factor 1/(y — s) correctly approaches A = 1/(r — s). So the right side
of PF2 needs the same blowup at y = r. The first term A/(y — r) fits the bill.

Solution 4 1 A B _ 12 1
-1 (y-y+1) y-1 y+1 y—1 y+1
The constants are A = 1 = 1 :—l =—-B
r—s 1—(-1) 2
1 1 A B 1 1 1 1
B} = = —|——:———’ A: :—:—B
v -y Ww-ly y—-1 y y—-1 y r—s 1-0

15 The threshold equation is the logistic equation backward in time :

d d
_d_:g:ay—byz is the same as d—?i:—ay-l-byz-

Now Y = 0 is the stable steady state. Y = a/b is the unstable state (why?).
If y(0) is below the threshold a/b then y(t) — 0 and the species will die out.
Graph y(t) with y(0) < a/b (reverse S-curve). Then graph y(¢) with y(0) > a/b.

Solution The steady states of dy/dt = —ay + by? come from —aY + bY?2 = 0 so
againY = 0 or Y = a/b. The stability is controlled by the sign of df /dy aty = Y :

d
f = —ay+ by tellshow y grows d_f = —a + 2by tells how Ay grows
Y
d d
Y—0has L= o (sTABLE) v =% has & = _arp (9) — a (UNSTABLE)
dy b dy b

The S-curves go downward from Y = a/b toward the line Y = 0 (never touch).

16 (Cubic nonlinearity) The equation y’ = y(1 — y)(2 — ) has three steady states:
Y = 0,1,2. By computing the derivative df /dy at y = 0,1,2, decide whether
each of these states is stable or unstable.

Draw the stability line for this equation, to show y(¢) leaving the unstable Y’s.
Sketch a graph that shows y(t) starting from y(0) = 4 and 2 and 3.
Solution y' = f(y) = y(1—y)(2—y) = 2y — 3y? + > has slope Z—{J =2—6y+3y°.
Y =0 has £ =2 (unstable)

dy S—curves goup from Y =0 toward ¥ =1
Y =1 has ;l—f = —1 (stable)
Y S —curves from Y =2 godowntoward Y =1
Y =2 has % =2 (unstable)

N
v
~
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17 (a) Find the steady states of the Gompertz equation dy/dt = y(1 — Iny).
Solution (a) Y(1 —InY) =0 atsteady statesY = 0and Y =e.

(b) Show that z = In y satisfies the linear equation dz/dt = 1 — z.

Solution (b) z = Iny has % = %’é—‘;’ =y(l—Iny)/y=1—lny=1-—z.

(c) The solution z(t) = 1+ e~ *(2(0) — 1) gives what formula for y(¢) from y(0) ?
Solution (c) z' = 1/z gives that z(t). Then set y(t) = 1/2(t):

y(t) = [1+e (20— 1)] " = [1 et (Wlo) - 1)}_1.

18 Decide stability or instability for the steady states of
(@) dy/dt =2(1—y)(1—e¥)  (b) dy/dt=(1-y*)(4—y?)
Solution (a) f(y) =2(1—y)(1—e¥)=0atY =1landY =0

&= —2ev(1—y) —2(1—¢")
AtY =1 £ = —2(1-¢) > 0(UNSTABLE)  AtY =0 £ = —2(STABLE)

Y =1 gives % = —6 (STABLE) Y = —1 gives g_g = 6 (UNSTABLE)
Y = 2gives &£ = 12 (UNSTABLE) Y = —2 gives 4L — —12 (STABLE)

19 Stefan’s Law of Radiation is dy/dt = K (M* — y*). It is unusual to see fourth powers.
Find all real steady states and their stability. Starting from y(0) = M /2, sketch a graph

of y(t).
Solution f(Y)=K(M*—Y*)equalsOatY = M andY = —M (also Y = +iM).

4 = AKY® = —AKM®(Y = M is STABLE) 4 = 4KM?3(Y = —M is UNSTABLE)

The graph starting at y(0) = M /2 must go upwards to approach y(oco) = M.

20 dy/dt = ay — y® has how many steady states Y for @ < 0 and then a > 07?
Graph those values Y (a) to see a pitchfork bifurcation—new steady states suddenly
appear as a passes zero. The graph of Y (a) looks like a pitchfork.

Solution f(Y)=aY —Y? =Y (a— Y?)has 3 steady states Y = 0, /a, —/a.

g—f;:a—?)y?equalsaatY:O, j—f;:—QaatY:\/aandyZ_\/a'

Then Y = 0is UNSTABLE and Y = ++/a are STABLE.

21 (Recommended) The equation dy/dt = sin y has infinitely many steady states.
What are they and which ones are stable? Draw the stability line to show whether
y(t) increases or decreases when y(0) is between two of the steady states.

Solution f(Y) =sinY is zero at every steady state Y = nx (0, 7, —7, 2w, —2m, .. .)
j—{j’ = cosY =1 (UNSTABLE for Y = 0,2m, —27, 47, ...)
=cosY = —1(STABLE forY =7, —m, 3w, —3m7,...)
Stability line <—F—>—F—<— e
—2m —T 0 ™ 27
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22

23

24

25

26

Change Problem 21 to dy/dt = (sin y)2. The steady states are the same, but now the
derivative of f(y) = (sin y)? is zero at all those states (because sin y is zero). What
will the solution actually do if y(0) is between two steady states ?

Solution  f(y) = (siny)? has % = 2sinycosy = sin 2y.

Now g—i = 0 at ALL THE STEADY STATES Y = n.

Since % = (siny)? is always positive, the solution y(¢) will always increase toward
the next larger steady state.

We have an infinite stack of S—curves.

(Research project) Find actual data on the US population in the years 1950, 1980, and
2010. What values of a, b, d in the solution formula (7) will fit these values ? Is the
formula accurate at 2000, and what population does it predict for 2020 and 2100 ?

You could reset ¢ = 0 to the year 1950 and rescale time so that ¢ = 3 is 1980.

Solution Resetting time gives T = ¢(t — 1950). Rescaling gives ¢(1980 — 1950) = 3
_ 1
0 ¢ = 15. Then a, b, d depend on your data.

The graphs from ¢ = 1950 to 1980 will show 7' = (¢ — 1950) from 7" = 0 to 3.

If dy/dt = f(y), what is the limit y(oc0) starting from each point y(0) ?
Solution
dy [y for y <1 has fixed points Y =0 and 2
dt ~ 12—y fory>1

Slope 4 = 1atY = 0 (UNSTABLE). Slope & = —1atY = 2 (STABLE), y(c0) = 2.

1
W@) )
40 é\ > Y Y

0 2 4

Fixed points Y = 0, 2, 4. Slopes j—’; =-1,1,-1

0,2,4 = STABLE, UNSTABLE, STABLE  y(c0) = 0if 5(0) < 2 and y(c0) = 4 if
y(0) > 2.

(a) Draw a function f(y) so that y(t) approaches y(oo) = 3 from every y(0).
Solution The right side f(y) must be zero only at Y = 3 which is STABLE.
Example: % = f(y) = 3 — y has solutions y = 3 + Ce~*.

(b) Draw f(y) so that y(co) = 4 if y(0) > 0 and y(c0) = —2if y(0) < 0.

Solution This requires Y = 4, —2 to be stable and Y = 0 to be unstable.

Example: % = f(y) = —y(y —4)(y+ 2) Notice % =8 at Y =0.

Which exponents n in dy/dt = y™ produce blowup y(T) = oo in a finite time ?
You could separate the equation into dy/y™ = dt and integrate from y(0) = 1.
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d 1-n
Solution /—Z = /dt gives g

=t + C. The right side is zero at a finite time

t = —C'. Then y blows up at that time if n > 1.
If n = 1 the integrals give Iny = ¢ + C and y = ¢/T¢: NO BLOWUP in finite time.
27 Find the steady states of dy/dt = y? — y* and decide whether they are stable, unstable,
or one-sided stable. Draw a stability line to show the final value y(co) from each initial
value y(0).
Solution f(y)=y?>—-y*=0atY =0,1,-1
0 at Y= 0 (Double root of f)
% —2y—4y =-2 at Y= 1 (STABLE)
2 at Y = —1 (UNSTABLE)
Since Y = —1 is unstable, y(¢) must go toward Y = 0 if —1 < y(0) < 0.
Since Y = 1 is stable, y(¢) must go toward Y = 1if 0 < y(0) < 1.
< —— Y
-1 0 1

28 For an autonomous equation y’ = f(y), why is it impossible for y(t) to be increasing
at one time ¢; and decreasing at another time to ?

Solution Reason: The stability line shows a movement of y in one direction, away
from one (unstable) steady state Y and toward another (stable) steady state. “One
direction” means that y(t) is steadily increasing or steadily decreasing.

Problem Set 1.8, page 69

1 Finally we can solve the example dy/dt = 32 in Section 1.1 of this book.

Y t
d
Start from y(0) = 1. Then /—‘g = /dt. Notice the limits on y and ¢. Find y(t).
)
1 0

Solution With those limits, integration gives —% + 1 = t. Then % = 1—tand
y(t) = 135
2 Start the same equation dy/dt = 3> from any value y(0). At what time ¢ does the
solution blow up ? For which starting values y(0) does it never blow up ?
] 1 1 1 1 0
Solution 1 + ——= =t gives —=—=—t and y = 72!( )
y  y(0) vy oy
If y(0) is negative, then 1 — ¢y(0) never touches zero for ¢ > 0: No blowup.

3 Solve dy/dt = a(t)y as a separable equation starting from y(0) = 1, by choosing
f(y) = 1/y. This equation gave the growth factor G(0, t) in Section 1.6.

Solution ¢

/y d_yy: /ta(t)dt gives lny(t) —Iny(0) = /a(t)dt
0

y(0) 0
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t

y(0) =y exp | [ attyit ] = 60,1 y(0)
0

4 Solve these separable equations starting from y(0) = 0:
dy dy
=t b) — =" y"
@ =ty (o) ="y

y ¢
Solution (a) / & = /tdt and Iny—Iny(0) = t2/2 : Theny(t) = y(0) exp(t?/2).
y(0)

1/(1-n)
(b) = ¢myn has/ /tm dt and ”1 = (—}n_ﬁ th)
forn ;é 1.
d t
5 Solve = = a(t)y? = f/( )2 as a separable equation starting from y(0) = 1.
Y
Solution dy _ a(t)y?
dt
y
du . . .
— = [ a(x (u and x are just integration variables)

1

7
1- /a(:c) dx
0
dy

6 The equation U y + t is not separable or exact. But it is linear and y = .

a(x)dx gives y =

LN
e

Solution 'We solve the equation by taking advantage of its linearity:

Given a = 1, the growth factor is e. The source term is ¢. Therefore using equation
(14) gives:

t
y(t) = e'y(0) + /e“ssds =ely(0) —t+et —1.
0

Check: dy/dt = e'y(0) — 1 + €' does equal y + .

d
7 The equation Y _ Y has the solution y = At for every constant A. Find this solution

by separating f = 1/y from g = 1/t. Then integrate dy/y = dt/t. Where does the
constant A come from ?

Solution We use separation of variables to find the constant A
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dy _ dt
Y Tt
t t
IENE
u o X
y(1) 1
In(y) — In(y(1)) = Int
Y
2 =t
y(1)
y=y(1)t

Therefore we find that the constant A is equal to y(1), the initial value.

8 For which number A is @ = ct —ay
dt At + by

equation by finding a suitable function F'(y,t) + C(t).
Solution f(y,t) = At + by and g(y,t) = ct — ay

an exact equation ? For this A, solve the

The equation is exact if : % = —% and A = a.
Yy
We follow the three solution steps for exact equations.

1 Integrate f with respect to y :
1
[ rwtrdy = [Car+byydy = aty+ 00 = Flw.o)

2 Choose C(t) so that %(F(y, )+ C(t) = —g(y,t)
0 1
E(Aty + 5by2 +C(t) = Ay + C'(t) = —ct + ay

1
C'(t) = —ct and C(t) = _§Ct2
3 We therefore have that :

dy _ 9(y,t)
at f(y,t)

is solved by F'(y,t) + C(t) = constant

1 1
Aty + iby2 — §Ct2 = constant
9 Find a function y(t) different from y = ¢ that has dy/dt = y?/t>.
Solution Using separation of variables :
dy/dt = y*/t?
dy/y? = dt/t?

Y t
du dx
PER )
y(to) to

1 1 _ 1 1
Ty Ty T TR

to =1 and y(tg) = 2 give —ﬁ +4=—-1+1landy(t)

Il
—~
~+ |

|
N|=
S~—

i
|
N
| ‘ﬁ
o~
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10 These equations are separable after factoring the right hand sides :

dy + dy
lve — =e¥"t and — =yt +y+t+1.
Solve i and — =yt +y

y t
d
Solution (a) d—z = eYe! and /e_ydy = /etdt
Yo to
—e Y e Y0 = et — gelo
e ¥ =e V0 —el telo

y = —Infe ¥ — et 4 el0]

) dy/dt = (y +1)(t+1)

t

dy /
— = t+1)dt
y+1 ( )

Yo to
1
In(y +1) = In(yo + 1) = 5(t* = t5) + (t —t0) = G
y+1=(yo+1)e”

d d
11 These equations are linear and separable : Solve d—i = (y+4)cost and d—:g = yet.

t

Yy
d
Solution (a)/—y z/costdt
y+4
Yo

to
In(y +4) —In(yg + 4) = sint — sinty
y+4=(yo+4)exp(sint — sinty)

yd ¢
(b)/—y :/etdt
Yy
Yo to

Iny — Inyy = et — eto

y = yoexp(e’ —e')
12 Solve these three separable equations starting from y(0) = 1:

Yy t
d d
Solution (2) 2 = —4ty has / al / —Atdt
dt y
1 0

Iny = —2t% and y = exp(—2t?)

Yy t
d d 11 1
® & — 143 has /—z;:/tdt and ——— + —— = =t
dt Syt 2y* 0 2y5 2
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1 1
N
T
1 -1/ 1/2
y:(_g_tQ) =yo (1 — ¢ 2)
t
dy 4dt

© (1+t)d—y — 4y has / T

lny = 4ln(1 +t)—4In(l) =4In(1 + )
y=(1+0)!
Check (1 +¢)% = 4(1+1)(1 +1)% =4y
Test the exactness condition dg /8y = —38f /0t and solve Problems 13-14.

13 Test the exactness condition 8g/dy = —a8f/0Ot.

Solution (a) 9 = —3t* —2y>  has dg/dy = —4y

=4ty + by? has —df/0y = —4y : EXACT

Step 1: /fdy = / (4ty + 6y°) dy = 2ty® +2y° + C(t)

Step 2: 2 (2ty? + 2y° + C(t)) = 2y% + C'(¢).

This equals —g when C'/(t) = 3t? and C(t) =
Step 3: Solution 2ty? + 2y3 4 3 = constant
Solution (b) g = —1 — ye'¥ has dg/dy = —yte'V — ¥
f =2y +tet¥ has —f /0t = —ytet¥ — et¥ : EXACT

Stepl:/fdy:/(2y—|—tety) dy =y* + e + C(t) = F(y,t)

Step 2: 2 (y2 + e + C(t)) = ye! + C/(t) = —g where C'(t) = 1
Step 3: C’ (t) = 1 gives C(t) = t and the solution is
F(y,t) + C(t) = —yte!¥ — e'¥ + t = constant
14 Test the exactness condition 8g/dy = —a8f/0Ot.
. d
Solution (a)g =4t —y and f =1 — 6y have a—g -1= at : EXACT

Stepl:/fdy:ty—3y2+0(t)

Step2: 2 (ty —3y*> + C(t)) =y + C'(t) = —g = y — 4t when C(t) = —2¢>
Step 3: Solutlon ty — 3y? — 2t% = constant
Solution (b) g = —3t*—2y* and f = 4ty+6y? have 52 = —dy = —3: EXACT

Step 1: /fdy = / (4ty + 6y°) dy = 2ty + 2y° + C(t)
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15

16

17

Step2: 2 (2ty? +2y° + C(t)) = 2y> + C'(t) = —g = 3t> + 2y when O’ = 3t?
and C = t3
Step 3: Solution 2ty? + 2y 4 ¢t3 = constant

dy 2

. .o d .
Show that — = —2yT is exact but the same equation Y — Y s not exact. Solve

dt ! dt 2t
both equations. (This problem suggests that many equations become exact when mul-

tiplied by an integrating factor.)
; _ 2 — 99 _ _ _9f.
Solution g = —y* and f = 2ty have a—z = —2y = —5; : EXACT
— — (o of
g= —yand f = 2t have 8—3 NOT EQUAL TO —5;
Solve the second form which is SEPARABLE

d dt 1
/Ey:/_ﬂ gives 1ny:—§lnt—|—C

Ct=1/2 is the same as y = ¢t~ /2.

Theny =e
The same solution must come from Steps 1, 2, 3 using the exact form.

Exactness is really the condition to solve two equations with the same function H (¢, y) :
oH 0H 0 0
e = f(t,y) and i —g(t,y) can be solved if ('“)_{ = —a—z.

Take the ¢ derivative of 0H /0y and the y derivative of H /0t to show that exactness
is necessary. It is also sufficient to guarantee that a solution H will exist.

Solution The point is to see the underlying idea of exactness.

OH 0’H  of
OH 0*H dg
It 50 = ~9y) then o = oy

The cross derivatives of H are always equal. IF a function H solves both equations

then % must equal — g—z. So behind every exact equation is a function f : exactness is

a necessary and also sufficient to find H with 0H/0y = f and 0H/0t = —g.

d
The linear equation W _ aty + g is not exact or separable. Multiply by the integrating

at dt

factor e~/ and solve the equation starting from y(0).

Solution This problem just recalls the idea of an integrating factor :

d 1
For d—z = aty + ¢ the factor is P = exp (— /at dt) = exp (—Eaﬁ).

Then P (% - aty) agrees with (Py)’ = P% + %y

So the original equation multiplied by P is 4 (Py) = Pq.

¢
Integrate both sides P(t)y(t) — P(0)y(0) = /P(t)q dt. Divide by P(¢) to find y(t).
0
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Second order equations F(t,y,y’,y’’) = 0 involve the second derivative y’’.

This reduces to a first order equation for y’ (not y) in two important cases:

I. When y is missing in ', sety’ = v and y” = v’. Then F(t,v,v’) = 0.
dv  dvdy = dv ( dv)

II. When ¢ is missing in F, set y”/ = T dea I Then F Y 0,0
Y Y Y

See the website for reduction of order when one solution y(t) is known.

18 (y is missing) Solve these differential equations for v = y’ with v(0) = 1. Then
solve for y with y(0) = 0.

Solution (a)y” +y’ =0.Sety’ =v. Thenv’ 4+ v = 0 gives v(t) = Ce ™",
Now solve y’ =v =Ce™ " tofind y = —Ce~t + D.
Solution (b) 2ty” —y’ = 0. Sety’ = v. Then 2tv’ — v = 0 is solved by

d dt
/—v:/%andlnvzlnﬂ—i—Candv:cﬁ. Nowsolvey/:v:cx/ftoﬁnd
v

Yy = clt3/2 + co.

19 Both y and t are missing iny”’ = (y’)2. Setv = y’ and go two ways:

d
I. Solve d_: =v?tofindv = : as in Section 1.1.

dy 1-6)=2 1

Th lve = =v = tofindy = ——— + — with = 0.
ensolve - =v = r— tofindy ) —|—2W1 y(0)=0

d d
IL Solve v 2% = v2 or & = v to find v = €Y.

Y Y

d _

Then d_i =v(y) = €Y gives /e Ydy = /dt satisfying v(0) = 1,4(0) = 0

and —e™Y = ¢ — 1: not the same solution as part I (??)

20 An autonomous equation y’ = f(y) has no terms that contain ¢ (¢ is missing).

Explain why every autonomous equation is separable. A non-autonomous equation
could be separable or not. For a linear equation we usually say LTI (linear time-
invariant ) when it is autonomous: coefficients are constant, not varying with ¢.

d
Solution Every autonomous equation separates into / % = / dt.
Y

Linear equations can be % = a(t)y : Non-autonomous
LTI equations are % = ay (linear and also @ is time-invariant = autonomous).

21 my” + ky = 0 is a highly important LTI equation. Two solutions are coswt and
sinwt when w? = k/m. Solve differently by reducing to a first order equation for
y' = dy/dt = v withy” = v dv/dy as above:

d 1 1
mvd—v + ky = 0 integrates to §mv2 + iky2 = constant F.
Y
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22

For a mass on a spring, kinetic energy %va plus potential energy %kyQ is a con-
stant energy F2. What is ¥ when y = coswt? What integral solves the separable
m(y")? = 2E — ky? ? I would not solve the linear oscillation equation this way.

Solution Withy' =vandy” = vg—z, the equation my” + ky = 0 becomes
mvg—z + ky = 0. This is nonlinear but separable. Integrate mv dv = —ky dy to get

1 1
Emv2 + iky2 = constant E [Conservation of Energy].

If y = cos(wt) thenv = y/ = —wsin(wt) and E is 1m cos?(wt) + £ Kw? sin®(wt).

1/2
The separable equation m(y’)? = 2E—ky? could be solved by (%W) dy =

dt. The integral could lead to cos™! y = wt and y = cos wt.

my” + ksiny = 0 is the nonlinear oscillation equation : not so simple. Reduce to a
first order equation as in Problem 21 :

d 1
mvd—v + ksiny = 0 integrates to imv2 — kcosy = constant E.
Y

With v = dy/dt what impossible integral is needed for this first order separable equa-
tion?  Actually that integral gives the period of a nonlinear pendulum—this
integral is extremely important and well studied even if impossible.

2
Solution Take square roots in 3m ( %) = Kcosy + E.
1/2
m/2
Th teinto | ———— dy = dt.
enseparaemo[KCOSy_i_E} Yy

An unpleasant integral but important for nonlinear oscillation. Chapter 1 is ending
with an example that shows the reality of nonlinear differential equations: Numerical
solutions possible, elementary formulas are often impossible.
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Problem Set 2.1, page 79

1

Find a cosine and a sine that solve d?y/dt?> = —9y. This is a second order equation
so we expect two constants C and D (from integrating twice) :

Simple harmonic motion y(t) = C cos wt+ D sin wt. Whatisw?

If the system starts from rest (this means dy/dt = 0 at ¢ = 0), which constant C or D
will be zero ?

Solution Letting y(t) = C cos(wt) + Dsin(wt):
d2
Wg + 9y = —w?C cos(wt) + 9C cos(wt) — w? sin(wt) + 9 sin(wt) = 0

w=3
Differentiating y(¢) and equating to zero at time ¢t = 0 gives us:
y'(t) = —Cwsin(wt) + Dw cos(wt) = 0
Att=0:Dw=0—-D=0

In Problem 1, which C' and D will give the starting values y(0) = 0 and ¢’ (0) = 1?
Solution y(0) = C cos(w0) + D sin(w0) =0 gives C =0
Differentiating y(¢) and equating to 1 at time ¢ = 0 gives us:

1 1

"0)=Dw=1and D=~ = -

y'(0) w an =3

Draw Figure 2.3 to show simple harmonic motion y = A cos (wt — «) with phases
a=m7/3anda = —7/2.

Solution Notice that A is the maximum height ymax. Att = 0weseey = Acos(—a) =
Acosa.

Suppose the circle in Figure 2.4 has radius 3 and circular frequency f = 60 Hertz.
If the moving point starts at the angle —45°, find its z-coordinate A cos (wt — «). The
phase lag is & = 45°. When does the point first hit the = axis ?

Solution f = w/2m = 60 Hertz is equivalent to w = 1207 radians per second.
With magnitude A = 3 and « = —45° = —n/4 radians, A cos(wt — ) becomes
3 cos(1207t + 7/4). The point going around the circle hits the z-axis when that angle
is a multiple of m. The first hit occurs at 1207t + /4 = 7 and 120t = 3/4 and
t =3/480 = 1/160.

If you drive at 60 miles per hour on a circular track with radius R = 3 miles, what is
the time 7" for one complete circuit ? Your circular frequency is f = and your
angular frequency is w = (with what units 7). The period is 7.

Solution The distance around a circle of radius R = 3 miles is 2rR = 67 miles.
The time T for a complete circuit at 60 miles per hour is 7' = 67/60 = 7 /10 hours.
From T = 1/f = 27 /w the circular frequency is f = 10/7 cycles per hour and
w =27 f = 27 /T = 20 radians per hour.
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6 The total energy E in the oscillating spring-mass system is

dy\*> k
a) oy
Compute £ when y = C cos wt + D sin wt. The energy is constant !

Solution y = Ccoswt + Dsinwt has dy/dt = —wCsinwt + wD coswt.

E = Kkinetic energy in mass + potential energy in spring = % <

The total energy is E = $mw?(C?sin® wt — 20D sinwt coswt + D? cos? wt)
+ 1k(C? cos® wt + 2CDsinwt coswt + D? sin® wt).
When w = /k/m and mw? = k, use sin® wt + cos? wt = 1 to find

1 1
E = §k (C? 4+ D?) (sin® wt + cos® wt) = §k(02 + D?) = constant.

7 Another way to show that the total energy E is constant :
Multiply my’” + ky = 0 by y’. Then integrate my’y” and kyy’.
Solution (my" + ky)y’ = 0 is the same as %(%m(y/2 + $ky?) = 0.

This says that E = %my/2 + %k:y2 is constant.
8 A forced oscillation has another term in the equation and A cos wt in the solution :
d2
Wg—i—ély:Fcos wt has y=C cos 2t+ D sin 2t + A cos wt.
(a) Substitute y into the equation to see how C and D disappear (they give y,,). Find
the forced amplitude A in the particular solution y, = A cos wt.

(b) In case w = 2 (forcing frequency = natural frequency), what answer does your
formula give for A ? The solution formula for y breaks down in this case.

Solution (a) The frequency w = 2 gives the null solutions y = C cos 2t + Dsin 2t :
The choice of A gives a particular solution y, = A coswt. Substitute this y,, :
Yo+ 4y, = (—w? +4)Acoswt = Fcoswt and A = L

4—w?’
(b) w = 2 leads to A = oo and that solution ¥, breaks down : resonance. (The correct
yp Will include a factor ¢)
9 Following Pr(2)blem 8, write down the complete solution y,, + ¥, to the equation
d
md—g + ky = F cos wt with w # w, = \/k/m (no resonance).
The answer ythas free constants C' and D to match y(0) and y'(0) (A is fixed by F).

Solution y =y, + yp = C cos (1/%15) + Dsin (1/%15) + k_—ﬁwg cos wt.

10 Suppose Newton’s Law F' = ma has the force F' in the same direction as a :
my” = +ky including y” = 4y.
Find two possible choices of s in the exponential solutions y = e*‘. The solution is not
sinusoidal and s is real and the oscillations are gone. Now ¥ is unstable.

Solution The exponentsin y,, = Ce'V k/m 4 De=tVk/™ are now real. Those numbers
++/k/m come from substituting y = e** into the differential equation :

my” — ky = (ms* — k)e*® =0 when s = \/k/m and s = —\/k/m.
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11 Here is a fourth order equation: d*y/dt* = 16y. Find four values of s that give
exponential solutions y = e%. You could expect four initial conditions on y:

y(0) is given along with what three other conditions ?

Solution Substitute y = e** in the differential equation to find s* = 16. This has four
solutions : s = 2, —2, 2i, —24. The constants in y = c;e2 + coe 2t + c3e? + c e 2%
are determined by the initial values y(0),y’(0),y"(0),y"(0).

12 To find a particular solution to y” + 9y = e, 1 would look for a multiple
yp(t) = Ye of the forcing function. What is that number Y ? When does your
formula give Y = oo ? (Resonance needs a new formula for Y'.)

Solution Substitute y, = Ve to find (¢ + 9)Ye® = e and Y = 1/(c* + 9). This
is called the “exponential response function” in Section 2.4. The resonant case Y = oo
occurrs when ¢ + 9 = 0 or ¢ = £3i. Then a new formula for y(¢) involves tet as
well as e,

13 In a particular solution y = Ae™! to y” + 9y = ™!, what is the amplitude A ?
The formula blows up when the forcing frequency w = what natural frequency ?

Solution Substitute y, = Ae™" to find 2w’ Ae™! + 9Ae™! = ¢! With i? = —1
this gives A = 1/(9 — w?). This blows up when 9 — w? = 0 at the natural frequency
wn = 3.

14 If y(0) > 0 and ¥’ (0) < 0, does « fall between /2 and 7 or between 37 /2 and 27 ?
If you plot the vector from (0, 0) to (y(0),y’(0)/w), its angle is .

Solution 1f y(0) > 0 and y'(0) < O then « falls between 37/2 and 2. This occurs
because the vector from (0,0) to (y(0),y’(0)/w) is in the fourth quadrant.

15 Find a point on the sine curve in Figure 2.1 where y > 0 but v = ¢’ < 0 and also
a = y" < 0. The curve is sloping down and bending down.

Find a point where y < 0 but 3y’ > 0 and y”/ > 0. The point is below the x-axis but the
curve is sloping UP and bending UP.

Solution For 5 < t < m (90° to 180°), y(t) = sint > 0 but y'(¢t) < 0 and
y"(t) <O0.

Note that for 2F < t < 2m, y(¢) < 0 buty’(t) > 0 and y”(t) > 0. The point is below

the z-axis but the bold sine curve is sloping upwards and bending upwards.
16 (a) Solve 3" + 100y = 0 starting from y(0) = 1 and y’(0) = 10. (This is y,,.)
(b) Solve " + 100y = coswt with y(0) = 0 and 3'(0) = 0. (This can be y,.)

Solution (a) Substitute y = ¢

y"” +100y =0
c2ect +100et =0
c? = —100
c==10¢

y = cellit 4 de—10it
This can be rewritten in terms of sines and cosines of 10¢. Introducing the initial con-
ditions we have :
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y(t) = Acos(10t) + Bsin(10t)
y(0)=A=1
y'(0)=10B=10— B =1

y(t) = sin(10t) + cos(10t)
(b) As in equation (11) we assume the particular solution is

cos(wt)

1
v = 50— w2

Adding in the null solution and substituting in the initial conditions gives :

. 1
y(t) = Bsin(10t) + A cos(10t) + %007_(02 cos(wt)
y(0) = Bsni(O) + Acos(0) + 100 =2 cos(0) =0
A4=""w%
w4 — 100 w
/ _ _ . = .
y'(0) = 10B cos(0) — 10A sin(0) 100 =2 sin(0)

=10B=0—-B=0
Therefore the solution is:

y(t) (cos(wt) — cos(10t))

~ 100 — w?
17 Find a particular solution y, = Rcos(wt — @) to y” + 100y = coswt — sinwt.

Solution

Right side : coswt — sinwt = V2 cos (wt +

N——

Diff. Eqn : —w?R cos(wt — a) + 100 R cos(wt — o) = /2 cos (wt +

PR
N—

(100 — w?)R cos(wt — a) = /2 cos (wt +

V2
100 — w?

N——

Then a:—g and R =

18 Simple harmonic motion also comes from a linear pendulum (like a grandfather
clock). At time ¢, the height is A cos wt. What is the frequency w if the pendulum
comes back to the start after 1 second ? The period does not depend on the amplitude
(a large clock or a small metronome or the movement in a watch can all have T' = 1).

Solution The equation describing Simple Harmonic Motion is :

x(t) = Acos(wt — ¢)

If the period is 7' = 1 second, the frequency is f = 1 Hertz or w = 27 radians per
second.
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19 If the phase lag is «, what is the time lag in graphing cos(wt — ) ?

cos(wt — a) = cos (w (t — 2))

w

Solution

Therefore the time lag is «/w.

20 What is the response y(t) to a delayed impulse if my” + ky = 6(t — T) ?
Solution Similar to equation (15) we have

sin(wy,(t = 1T))

MWy,

Yp(t) =
The conditions at time 7" are:
1
/
yP(T) =0 and yp(T) = E
Note that y,, starts from time ¢ = T". We have y,, = 0.
t
21 (Good challenge) Show thaty = [ g(t — s)f(s)ds has my” + ky = f(t).
0
t
1Whyisy’ = [g'(t —s)f(s)ds+ g(0)f(t) ? Notice the two t’s in y.
0
Solution 1 The variable ¢ appears twice in the formula for y, so the derivative dy/dt
has two terms (called the Leibniz rule). One term is the value of g(t — s) f(s) at the

upper limit s = ¢; this is from the Fundamental Theorem of Calculus. Since ¢ also
appears in the quantity g(t — s) f(s), its derivative g/(t — s) f(s) also appears in 3.

t
2 Using g(0) = 0, explainwhy y” = [ ¢”(t — s)f(s) ds + ¢'(0) f(t).
0 t
Solution 2 Since g(0) = 0, part 1 produced y' = [g¢’(t — s)f(s)ds. Using the
0

Leibniz rule again (now on y'), we get the two terms in y”.
3 Now use ¢/(0) = 1/mand mg” + kg = 0 to confirm my” + ky = f(t).

t t
Solution3 my"+ky =m <fg”(t —s)f(s)ds+ g/(O)f(t)) +k (fg(t —35)f(s) ds) =
0 0
m(1/m)f(t). The integrals cancelled because mg” + kg = 0.
22 With f = 1 (direct current has w = 0) verify that my” + ky = 1 for this y :

t

Step response y(t) = /
0

oo (t — 1 1
sinw (t — s) 1ds =y, +y, equals — — — coswpt.
mw, k k

Solution This y(t) certainly solves my” + ky = 1. Comment: That formula for
y(t) fits with the usual [ g(t — s)f(s)ds when f = 1 and the impulse response is
g(t) = (sinwyt)/mw, in equation (15). And always this step response should be the
integral of the impulse response. The natural frequency is w,, = k/m:
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23

24

25

mwy, mw?2 0o k k

= [IenlZD) gy corlenlt 2 9)
0

Notice that without damping resistance, the step response oscillates forever—not
approaching the steady state yoo = 1/k.

(Recommended) For the equation d?y/dt> = 0 find the null solution. Then for
d*g/dt? = 6(t) find the fundamental solution (start the null solution with g(0) = 0
and g/(0) = 1). Fory” = f(¢t) find the particular solution using formula (16).
Solution

d2y .

72 =0 gives y, = A+ Bt.

We get the fundamental solution g(t) = ¢ for ¢ > 0 by starting the null solution with
g(0) =0and g’(0) = 1. Then g(¢) = t and g(t — s) = t — s. This gives the particular
solution for d?y/dt? = f(t) using formula (16):

y(t) = / (t — 5)f(s) ds.

For the equation d?y/dt?> = e find a particular solution y = Y (w)e®*. Then Y (w)
is the frequency response. Note the “resonance” when w = 0 with the null solution
UYn = 1.
Solution Substitute y = Ye™?:
_Y(w)w26iwt — eiwt

Y(w) = —1/w?

Yp(t)p = " Jw?
The null solution to y” = 0is y(t), = At + B.

When A =0 and B = 1, we get y, = 1. This causes resonance at w = 0, the solution
formula y,, = ¢! /w? breaks down.

Find a particular solution Ye™! to my” — ky = e™!. The equation has —ky
instead of ky. What is the frequency response Y (w) ? For which w is Y infinite ?
Solution Substitute y(t) = Ye™! in my” — ky = e™?
Then — Ymw?e™t — kY et = it
~Ymw? -Yk=1
1
Y(w)=—=
() k + mw?
Y is infinite for w = 74/ % No resonance at real frequencies w, because the equation
has —ky instead of ky.
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Problem Set 2.2, page 87

1 Mark the numbers s; = 2417 and s = 1—27 as points in the complex plane. (The plane
has a real axis and an imaginary axis.) Then mark the sum s; + s and the difference
S1 — Sao.

Solution The sumis s; + so = 3 — 7. The differenceis s; — sy = 1 + 3i.

2 Multiply s1 = 2 + i times s = 1 — 24. Check absolute values: |s1]||s2| = |s12].
Solution The product (2 + i)(1 — 2i) is 2 + i — 4i — 2i®> = 4 — 3i. The absolute
values of 2 + i and 1 — 2i are v/22 + 12 = /5. The product 4 — 3i has absolute value
V42 + 32 = 5, agreeing with (v/5)(v/5).

3 Find the real and imaginary parts of 1/(2 + ). Multiply by (2 —i)/(2 —4):

1 2—1 2—1

244 2—i |2+i]2

Solution 1 2—1 2—1 1 z _ 9
- - = In general — = — because 2Z = |z|°.
241 2-—1 5 z |z|2

4 Triple angles ~ Multiply equation (2.10) by another e? = cos 6 + isin 6 to find
formulas for cos 36 and sin 36.

Solution Equation (10) is (cos  + isin#)? = cos 26 + i sin 26. Multiply by another
cosf +isinf:

(cosf +isinf)® = cosf cos 26 + i sin 6 cos 20 + i cos 0 sin 20 — sin O sin 20
= cos(f + 20) + isin(f + 20) by sum formulas
= cos 360 + isin 36

Real part cos 30 = cos® # — 3 cos sin? 6 Imaginary part sin 30 = 3 cos? #sin6 —
sin’0.

5 Addition formulas ~ Multiply e? = cos §+i sin 6 times e’ = cos ¢+isin ¢ to get
e(0+9) Tts real part is cos ( + ¢) = cos 6 cos ¢ — sin @ sin ¢. What is its imaginary
part sin (6 + ¢) ?

Solution The imaginary part of (cos  + i sin 6)(cos ¢ + i sin ¢) is the coeffieient of  :
sin 6 cos ¢ + cos 0 sin ¢ must equal sin(6 + ¢).

6 Find the real part and the imaginary part of each cube root of 1. Show directly that the
three roots add to zero, as equation (2.11) predicts.

Solution The cube roots of 1 are at angles 0, 27/3, 47 /3 (or 0°,120°,240°). They
are equally spaced on the unit circle (absolute value 1). The three roots are 1 and

2mi/3 _ og 2T 4 jsin 2T — 1 4 ;3
e =cosF +isinS = —35 + 15
4mi/3 _ 4m P i AT 1 /3
e =cosF +isin g = —5 — 15

The sum 1 — % + z@ - % - z@ equals zero. Always: n roots of 2 = 1 add to zero.
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7

10

11

The three cube roots of 1 are z and 22 and 1, when z = e27/3, What are the three
cube roots of 8 and the three cube roots of ¢? (The angle for ¢ is 90° or 7/2, so
the angle for one of its cube roots will be . The roots are spaced by 120°.)

Solution The three cube roots of 8 are 2 and 2e2™/3 = —1 4+ /3i and 2e4™/3 =
—1—+/3i. (They also add to zero.)
/2 /6

5mi/6 97i/6

The three cube roots of 1 = ¢ are e and e and e still add to zero.

(a) The number i is equal to e™/2. Then its ith power i¢ comes out equal to

a real number, using the fact that (e®)? = e¢*. What is that real number ° ?

(b) e™/2 is also equal to €°™/2.  Increasing the angle by 27 does not
change e? — it comes around a full circle and back to 4. Then i’ has another real

value (e77%/2)? = ¢=57/2, What are all the possible values of i’ ?
Solution (a) The i*" power of i = e™/? is i = (e™/2)! = ¢~™/2 by the ordinary rule
for exponents. Surprising that ¢* is a real number.

5

57i/2 gince 5F is a full rotation from

jus

(b) 7 also equals e T.So i’ also equals (e7™/2)¢ =
e~5"/2__and infinitely many other possibilities e~ (>7+17/2 for every whole number
n. We are on a “Riemann surface” with an infinity of layers.

The numbers s = 3 + ¢ and 5 = 3 — 7 are complex conjugates. Find their sum
s +3 = —B and their product (s)(3) = C. Then show that s> + Bs + C = 0
and also 52 4+ B3 + C = 0. Those numbers s and 5 are the two roots of the quadratic
equation z° + Bz + C' = 0.

Solution —B=s5+35=3+i)+((3—i)=6. C=(s)(3) = (3+14)(3—1)=10.

Then s and 5 are the two roots of 2> — Bz +C = 22 — 62 + 10 = 0. The usual
quadratic formula gives $£v30=40 — 642 _ 3.4 ;

The numbers s = a + iw and 5 = a — iw are complex conjugates. Find their sum
s+3% = — B and their product (s)(3) = C. Then show that s> + Bs + C = 0. The two
solutions of 22 + Bz + C = 0 are s and 3.

Solution —B = (a +iw) + (a —iw) = 2a C = (a +iw)(a —iw) = a? + iw?.
Then the roots of 22 — 2ax + a? + w? = 0 are z = M =a+iw.

(a) Find the numbers (1 4 )% and (1 + 7)®.

(b) Find the polar form re® of (1 4 iv/3)/(v/3 + ).

Solution (a) (1 +4)* = (V2e!™/")* = (1/2)%e'™ = —4

(1+14)® = square of (1 +i)* = (square of —4) = 16.

(b) (1 4+ iv3)(v/3 4+ i) = V3 + 3i + i — /3 = 44. Dividing by (2)(2) = 4 this is
(cos@ +isin@)(sin@ +icosf) = i(cos? + sin® ) = 3.

The unexpected part is sin 6 + i cos @ = cos(Z — 0) + isin(3 — 0) = e¥(™/2-9),

Then the product of €*? and e*("/29) is ¢™/2 which equals ¢ as above.
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12 The number z = ¢>™/™ solves 2" = 1. The number Z = ¢2™/2" solves Z?" = 1.
How is z related to Z ? (This plays a big part in the Fast Fourier Transform.)

Solution 1If Z = €>7/2" then Z? = 2™/ = 2. The square of the 2n th root is the
n th root. The angle for Z is half the angle for z.

The Fast Fourier Transform connects the transform at level 2n to the transform at level
n (and on down to n/2 and n/4 and eventually to 1, if these numbers are powers of 2).

13 (a) If you know € and e~*?, how can you find sin 0 ?
(b) Find all angles # with ¢’ = —1, and all angles ¢ with e'® = i.
Solution (a) sinf = %[(cos 6 + isinf) — (cos — isinf)] = = (e — e=%).
(b) The angles with ¢? = —1 are # = 7 + (any multiple of 27) = (2n + 1).
The angles with ¢’ = 1 are ¢ = any multiple of 27 = 2n.

14 Locate all these points on one complex plane:

1
. . 2 .
(a) 2+ (b) (2+1) (c) O @ |2 +1]

Solution 2 + i is in quadrant 1. (2 4 4) is in quadrant 2. 31 is in quadrant 4.
|2 + i| = /5 is on the positive real axis.

15 Find the absolute values r = |z| of these four numbers. If 6 is the angle for 6 + 8¢, what
are the angles for these four numbers ?

@ 6-8 (b (6-8) (o) ﬁ ) 8i+6
Solution The absolute values are 10 and 100 and % and 10.
The angles are 2 — 6 (or just —6), 27 — 26 (or just —26), 6, and 6.
16 What are the real and imaginary parts of %+ ™ and @ * i 9
Solution e4ti™ = e%'™ = —e~%(real) et = e cosw + ie sinw
17 (a) If |s| = 2 and |z| = 3, what are the absolute values of sz and s/z ?
(b) Find upper and lower bounds in L < |s + z| < U. When does |s + z| = U ?
Solution (a)|sz| =|s| |z| =6 ls/z] =1s|/|z] = 2/3.
(b) The bestboundsare L =1andU =5:1 < |s+ z| < 5.
That bound 5 is reached when s and z have the same angle 6.
18 (a) Where is the product (sin 6 + ¢ cos 6)(cos 6 + i sin #) in the complex plane ?
(b) Find the absolute value |S| and the polar angle ¢ for S = sin 6 4 4 cos 6.

This is my favorite problem, because S combines cos f and sin # in a new way.
To find ¢, you could plot S or add angles in the multiplication of part (a).

Solution (sin @i cos §)(cos f-+isinf) = sin @ cos O-+i(sin? f+cos? #)—cos f sin § =
2. The product is imaginary. The angles must add to 90 °.
Since cosf + isind is at angle § and the product 7 is at angle 7/2, the first factor

sin @ + icos @ must be ¢'® at angle ¢ = 3 — 0. The absolute value is 1. See also
Problem 2.2.11.
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19

20

21

22

23

24

Draw the spirals (L =9t and e(2 = 20)t Do those follow the same curves ? Do they
go clockwise or anticlockwise ? When the first one reaches the negative x-axis, what is
the time 7" ? What point has the second one reached at that time ?

Solution The spiral e(!=9* = ete~' starts at 1 when t = 0. As t increases, it goes

outward (absolute value e’) and clockwise (_the angle is —t). It reaches the negative X
axis when t = 7. The second spiral e(>~2)? is the same curve but traveled twice as
fast. Its angle —2¢ reaches —7 (the X -axis) at time ¢t = 7 /2.

The solution to d?y/dt? = —y is y = cos t if the initial conditions are y(0) =

and y'(0) = . The solution is y = sin ¢ when y(0) = _ and y'(0) =
. Write each of those solutions in the form c; e + c9e™%, to see that real

solutions can come from complex ¢; and ca.

Solution y = cost has y(0) = 1 and y’(0) = 0. y = sin¢ has y(0) = 0 and

y’(0) = 1. Those solutions are cost = (e + e~*)/2 and sint = (e — e~ /2i.

The complete solution to y.” = —yisy = Cicost + Cysint. The same complete

solution is Cy(e® + e )/2 + Ca(e™ — e )/2i = c1e™ + cpe™™ with

c1 = (Cl + 02)/2 and Cy = (Cl — Cg)/22

Suppose y(t) = e~ tetl solves y” + By + Cy = 0. What are B and C'? 1If this

equation is solved by y = 3 what are B and C'?

Solution 1f y = e solves y” + By’ + Cy = 0 then substituting €' shows that
52 4+ Bs + C = 0. This problem has s = —1 + i. Then the other root is the conjugate

5 = —1 — ¢ (always assuming B and C are real numbers). The sum —2 is —B. The
product (s)(3) = 2is C. So the underlying equation is " + 2y’ + 2y = 0.
From the multiplication A =B _ ei(A - B), find the “subtraction formulas”

for cos (A — B) and sin (A — B).

Solution Start with the fact that e*4e~"B = ¢/(A=B)_ Use Euler’s formula:
(cos A +isin A)(cos B — isin B) = cos(A — B) +isin(A — B).

Compare real parts: cos A cos B + sin Asin B = cos(A — B).

Compare imaginary parts: sin A cos B — cos Asin B = sin(A — B).

(a) If r and R are the absolute values of s and S, show that r R is the absolute value of
sS. (Hint: Polar form!)

(b) If 5 and S are the complex conjugates of s and S, show that 55 is the complex
conjugate of sS. (Polar form!)

Solution (a) Given: s = re and S = Re™ for some angles # and ¢. Then
sS = rRe*®+?) . The absolute value of sS is rR = (absolute value of s)
(absolute value of .5).

(b) Now 5 = re~* and S = Re~*¢. Multiply to get 55 = rRe~*(®+9)_ This is the
complex conjugate of 55 = rRe*(?+%) in part (a).

Suppose a complex number s solves a real equation s + As? + Bs + C = 0

(with A, B, C real). Why does the complex conjugate 5 also solve this equation ?
“Complex solutions to real equations come in conjugate pairs s and 3.”

Solution The complex conjugate of 53+ As?+ Bs+C = 0is 5%+ A5+ B5+C = 0.
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We took the conjugate of every term using the fact that A, B, C' are real. (The conju-
gates of s and s® are 52 and 3° by Problem 23).

For quadratic equations 22 + Bx + C = 0, the formula (—B + /B2 —4C)/2 is
producing complex conjugates from = when B? — 4C is negative.

25 (a) If two complex numbers add to s + S = 6 and multiply to sS = 10, what are s and
S ? (They are complex conjugates.)

(b) If two numbers add to s + .S = 6 and multiply to sS = —16, what are s and
S ?7 (Now they are real.)

Solution (a) s and S must have the same real part 3. They each have magnitude v/10.
So sand S are 3+ ¢ and 3 — i.

(b)If s+ S = 6 and sS = —16 then s and S are the roots of 2 — 6z — 16 = 0. Factor
into (z — 8)(z 4+ 2) = 0 to see that s and S are 8 and —2. (Not complex conjugates! In
this example B2 — 4AC = 36 + 64 = 100 and the quadratic has real roots 8 and —2.)

26 If two numbers s and S add to s + S = —B and multiply to sS = C, show that s and
S solve the quadratic equation s? + Bs + C' = 0.
Solution Just check that (x — s)(x — S) = 22 + Bz + C. The left side is
2? — (s + S)z + sS. Then s + S agrees with —B and sS matches C.

27 Find three solutions to s3 = —8i and plot the three points in the complex plane. What
is the sum of the three solutions ?

Solution The three solutions have the same absolute value 2. Their angles are sepa-
rated by 120 ° = 27r/3 radians = 47 /6 radians. The first angle is § = —30° = —7 /6
radians (so that 30 = —90 ° = —7/2 radians matches —).
The answers are 2e~ /6, 2¢37%/6_2¢77/6 They add to 0.

28 (a) For which complex numbers s = a + iw does e approach 0 as ¢ — o0 ?
Those numbers s fill which “half—plane” in the complex plane ?

(b) For which complex numbers s = a + iw does s™ approach 0 as n — o0?
Those numbers s fill which part of the complex plane ? Not a half-plane !

Solution (a) If s = a + iw, the absolute value of e*? is e*. This approaches 0 if a is
negative. The numbers s = a + iw with negative a fill the left half-plane.

(b) This part asks about the powers s™ instead of e%t. Powers of s approach zero if
|s| < 1. This is the same as a® 4+ w? < 1. These complex numbers fill the inside of
the unit circle.

Problem Set 2.3, page 101

1 Substitute y = e and solve the characteristic equation for s :
(@2y”" +8y'+6y=0 (O y" —2y" +y=0.
Solution (a) 2s®> + 8s + 6 factors into 2(s + 3)(s + 1) so the roots are s = —3 and
s = —1. The null solutions are y = e~%* and y = e~* (and any combination).
(b) s* — 252 + 1 factors into (s> — 1)2 which is (s — 1)2(s + 1)2. The roots are
s = 1,1, —1,—1. The null solutions are y = cie’ + cote! + c3e™t + cqyte™t. (The
factor ¢ enters for double roots.)
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2 Substitute y = e* and solve the characteristic equation for s = a + iw:
@y"+2y +5y=0  (Oy"" +2y" +y=0

Solution (a) s> +2s+5 = 0gives s = (—2+/4—-20)/2 = -1+ 2i = a + iw.
Then y = e~ * cos 2t and y = e~ ! sin 2¢ solve the (null) equation.

(b) s* +2s* + 1 = 0 factors into (s + 1)(s* + 1) = 0. The roots are 4,4, —i, —i.
The solutions are y = c1e®® + cate™ + c3e™* + c4te~*. They can also be written as
y = Cypcost+ Cytcost + Cssint + Cytsint.

3 Which second order equation is solved by 3y = c1e ™2 + coe ™%t ? Ory = te® ?

Solution 1If s = —2 and s = 4 are the exponents, the characteristic equation must be
52 + 65 + 8 = 0 coming from y” + 6y’ + 8y = 0.

Ify= te® is a solution, then 5 is a double root. The characteristic equation must be
(s —5)% = 52 — 10s + 25 = 0 coming from y” — 10y’ + 25y = 0.

4 Which second order equation has solutions y = c1e~2* cos 3t 4 coe™ 2! sin 3t ?

Solution Those sine/cosine solutions combine to give e ~2!¢3* and e~2'e~3%. Then
8 = —2 =+ 3i. The sum is —4 and 4, the product is 2% + 32 = 13.

The equation mustbe y’/ — 4y’ 4+ 13y = 0.

5 Which numbers B give (under) (critical) (over) damping in 4y” + By’ + 16y = 0?

Solution The roots of 4s®> + Bs + 16 are s = (—B £ /B2 — 162)/2. We have
underdamping for B? > 162 (real roots); critical damping for B2 = 162 (double root);
overdamping for B2 < 162 (complex roots).

6 If you want oscillation from my” + by’ + ky = 0, then b must stay below .

Solution Oscillations mean underdamping. We need b? < 4km.
Problems 7-16 are about the equation As? + Bs + C = 0 and the roots s1, s2.
7 The roots s and sy satisfy s1 + s3 = —2p = —B/2A and 5152 = w2 = C'/A. Show
this two ways:
(a) Start from As? + Bs + C = A(s — s1)(s — s2). Multiply to see 5152 and 51 + 2.

(b) Start from s; = —p + twq, S2 = —p — Wy
Solution (a)Match As?+ Bs+C'to A(s—s1)(s—s2) = As® — A(s1+52)s+ As1 2.
Then —B = A(s1 + s2) and C = Asys2. Error in problem: s; + so equals —B/A
and not —B/2A.
(b) s1 + s2 = (—p +iwq) + (—p —iwg) = —2p = —B/A. Then p = B/2A.

8 Find s and y at the bottom point of the graph of y = As? + Bs + C. At that minimum
point s = Spin and ¥ = Ymin, the slope is dy/ds = 0.

Solution The minimum of As? + Bs + C is located by derivative = 2As + B = 0.
Then s = —B/2A (which is p). The value of As? + Bs + C' at that minimum point is
A(B?/4A%) — (B?/2A) + C = —(B?/4A) + C = (4AC — B?)/4A.

Notice: If B2 < 4AC the minimum is > 0. Then As? + Bs + C # 0 for real s.
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9 The parabolas in Figure 2.10 show how the graph of y = As? + Bs + C is raised
by increasing B. Using Problem 8, show that the bottom point of the graph moves left
(change in sp;,) and down (change in y,i,) when B is increased by AB.

Solution For the graph of y = As?+ Bs+C, the bottom pointis y = (4AC — B?)/4A
ats = —B/2A. When B is increased, s moves left and y moves down. (The convention
is A>0.)

10 (recommended) Draw a picture to show the paths of s; and s, when s2 + Bs +1 =0

and the damping increases from B = 0 to B = oco. At B = 0, the roots are on the

axis. As B increases, the roots travel on a circle (why?). At B = 2, the

roots meet on the real axis. For B > 2 the roots separate to approach 0 and —oo.
Why is their product s1s5 always equal to 17

Solution The roots of s2 + Bs + 1 will move as B increases from 0 to co. At B = 0,
the roots of s2 + 1 = 0 are imaginary: s = +i. As B increases, the roots are complex
conjugates always multiplying to s;so = 1. They are on the unit circle. When B
reaches 2, the roots of s* + 2s + 1 = (s + 1)? meet at s = —1. (Each root traveled a
quarter-circle, from 4-i to —1.) For larger B and overdamping B2 > 4AC = 4(1)(1),
the roots s;so are real. One root moves from —1 toward s = 0, the other moves from
—1 toward —co. At all times s;s2 = C/A =1/1.

11 (this too if possible) Draw the paths of 51 and s when s2 +2s+k = 0 and the stiffness

increases from £k = 0 to & = oo. When £ = 0, the roots are .
At k = 1, the roots meet at s = . For k — oo the two roots travel up/down
on a in the complex plane. Why is their sum s; + so always equal to —2?

Solution This problem changes k in s2 +2s +k = 0. So the sum s; + so stays at —2,
the product s1s2 = k/1 increases from 0 to co.

When k£ = 0, the roots —2 and 0 are real. When k = 1, the roots are —1 and —1
(repeated). When k — oo, then B2 — 4AC = 4 — 4k is negative and the roots
s = —1 & {w are complex conjugates. They lie on the vertical line x = Res = —1
in the complex plane.

12 If a polynomial P(s) has a double root at s = s1, then (s — s1) is a double factor and
P(s) = (s — 81)?Q(s). Certainly P = 0 at s = s;. Show that also dP/ds = 0
at s = s1. Use the product rule to find dP/ds.

Solution P = (s — s1)>Q(s) has a double root s = s1, together with the roots of
Q(s). The derivative is

d
o (s — Sl)Qd_ig + 2(s — $1)Q(s). Thisiszeroat s = s7.

13 Show that y”" = 2ay’ — (a? + w?)y leads to s = a + iw. Solve y”" — 2y’ + 10y = 0.
Solution Substitute y = ! in the differential equation. Cancel e*! from every term to
leave s? = 2as — (a? + w?).

The roots are a + iw, their sum is 2a, their product is a? + w2
For y”" — 2y’ + 10y = 0 (negative damping!) the sum is s; + s3 = 2 and the product
is 10. The roots are s = 1 == 34. The solution y(t) is c; (139 4 cye(1=301,

14 The undamped natural frequency is w,, = \/k/m. The two roots of ms? + k = 0 are
s = =+ iw, (pure imaginary). With p = b/2m, the roots of ms? + bs + k = 0 are
s1,82=—p=* m The coefficient p = b/2m has the units of 1/time.
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Solve s2 +0.1s + 1 = 0 and s2 + 10s + 1 = 0 with numbers correct to two decimals.
Solution 5% +0.1s+1 = 0 gives s = (—0.1+ 0.01 = 4)/2 = (—0.1 £ i/3.99) /2.
How to approximate that square root?

The square root of 4 — z is close to 2 — $z. Computing (2 — $2)* =4 — z + 2?/16
we see the small error 22 /16. Our problem has 4 — z = 3.99 and x = 1/100. So the
square root is close to 2 — 4. The roots are s ~ (—0.1+4 (2 — 415)) /2. In other
words s = —0.05 + (1 — 0.00125).

For s? +10s+ 1 = 0, the roots are s = (—10 4+ /(100 — 4)/2 = —54+/25 — 1. The
square root of 25 — x is close to 5 — %:1:, because squaring the approximation gives
25 — 2 + (#%/100). Our example has 2 = 1 and s & —5 + (5 — £), which gives the
two approximate roots s = — % and —10 + %.

These add to —10 (correct) and multiply to .99 (almost correct).

With large overdamping p >> w,, the square root /p?—w2 is close to
p — w?/2p. Show that the roots of ms® + bs + k are s & —w?2/2p = (small)
and sp &~ —2p = —b/m (large).

Solution Use that approximate square root p — w2 /2p in the quadratic formula:

w2 w? w?
=-—-ptp?—wi~-pt|p—=L]. Then s=—=" and —2p+ 2.
s p p W, p (p 2p> s 2% p 2%
When p is large and w,, is small, a small root is near —w? /2p and a large root is near
—2p. (Their product is the correct w2, their sum is close to the correct —2p.)
With small underdamping p << wp,, the square root of p? — w? is approximately
iwpn — ip?/2w,. Square that to come close to p? — w?. Then the frequency for small

underdamping is reduced to wq ~ w, — p? /2wp,.

Solution Now p is much smaller than w,,. So the roots s = —p + /p? — w2 are

complex. The damped frequency wg = /w2 — p? is close to w, and the correction
term is —p? /2w, from the approximation w,, — p*/2w,, to the square root. (Square that
approximation to see w2 — p? + (p*/4w2).

Here is an 8th order equation with eight choices for solutions iy = e%¢:

d® . R

Wg —y becomes sSet =¢t and s =1 : Eightroots in Figure 2.6.
Find two solutions e*! that don’t oscillate (s is real). Find two solutions that only
oscillate (s is imaginary). Find two that spiral in to zero and two that spiral out.

Solution The equation s® = 1 has 8 roots. Two of them are s = 1 and s = —1 (real:
no oscillation). Two are s = ¢ and s = —i (imaginary: pure oscillation). Two are
s = e?™/% and s = e~2™/® (positive real parts cos T : (oscillating growth, spiral out).

3mi/4 and s = e~37™"/* (negative real parts : oscillating decay, spiral in).

Twoare s = e
d"y dy

An%+-~-—|—A1E+A0y:OleadstoAns"—|—---+A13+A0 = 0.

The n roots s1,. .., S, produce n solutions y(t) = e** (if those roots are distinct).

Write down n equations for the constants c; to ¢, in y = cieftt + --- + c,es»t by

matching the n initial conditions for y(0), y'(0), ..., D" 1y(0).
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Solution The n roots give n solutions y = e (when the roots s are all different).
There are n constants in y = cie*** + .-+ + ¢,e*»’. These constants are found by
matching the n initial conditions y(0), y’(0), . . . Take derivatives of y and sett = 0:
cteat e =y(0)
181 + c2852 + - + ¢y = y'(0)
c1st + e85+ -+ cnsyy, = y"(0)

The n by n matrix A in those equations is the transpose of a Vandermonde matrix :

1 1 --- 1

Sl 82 “ e Sn

A= 2 .2 2
S S “ e S

1 2 n

Find two solutions to d?°15y /dt2°15 = dy /dt. Describe all solutions to s201° =s.

Solution With y = e** we find s2°15 = s. One solution has s = 1 and y = e’. The
other 2014 solutions have s2014 = 1 (s = 1 is double! Second solution y = te.)
The 2014 values of s are equally spaced around the unit circle, separated by the angle
27 /2014.

The solution to y” = 1 starting from y(0) = y’(0) = 0is y(t) = t?/2. The
fundamental solution to g” = §(¢) is g(t) = t by Example 5. Does the integral
J gt —3s)f(s)ds = [(t — s)ds from O to ¢ give the correct solution y = ¢%/2?

Solution 'The main formula for a particular solution is correct:

t t t
(t—s)? t2

yp(t):/g(t—s)f(s)dSZ/(t—s)ds:— : .
0

0 s=0

The solution to y” + y = 1 starting from y(0) = y’(0) = 0isy = 1 — cost. The
solution to ¢” + g = &(t) is g(t) = sint by equation (13) withw = 1 and A = 1.
Show that 1 — cost agrees with the integral [ g(t — s)f(s)ds = [ sin(t — s)ds.

Solution The formula for a particular solution is again correct:
t

t
yp(t) = /g(t— s)f(s)ds = /sin(t —5)ds = cos (t — s)|’'_, = 1 — cost.
0 0
Then y,' + y, = 1.
The step function H(¢) = 1 for ¢ > 0 is the integral of the delta function. So the step
response 7 (t) is the integral of the impulse response. This fact must also come from
our basic solution formula: .
Ar"” + Br' 4 Cr =1 with 7(0) =7'(0) =0 has r(t) = /g(t —s)1lds
0
Change ¢ — s to 7 and change ds to —dr to confirm that r(t) = [ g(7)dr.
0

Section 2.5 will find two good formulas for the step response 7 (t).
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Solution For any equation Ar” + Br’ + Cr = 1 with f(t) = 1, y, comes from the
integral formula:

¢ ¢
yp:/g(t—s)f(s)ds:/g(t—s)ds. Changeto t—s=7 and —ds =dr and
0 0

t
_/Q(T)dT: +/g(‘r)d‘r = step response
0

t

Problem Set 2.4, page 114

Problems 1-4 use the exponential response y, = eCt /P(c) to solve P(D)y = e°t.

1 Solve these constant coefficient equations with exponential driving force :

@y, +3y, +oyp=c¢" D)2y +dy, =" @y =¢

Solution (a) Substitute y = Ye! to find Y':

Ye! +3Ye +5Ye! =ef gives 9Y =1 and Y =1/9 :y =¢'/9

(b) Substitute y = Yeit : 2i2Yel 4 4Yelt =it 12V =1 :y = ¢'/2

(c) Substitute y = Yel tofindY = 1andy = e’.
2 These equations P(D)y = e°! use the symbol D for d/dt. Solve for y,(t) :

() (D? + 1)y,(t) = 10~ (b) (D? 42D + 1)y, (t) = e™*

(©) (D* + D? + 1)y,(t) = et

Solution (a) Substitute y = Ye 3 tofind 9Y +Y =10 : Y = landy = e 3.

(b) Substitute y = Ye'? to find ((iw)? + 2iw+1)Y =1land Y = 1/(1 — w? + 2iw).

(c) Substitute y = Ye™? to find ((iw)* + (iw)? +1)Y =land Y = 1/(1 — w? +w?).
3 How could y, = e/ /P(c) solve y” +y = e’e’ and then y” + y = e’ cost ?

Solution First,y”+y = eV hasc = 1+iandy = Ye = e+t /((144)2+1) =

ete™ /(1 4 2i). The real part of that y solves the equation driven by e! cost:
%)} = %et(cost + 2sint).

4 (a) What are the roots s1 to s3 and the null solutions to y// — y, =0 ?

y = Re |e'(cost +isint) (

(b) Find particular solutions to y," — y, = ¢ and to y — y,, = e’ — e™".
Solution (a) y = e*' leads to s* — 1 = 0. The three roots s = 1,5 = e2™/3 = —% +
1V3,s = e /3 = —1_1./3 give three null solutions y,, = e, e~*/% cos ‘/Tgt, e /2 sin @t.

(b) The particular solution with f = e’ is y,, = e’ /(i® — 1).

The particular solution with f = ef — e looks like y = e /(13 —1) — e™((iw)3 —1).
But the first part has 1* — 1 = 0 and resonance : then e’ /(1% — 1) changes by equation
(19) to te'/3: (The differential equation has y"” — y = (D — 1)y = P(D)y and is
P’(D) = 3D?and P’(c) = 3 because ¢’ has ¢ = 1.)
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Problems 5-6 involve repeated roots s in y,, and resonance P(c) = 0 in y,.

5 Which value of C' gives resonance in y”/ +C'y = e™* ? Why do we never get resonance
iny” +5y’ +Cy = et ?
Solution "+ Cy = ™ has resonance when e*“? solves the null equation, so (m_;)Q +
C = 0and C = w?. For this C the particular solution must change from y,, = ¢*“* /0
to y, = te**t/2iw (because the derivative of P(D) = D? + C'is P/(D) = 2D and
then P’ (iw) = 2iw).
We never get resonance with P(D) = D?4 5D+ C because P(iw) = (iw)?+5iw+C
is never zero and y = ¢™? is never a null solution.

twt

6 Suppose the third order equation P(D)y,, = 0 has solutions y = cie! + c2e?! + cze3’.
What are the null solutions to the sixth order equation P(D)P(D)y, =0?

Solution The three roots of P(s) must be s = 1,2,3. The sixth order equation
P(D)P(D)y = 0 has those as double roots of P(s)?. So the null solutions are

Yy = cret + cotet + 6382t + C4t€2t + C5€3t + CGte?’t

7 Complete this table with equations for s, and s3 and ,, and y,,

Undamped free ~ my” +ky =0 Yn = creint 4 cyemiwnt
Undamped forced my” + ky = e™? yp = €™ /m(w? — w?)
Damped free my” + by’ +ky=0 y, = cie%?t 4 coe5?*

Damped forced  my” + by’ + ky = ¢ y, = e°t/(mc? + be + k)
Here s; and s3 are —b/2m + /b2 — 4mk/2m.
8 Complete the same table when the coefficients are 1 and 2Zw,, and w2 with Z < 1.

Undamped free y" + w2y =0 Yn = cre¥nt 4+ coeTtwnt
Undamped forced  y” + w2y = e™! yp = et /m(w? — w?)
Underdamped free  y” +2Zw,y’ + w2y =0 1y, = cie®1t + cye®2t
Underdamped forced y” +2Zw,y’ +wly = e y, = et /(c? + 2Zwpc + w?)
Those use equations (20) in 2.3 and (32-33) in 2.4.

9 What equations y” + By’ + Cy = f have these solutions ? Hint: Find B and C from
the exponents s in ¥, : 1 + s2 = —B and s152 = C. Find f by substituting y,,.

(@) y = c1 cos2t + cysin2t + cos3t y’ + 4y = —5cos 3t

(b)y = cre t cosdt+cge P sindt+cos5t y’’ 4+ 2y’ + 17y = —8 cos 5t — 10 sin 5t

©y=cietteate ™t +et y” 42y’ +y = [(w)? + 2iw + 1]e™t.
10 If y, = te %% cosTt solves a second order equation Ay” + By’ + Cy = f,
what does that tell you about A, B, C, and f?

Solution This particular y,, is showing resonance from the factor ¢. (If this was y,,
we would be seeing a double root of As? + Bs + C' = 0.) The rootis s = —6 + 7i
from the other factors of y,,.

So I believe that
As’+ Bs+C = A(s+6 —T7i)(s+ 6 + 7i) = A(s* + 125 + 36 + 49)
f=Fe 5 (AcosTt+ BsinTt)
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(a) Find the steady oscillation y,(t) that solves y” + 4y’ + 3y = 5 coswt.
(b) Find the amplitude A of y,(¢) and its phase lag o.
(c) Which frequency w gives maximum amplitude (maximum gain) ?

Solution (a) y, has sin wt as well as cos wt. Use equations (22-23) for y,, = M cos wi+
N sinwt :

3 — w? 4w

N=—

D D

D=B-wh)?+16w* M=

(b) From equation (26) and the page 112 table:

Amplitude = G = \/—15 and the angle « has tangent = % = 3?:;2 )

(c) The maximum gain G and the minimum of D = (3 — w?)? + 16w? will occur when
dD
= —4w(B3—w?)+32w=0 and 3—w? =8 and w= +V5.
w

This “practical resonance frequency” is computed at the end of section 2.5.

Solve y”" + y = sinwt starting from y(0) = 0 and y’(0) = 0. Find the limit of y(t) as
w approaches 1, and the problem approaches resonance.

Solution The solution is y = y, + yp = c1 cost + casint + Y sinwt. Substituting

into the equation gives —w?Y sinwt + Y sinwt = sinwt and Y = ﬁ

y(0) =0 givesc; = 0. And y/(0) = c2 + WY = 0 gives co = —wY :
—w 1 sinwt —wsint

y(t):msint—i—l_w2 sinwt = o2

As w goes to 1, this goes to 0/0. Then the I’Hopital Rule finds the ratio of w-derivatives
atw =1:
tcoswt —sint tcost — sint
- H -
—2w —2
Does critical damping and a double root s = 1iny” + 2y’ +y = e produce an extra
factor ¢ in the null solution y,, or in the particular y,, (proportional to e“*) ? What is y,,
with constants ¢1, c2 ? Whatis y, = Ye ?

= Resonant solution

Solution Critical damping is shown in the double root s = —1, —1ins? +2s+1 =0
and in the null solutions y,, = cie™! + cote™t. (Resonance would come when c is
also —1 in the right hand side.) The solution y, = Ye has y” + 2y’ + y = e and
(Y +2cY +Y)=1landY =1/(c* + 2c+ 1).
If ¢ = iw in Problem 13, the solution y, to y”' + 2y’ +y = e™*is . That fraction
Y is the transfer function at iw. What are the magnitude and phase in Y = Ge ™ ?
Solution Set ¢ = iw in the solution to Problem 13:

yp + Ye = et /(iPw? + 2iw + 1) = Ge "™,
Then G = 1/(1 — w? + 2iw) has magnitude |G| = 1//(1 — w?)2 + 4w? = 1/v/D.
The phase angle has tan o = 13%
By rescaling both ¢ and y, we can reach A=C = 1. Then w, =1 and
B = 2Z. The model problemis y” 4+ 2Zy’ + y = f(t).
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15 What are the roots of s> + 2Zs+ 1 = 0? Find two roots for Z = 0, 3, 1, 2
and identify each type of damping. The natural frequency is now w,, = 1.

=—-7Z+Z2 1. (All factors 2 will cancel.)

Solution The roots are s
Z=0:s5==1 No damping
Z=1:5=(-1+V3i)/2 Underdamping
Z=1:s=-1,—-1 Critical damping
Z =2:5= —2 +3 Overdamping

16 Find two solutions to y” + 27y’ + y = 0 for every Z except Z = 1 and —1. Which
solution g(t) starts from g(0) = 0 and g’ (0) = 1 ? What is different about Z = 1?

Solution 1f Z% # 1 the solutions are y = cje®! + coe*2t. The impulse response g(t)

on page 97 comes from s = —Z + r:
Slt _ Sgt

gt) = ST — et (et — et /2 with = \/Z2 — 1 in formula (2.3.12).
S1 — S2

If Z = 1 (critical) then s; = s3 and r = 0 and g(#) changes to te~! (formula 2.3.15).

17 The equation my” + ky = cosw,t is exactly at resonance. The driving frequency
on the right side equals the natural frequency w, = +/k/m on the left side.

Substitute y = Rtsin(/k/mt) to find R. This resonant solution grows in time be-
cause of the factor ¢.

Solution y' = Rsin\/£t+Ry/Ltcos/Etandy” =2R\/£ cos/Lt—REtsin, /L.
Thenmy”+ky = 2RVkmcos \/ £t—Rktsin \/ Et+kRtsin\/ £t = 2RVEkm cos \/ Zt.

This agrees with cos w, t on the right side of the differential equationif R = 1/2vkm.

18 Comparing the equations Ay + By’ +Cy = f(t) and 4A2" + Bz'+(C/4)z = f(t),
what is the difference in their solutions ?

Correction The forcing term in the z-equation should be f(%).

Solution z(t) will be 4y(%). Then 2’ = y'(£) and 2" = 1y"(1).

4Az" + Bz' + £z equals term by term to Ay’ ( )+ By' (L) + Cy(L) = f(2).
19 Find the fundamental solution to the equation g” — 3¢’ + 29 = §(¢).

Solution The roots of s> —3s+2 = 0 are s = 2 and s = 1 : Real roots. Use formula
2.3.12 on page 97 to find g(t) : ot
—e? 2t t

t)=——— =e*" —¢€".

g(t) A2 —s1)
Notice that g(0) = 0 and g/(0) = 1 (and A = 1 in the differential equation).

20 (Challenge problem) Find the solution to y /+ By’ +y = cos t that starts from y(0) = 0
and y’(0) = 0. Then let the damping constant B approach zero, to reach the resonant
equation "’ + 4 = cos t in Problem 17, withm = k = 1.

s1t

Show that your solution y(t) is approaching the resonant solution %t sin ¢.

Solution The particular solution is y, = 2t Then y, + y, = 0 and By, = cost.

The roots of s2 + Bs +1 =0are s = (—B + VB2 —4)/2 = (—B + iv/4 — B2)/2.
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Then y = cre®t? + cpe®' + Lsint. Att = 0 we must have ¢; + ¢ = 0 and

s1¢1 + Saco + % =0.Putcy = —¢p tofind (s1 — s2)c1 = ivV4— B2¢; = -1/B.
Solutionnear B=0 y= %(eslt — e + %sint.

At B = 0 the roots are s; = 7 and s = —1, and V4 — B2 =29,

The solution y(t) approaches y = 55 2isint + & sint = 3 (sign of resonance).

I’Hopital asks for the ratio of the B-derivatives. Certainly B in the denominator has B-
derivative equal to 1. And v/4 — B2 approaches 2. So we want the B-derivative of the
numerator, where sj,sp depend on B. Then as B — 0,y approaches

%% (es1t — es2t) = % [eslt% - esZt%} — % (—%) e“—% (—%) et = %t sin t. Wow!

21 Suppose you know three solutions yi, y2, y3 to y” + B(t)y’ + C(t)y = f(t).
(Recommended) How could you find B(t) and C(¢) and f(¢) ?

Solution The differences u = y1 — y2 and v = y; — ys are null solutions :

ux—i—B t u:—i—C thu=0

v+ Bt +C(t)v=0
Solve those two linear equations for the numbers B(t) and C(t) at each time ¢. Then
y1 is a particular solution so y{’ + B(t)y{ + C(t)y1 gives f(t).

Problem Set 2.5, page 127

1 (Resistors in parallel) Two parallel resistors R; and Ry connect a node at voltage V
to a node at voltage zero. The currents are V/R; and V/Ry. What is the total current
I between the nodes ? Writing R14 for the ratio V/1I, what is R15 in terms of Ry and
Ry?
Solution Currents V/Ry and V/ R in parallel give total current I = V/R; + V/Ra.
Then the effective resistance in I = V/R has

1_1+1_R1+R2 R1R>
R R Ry, RiR, Ri+ Ry’
2 (Inductor and capacitor in parallel) Those elements connect a node at voltage V_ei“’t toa
node at voltage zero (grounded node).  The currents are (V/iwL)e™! and

V(iwC)e™*t. The total current Ie™’ between the nodes is their sum. Writing
Z12¢™* for the ratio Vet /Ie™?, what is Z1 in terms of iwL and iwC'?

Solution This is like Problem 1 with impedances iwL and 1/iwC' in parallel, instead
of resistances R; and Rs. The effective impedance imitates that previous formula for
R = Rle/(Rl + Rg) .
7= Z1Zy  iwLl(1/iwC)  iwl
Zi+Zy  iwLl+ (iwC)~! 1 —w?LC”

3 The impedance of an RLC loop is Z = iwL + R + 1/iwC. This impedance Z is real
whenw = . This impedance is pure imaginary when . This impedance is
zero when

Solution Z is real when iwL cancels with 1/iwC = —i/wC. Then wL = 1/wC and
w? = 1/LC. Z is imaginary when R = 0. The impedance is zero when both R = 0
andw? = 1/LC.

and R =
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4 What is the impedance Z of an RLC loop when R = L = C' = 1? Draw a graph that
shows the magnitude |Z| as a function of w.

Solution An RLC loop adds the impedances R + iwL + i/(iwC). In case
R = L = C = 1, the total impedance in series is Z = 1 + iw + 1/iw. The magni-
tude | Z| = (14 (w — 1/w)?)Y/? will equal 1 at w = 1. For large w, |Z| is asymptotic
to the line | Z| = w. For small w, | Z| is asymptotic to the curve |Z]| = 1/w.

5 Why does an LC loop with no resistor produce a 90° phase shift between current
and voltage ? Current goes around the loop from a battery of voltage V' in the loop.
Solution The phase shift is the angle of the complex impedance Z. With no resistor,
R=0and Z = iwL+ (1/iwC) = i(wL — (1/wC)). This pure imaginary number has
angle § = +7/2 = 490 ° in the complex plane.

6 The mechanical equivalent of zero resistance is zero damping: my” + ky = coswt.
Find c; and Y starting from »(0) = 0 and y'(0) = 0 with w? = k/m.

y(t) = c1 coswpt +Y coswt.

That answer can be written in two equivalent ways :
y = Y (coswt — coswpt) = 2Y sin (wn > w) sin (wn ;—w) '

Solution The complete solution is y = ¢ cos wy,t + ca sinwyt + (coswt)/(k — mw?).
The initial conditions y = y’ = 0 determine c¢; and ¢ :

y(0)=0 c1 = —1/(k — mw?) y'(0)=0 ca =0.

Then y(t) = (coswt — cos wyt)/(k — mw?). The identity coswt — coswpt =

(w=—wn)t .+ (wtwn)t
2 Sin 2

2 sin expresses y as the product of two oscillations.

7 Suppose the driving frequency w is close to w,, in Problem 2. A fast oscillation
sin[(w, + w)t/2] is multiplying a very slow oscillation 2Y sin[(w, — w)t/2].
By hand or by computer, draw the graph of y = (sint)(sin9¢) from 0 to 2.

You should see a fast sine curve inside a slow sine curve. This is a beat.

Solution When w is close to wy,, the first (bold) formula in Problem 6 is near 0/0. The
second formula is much better :

- Wn t . n t . .
w ~ (w—wp)t sin w rsinw,t Y R (w— wy)tsinwyt
This shows the typical ¢ factor for resonance. The graph of y = (sint)(sin 9¢) has
w = 10 and w,, = 8, so that (10 — 8)/2 = 1 and (10 + 8)/2 = 9. The graph shows a
fast “sin 9¢” curve inside a slow “sin¢” curve : good to draw by computer.

2 sin

8 What m, b, k, F' equation for a mass-dashpot-spring-force corresponds to Kirchhoff’s
Voltage Law around a loop ? What force balance equation on a mass corresponds to
Kirchhoff’s Current Law ?

Solution The Voltage Law says that voltage drops add to zero around a loop:

dI 1 )
Equation (5) is LE + RI + ol /Idt = Vet
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This corresponds to my " + by’ + ky = f. The Current Law says that “flow in equals
flow out” at every node. The mechanical analog is that “forces balance” at every node.

In a static structure (no movement) we can have force balance equations in the x, ¢, and
z direction. In a dynamic structure (with movement) the forces include the inertia term
my " and the friction term by ’.

If you only know the natural frequency w, and the damping coefficient b for one
mass and one spring, why is that not enough to find the damped frequency wq ?
If you know all of m, b, k what is wy ?
Solution 1f we only know w2 = k/m and b, that does not determine the damping
ratio Z = b?/4mk or the damped frequency wy = +/p? — w2 with p = B/2A =
b/2m = wy,Z in equation (2.4.30). We need three numbers as in m, b, k or two ratios
asinw? = k/mand 2p = b/m.
Varying the number « in a first order equation y’ — ay = 1 changes the speed of the
response. Varying B and C in a second order equation y” + By’ + Cy = 1 changes
the form of the response. Explain the difference.
Solution The growth factor in a first order equation is ¢!, The units of a are 1/time
and this controls the speed. For a second-order equation y” + By’ + Cy’ = f, the
coefficients B and C' control not only the frequency w,, = /C but also the form of
y(t) : damped oscillation if B? < 4C and overdamping if B? > 4C.
Find the step response 7(t) = y, + y», for this overdamped system :

r” +25r +r=1 with 7(0) =0 and 7'(0) = 0.
Solution The roots of s? +2.5s + 1 = (s + 2)(s + 3) are s; = —2 and 53 = —1.
Then equation (18) for the step response gives

1 1 4
r(t) =1+ (—562t + 2et/2) /(=3/2) =1+ ge*” _ geft/Q'

Check that 7(0) = 0 and 7/(0) = 0 (and 7(00) = 1).

Find the step response r(t) = y, + y», for this critically damped system. The double
root s = —1 produces what form for the null solution ?

r” +2r' +r=1 with 7(0) =0 and r'(0) = 0.
Solution The characteristic equation s> + 2s + 1 = 0 has a double root s = —1. The

null solution is y,, = c1e~* + cate™*. The particular solution with f = 1isy, = 1.
The initial conditions give c¢; and c3 :

r(t) = cre t +egte t + 1
r(0)=c+1=0 cp=-1
r’'(0) =—c1+c2+1=0 ca3=—2
r(t) =1— (14 2t)e"t

Find the step response () for this underdamped system using equation (22):
r” 47" +r=1 with »(0) =0 and 7'(0) = 0.
Solution Equation (22) gives the step response for an underdamped system.

rt)=1- Yn o=t sin(wgt + ).
wd
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Thenr” 4+ 7'+ 7 =1hasm = b=k = 1and b> < 4mk (underdamping).

b1, ok ., ., 3 p 1 o
P=om ™2 " m Waswnmpi=g cse=om=g 0=y
2 3
Substituting in the formula gives r(t) = 1 — 7§e_t/2 sin (%t + g)
Find the step response r(t) for this undamped system and compare with (22) :
r” 47 =1 with 7(0) =0 and r’(0) = 0.

Solution Now r” +r =1hasm =k = 1and b = 0 (no damping):
In this case p=0 w:=1 Wa = Wn cosp=Z2-=0 p=13.

Substituting into (22) gives () =1 —sin (t + Z) = 1 — cost.

For b2 < 4mk (underdamping), what parameter decides the speed at which the step
response 7 (t) rises to (co) = 1? Show that the peak time is T = 7/wy when
r(t) reaches its maximum before settling back to r = 1. At peak time 7/ (T) = 0.

Solution With underdamping, formula (22) has the decay factor e P, Then
p = B/2A = b/2m is the decay rate. The “peak time” is the time when r reaches
its maximum (its peak). That time T has dr/dt = 0.

d n . _ :
o _Yn (—pe " sin(wat + @) + wae P cos(wat + ¢)) =0 at t =T (peak time).

dt wd
—psin(wgT + ¢) + wq cos(wgT + ¢) =0
tan(wgT + @) = wq/p whichis tan¢
Then wyT =7 and T = 7w /wgq. (Note: I seem to get 27 /w,.)

If the voltage source V(¢) in an RLC loop is a unit step function, what resistance R
will produce an overshoot to rp,x = 1.2 if C = 1075 Farads and L = 1 Henry ?
(Problem 15) found the peak time T" when 7(T") = rmax)-

Sketch two graphs of r(t) for p; < pa. Sketch two graphs as w, increases.
Solution The peak time is T' = 7/wq. Then wyT = 7 and we want r = 1.2
Tmax(T) =1 — Z—Ze_pT sin(m + ¢)

1.2=1+ “:)—Ze_pT sin(¢) =1+ e P
0.2 = e Pm/wa
p/wg = —1In(0.2) =1Inb5

We substitute p = B/2A = R/2wL and wg = /w2 — w? = /(1/LC) — w?. With
known values of L and C' and w we can find R.
What values of m, b, k will give the step response r(t) = 1 — v/2e~'sin(t + F) ?

Solution This response r(t) matches equation (22) when w,, = v/2wg and p = 1
and ¢ = /4. Then

w2 =w? —p® =221 gives wg = 1and w, = V2.
Therefore w? = k/m = 2 and p = b/2m = 1. The numbers m, b, k are proportional
to1,2,2.



2.5. Electrical Networks and Mechanical Systems 63

18 What happens to the p — wq — wy, right triangle as the damping ratio w,, /p increases
to 1 (critical damping) ? At that point the damped frequency w, becomes . The
step response becomes r(t) =

Solution Critical damping has equal roots s; = s and b?> = 4mk and damping ratio

Z = 1and wg = wpV1—2Z2 = 0. (The oscillation disappears and the damped

frequency goes to wg = 0 so that ¢ = 0.) Then the step response is

wpt
t)y=1-—
r(t)

— ptsin(wgt) — 1 — w,te P

qte

19 Theroots s1, s = —p = iwg are poles of the transfer function 1/(As? 4+ Bs + C)

Show directly that the product of the roots s; = —p + iwg and s9 = —p — iwy is
5182 = w?2. The sum of the roots is —2p. The quadratic equation with those roots
is 52 4 2ps + w2 = 0.

\ Imaginary axis

P iy

> Real axis

) Circle of radius w,,
— Wy

Solution Multiplying the complex conjugate number s = —p =+ iwy gives

s> = (—=p + iwq) (—p — iwq) = p* + w3 = w2.

For any quadratic As®> + Bs + C = A(s — s1)(s — s2),C matches As;s2. Then
s182 =C/A = wfl. Complex roots stay on the circle of radius w,,, as in the picture.
Adding —p + iw to —p — iw gives s1 + so = —2p. This always equals —B/A.

20 Suppose p is increased while w,, is held constant. How do the roots s; and s move ?

Solution Increasing p will make both roots go along the circle in the direction of —wy,.
Problem 19 showed that they stay on the circle of radius w,, until they meet at —w,,. At
that point s1 + s2 = —2w,, = —2p. Therefore that value of p is w,,.

Increasing p beyond w,, will give two negative real roots that add to —2w,,.

21 Suppose the mass m is increased while the coefficients b and k are unchanged. What
happens to the roots s; and s3 ?

Solution The key number B? — 4AC = b? — 4mk will eventually go negative when
m 1is increased. The roots will be complex (a conjugate pair). Further increasing the
mass m will decrease both p = b/2m and w? = k/m. The roots approach zero.

22 Ramp response How could you find y(¢) when F' = ¢ is a ramp function ?

y” +2py’ + w2y = w3t starting from y(0) =0 and y’(0) = 0.
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A particular solution (straight line) is y, = . The null solution still has the
form y, = . Find the coefficients ¢; and c¢s in the null solution from the two
conditions at t = 0.

This ramp response y(¢) can also be seen as the integral of
Solution A particular solution is y, = C' + . Substitute into the equation:
y" +2py’ +wly =0+ 2p+ w2(C +t) = w2t. Thus C = —2p/w?.

The null solution is still i, = c1e®*t + coe®2t. We find ¢; and cp att = 0:

y=rcrestt + e + O+t =c1+co+C =0
y' = c151% %t 4 cps0e®t 41 =151 +caso +1 =0
Solving those equations gives c; = % and c3 = % with C = —2p/w?.

The ramp response is also the integral of the step response.

Problem Set 2.6, page 137

Find a particular solution by inspection (or the method of undetermined coefficients)

1

@y" +y=4 byy" +y =4 ©y" =4

Solution (a)y, =4 (b) yp, = 4t (c) yp = 2t?

@y"+y' +y=e¢ b)Yy +y +y=e

Solution (a) yp = %et ®) y, =e/(P+c+1)

(@y” —y=cost (b)y” +y = cos 2t ©y"+y=t+et
Solution (a) y, = —% cost  (b)y, = —% cos 2t ©yp=t+ %et

For these f(t), predict the form of y(¢) with undetermined coefficients :

() f(t) =t (b) f(t) = cos 2t (c) f(t) =t cost
Solution (a)y, = at® + bt> + ct +d (b) yp = acos 2t + bsin 2t

(©) yp = (At + B) cost + (Ct + D) sint

Predict the form for y(¢) when the right hand side is
(@) f(t) = et (b) f(t) = tet () f(t) =€t cost
Solution (a)y, = Yec! )y, = (Yt+ Z)et (©) yp = ae’ cost+be'sint

For f(t) = e“* when is the prediction for y(¢) different from Y et ?

Solution There will be a te“ term in y,, when e is a null solution. This is resonance :

Ac?> + Be+C =0and cis s; or ss.

Problems 7-11: Use the method of undetermined coefficients to find a solution y,, (t).
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@) y" +9y = ¢ (b)y” + 9y = te?

Solution (a) y, = Ye? with4Ye? +9Ye? =e?* and Y = 11—3

) yp = (Yt + Z)e2 withy' = 2Vt +Y +22Z)e* and y” = (AY1 +4Y +42)e?".
The equation y” + 9y = te?’ gives (4Yt +4Y +4Z + 9Yt + 97)e?! = te?.

Then 13Yt = tand4Y+13Z = OgiveY = L and Z = — &Y andy, = 15 (t — 13)e*".
@y"+y' =t+1 by +y =t +1

Solution (a)y, = at*+bt and y” +y' =2a+2at +b=1t+1.

Thena = 3 andb =0 and y, = %tz.

*Notice that y, = constant is a null solution so we needed to assume y,, = at? + bt.
(b) yp = at®+bt*+ct (NOT +d) and y"" +y’ = (6at +2b) + (3at?+2bt+c) = t*+1.
Then3a =1land6a+2b=0and2b+c=1:y, = %t3 — 12 + 3t.

@y” +3y=cost (b)y” +3y=tcost

Solution (a)y, = Acost+ Bsint.

Yy, + 3y, = —Acost — Bsint + 3Acost + 3Bsint = cost.

Then2A =1and2B =0and y, = % cost.

(b) yp = (At + B) cost + (Ct + D)sint.

Yy, = (A+ Ct+ D) cost + (—At — B 4 C)sint.

Yy, + 3y, = Ccost — Asint + (A — Ct — D)sint + (—At — B + C)cost +
3(At + B)cost+ 3(Ct + D)sint = tcost.

Match 34t — At = tand C — B+ C + 3B = 0 and —Ct + 3Ct = 0 and
—-A—A-D+3D=0.

Then A=1,C=0,B=0, D=A=3] gives y, = 1tcost + :sint.
@y"+y' +y=1 Oy +y +y=1t

Solution (a)y, = at®+bt+cgivey,' +y,+y = (2a)+(2at+b)+ (at® +bt+c) = t*.
Thena = land2a+b =0and2a+b+c=0gvea=1, b=-2 ¢c=0:
yp =t — 2t.

(b) Now y,, = at? + bt + ¢ + dt®. Added into part (a), the new dt3 produces
y" +y +y=(2a)+ (2at + b) + (at> + bt + ¢) + d(6t + 3t> +t3) =t +c =0
0,

Then d = 1, 3d+a = 6d 4+ b+ 2a = 0, 2¢ +b+c =0
gived=1,a=-3,b=0,c=6:y, =t3 — 3t> + 6.

@y”"+y +y=cost ®O)y"+y +y=tsint

Solution (a) y, = Acost+ Bsint.

y) +y,+yp=(—A+ B+ A)cost+ (—B — A+ B)sint = cost.

Then B =1and A = 0 and y, = sint.
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(b) The forms for y,, and 3, and y,’ are the same as in 2.6.9 (b). Then y,’+y,+y, equals
Ccost— Asint+ (—A—Ct— D)sint+ (—At — B+ C) cost + (A+ Ct+ D) cost
+(—At — B+ C)sint + (Ct+ D)sint = tsint.

Match coefficients of ¢ cost, tsint, cost,sint :

-A+C+A=0 —-C-A4+C =1 C-B+C+A+D+B=0
—-A-A-D-B+C+D=0.

ThenA=-1,C=0, B=2, D=1 give y, = —tcost + 2cost.

Problems 12-14 involve resonance. Multiply the usual form of y,, by ¢.

12

13

14

(@y”+y=e" ®)y”" +y=cost

Solution (a) Look for y, = Y'te'. Theny) = Y (it + 1)e*.

Yy +yp = Y (i%t + 2ie’) + Yie' = 2iYe".

This matches e’ on the right side when Y = 1/2i and y, = te®*/2i = —itet/2.
(b) Look for y,, = At cost+ Btsint. Then yzﬁ = Acost— Atsint+ Bsint+ Bt cost.
y, +y=—2Asint — Atcost + 2B cost — Btsint + Atcost + Btsint = cost.
Then A=0 and B =} and y, = 3tsint.

@y" -4y’ +3y=e" (b)y" -4y’ +3y=e*

Solution (a) Look for y, = cte’ withy) = ¢(t + 1)e’ and y, = c(t + 2)e".

. 1 1
y;' - 4y1§ +3yp = (2¢ — 4c)e! = €' with ¢ = ~3 and yp = —Etet.

(b) Look for y, = cte® with y) = ¢(3t + 1)e* and y,’ = ¢(9t + 6)e™".

1 1
Yy — 4y} + 3y, = (6c — 4c)e® = €* with ¢ = 3 and y, = Ete?’t.
@y' —y=e' )y’ —y=te' ©y'—y=e'cost
Solution () Look for y, = cte’ with y) = ¢(t + 1)e’.

t

Then y, — y, = ce’' = ' when ¢=1and y, = te'.

(b) Look for y, = ct?e’ with g = c(t? + 2t)e’.
1 1
Then y, — yp = c(t® + 2t — t*)e’ = te’ when ¢ = 5 and y, = §t2et.

(c) Look for y, = Ae' cost + Be' sint. Then
y, = Ae' cost — Ae' sint + Be' sint + Be' cost.

/_

Yp — Up = —Ae'sint + Be' cost = e’ cost when A =0,B =1, and y, = e’sint.
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For y” + 4y = e sin t (exponential times sinusoidal) we have two choices:
1 (Real) Substitute y, = Me' cos t + Ne' sin ¢: determine M and N
2 (Complex) Solve z” 4 4z = e(1+9t Then y is the imaginary part of z.
Use both methods to find the same y(¢)—which do you prefer ?
Solution Method 1 has y, = Me'cost — Me'sint + Ne'sint + Ne'cost =
(M + N)etcost + (—M + N)et sint.
Then y,’ + 4y, = (M + N)ef cost — (M + N)e'sint 4+ (—M + N) e’ sint +
(—M + N)e'cost +4M e cost + 4N e’ sint.
This equals e’ sint when 2N +4M = 0 and —2M + 4N = 1.
Then N = —2M and —2M — 8M = 1l and M = —-L N = 2,
Yp = —i5€’ cost+ el sint.
Method 2 Look for z, = Ze('*9!. Then z)/ + 4z, = Z [(1+i)? +4] 1)t =
eI+t gives Z = 1/(4 + 24).
Take the imaginary part of 2, :

(+i)t t(cost +isint)(4 —2i) et
Im6 - :Ime (cost + isint)( ) = —(—2cost + 4sint).
442 16 +4 20

This complex method was shorter and easier. It produced the same y,,.

(a) Which values of ¢ give resonance for y” + 3y’ — 4y = tet ?

Solution ¢? +3c—4= (c—1)(c+4).Soc=1andc = —4 will give resonance.
(b) What form would you substitute for y(¢) if there is no resonance ?

Solution With no resonance look for y, = (at + b)e.

(c) What form would you use when c produces resonance ?

Solution With resonance look for y, = (at? + bt)e’. If we also look for de®, this
will be a null solution and we cannot determine d.

This is the rule for equations P(D)y = e with resonance P(c) = 0:

If P(c) = 0and P’(c) # 0, look for a solution y,, = Cte* (m =1)
If ¢ is a root of multiplicity m, then y,, has the form

Solution 1f cis atoot of P with multiplicity m, then multiply the usual Ye by ™.
(a) To solve d*y/dt* — y = t3e5¢, what form do you expect for y(t) ?
(b) If the right side becomes t> cos 5t, which 8 coefficients are to be determined ?

Solution (a) The exponent ¢ = 5 is not a root of P(D) = D* — 1 (5% # 1).
So look for y, = (at® + bt? + ct + d)e.

(b) If the right side is 3 cos 5t then
yp = (at® + bt% + ct + d) cos 5t + (et + ft? + gt + h) sin 5t.

For y’ — ay = f(t), the method of undetermined coefficients is looking for all right
hand sides f(t) so that the usual formula y,, = e® [ e~ f(s)ds is easy to integrate.
Find these integrals for the “nice functions” f = e, f = ™!, and f = ¢:
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/e_asecsds /e_‘”emsds /e_“ssds

Solution The equation has y’ — ay so the growth factor (the impulse response) is
g(t) = e*. This problem connects the method of undetermined coefficients to the

ordinary formulay, = [ g(t — s)f(s) ds. The integral [ e*(*=*) f(s) ds is easy for:

(c—a)s ) (iw—a)s
\/\67(156()5 dS — € \/\efaSeZUJS dS — e.
(c—a) iw—a

1
/sefas ds = — (2 + ¥> e .

Problems 20-27 develop the method of variation of parameters.

20 Find two solutions y1, 32 to y” + 3y’ + 2y = 0. Use those in formula (13) to solve
@y"+3y' +2y=e" )y "+3y' +2y=c""

Solution (a)y” + 3y’ + 2y leads to s*> + 35 +2 = (s + 1)(s + 2). The null solutions
are y; = e~ ' and yo = e~ 2!, The Variation of Parameters formula is

[ = e givesy, = +— —

3 e3¢ 3
1 1 1
—— et = —et.
6 9 18

(b) Againy; = e~ and y; = e~ %!. Now f = e~! gives resonance and ¢ appears :

+ e—t / 6_2t€_t e—2t / e—te—t e—t t e—2t ‘ 1 (t 1) s
— _ — = —1 — e = — _ e .
Yp 3 =3t 3 oot 3 3 3

e—t e—2tet e—2t / e—tet e—t 6215 e—2t 3t

e

21 Find two solutions to y” 4+ 4y’ = 0 and use variation of parameters for
(a)y//+4y/262t (b)y/l+4yl:e—4t

Solution (a) y” + 4y’ = 0 has null solutions y; = 1 = ¢°

Then W = y1y4 — y2y{ = —4e~*t. The equation has f = e,

e—4tp2t o (1)6215 e2t o bt ezt
From(13):yp:—1/_4ei4t+e /_467415:?-1—6 (_—24>:—

(b) f = e~* is also a null solution : expect resonance and a factor ¢.

Yp = _1/Le4t+e4t/ (1)67“ _ _e_4t _ e 4t E .
JP _46—4t _46—4t 16 4

tand o = €
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23

24

25

Find an equation y” + By’ + Cy = 0 that is solved by y; = e and y2 = te'.

If the right side is f(¢) = 1, what solution comes from the V' P formula (13)?

Solution With y; = e and y, = te?, the exponent s = 1 must be a double root :
As? + Bs+ C = A(s — 1)? and the equation canbe y” — 2y’ +y = f(t).
With f(t) = 1and W = y1ys — y2y{ = e'(e! + te!) — tel(e?) = e?t, eq. (13) gives

tet(1) et(1) _ _ _
yp = —et/ o2 —I—tet/j =—e(—te" —e ) +tel(—e) =1

yp =1 isagood solutionto y” —2y" +y = 1.

y" — 5y’ + 6y = 0is solved by y; = €' and yo = €3, because s = 2 and

s = 3 come from s2 — 55 + 6 = 0. Now solve y” — 5y’ + 6y = 12 in two ways :

1. Undetermined coefficients (or inspection) 2. Variation of parameters using (13)

The answers are different. Are the initial conditions different ?

Solution Solving y” — 5y’ + 6y = 12 gives y, = 2 by inspection or undetermined
coefficients.

Using s> — 55+ 6 = (s — 2)(s — 3) we have y; = €% and yo = €3' and W = 5.
Thenset f = 12:

3t 2t —2t —3t
oy [e(12) gy [e®(12) 5 [ 12e 5 [ 12e B B
yp = —€ / e5t +e e5t = —€ _—2 +e _—3 = 6—4 =2

But if those two integrals are computed from O to ¢, the lower limit gives a different y,, :
t t
12 —2tqt 12 —3t7t
_e2t/e—2t(12)+83t/6—3t(12)_ezt[ e ] +e3t|: e }
-2 o =3 Jo
0 0

=2 — 6e?t + 43" = 2 + null solution.

What are the initial conditions y(0) and y’(0) for the solution (13) coming from varia-
tion of parameters, starting from any y; and y2 ?

t
Solution Every integral I(t) = / h(s) ds starts from 1(0) = 0 and I'(0) = h(0)
=0

0
by the Fundamental Theorem of Calculus. For equation (13), this gives y,(0)
and y,(0) = 0 (which can be checked for y,, = 2 — 6¢** 4 4€3" in Problem 23).

The equation " = 0 is solved by y; = 1 and y» = t. Use variation of parameters to
solve y” =t and also y" = t.

Solution Those null solutions y; = 1 and yo = t give W = y1y4 = 1. Then
forf =t y,=—1[t2+tft =-4+5=t3/6
for f = t2 yp:—lftt2+tft2:—%+%:t4/12

Those are correct solutions to y”/ = t and y”" = 2.
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26 Solve ys” + ys = 1 for the step response using variation of parameters, starting from
the null solutions y; = cos t and y2 = sin t.

Solution The Wronskian of y; = cost and yo = sint is W = (cost)(sint)’ —
(sint)(cost)’ = 1. Set f = 1 and W = 1 in equation (13):

t (e t
t)(1 t)(1
Yp = —cost/ %—i—smt/ (60871)() = —cost(—cost+ 1) + sint(sint)
0 0

=1 —cost : Stepresponse

27 Solve ys" + 3ys’ + 2ys = 1 for the step response starting from the null solutions
y1 =e ‘and yp = e 2,

Solution The Wronskian of y; = e~ and yo = e~ %! is

W =et(-2e72) —e 2 (—et) = —e™3t. Set f = 1in (13):

t

t
—2t(1 —t(1 1 1
U :—e‘t/e ( )dt—i-e_?t/e ( )dt:—i—e_t[et—l]—i—e_% [—e%—i——}

g o3t 9 9
0 0
1 1
_ 1 et le—2t
2 + 2
The steady state is y,(co) = 1. This agrees with y” + 3y’ + 2y = 1 when y =
constant.

28 Solve Ay +Cy = coswt when Aw? = C (the case of resonance). Example 4 suggests
to substitute y = Mt coswt + Ntsinwt. Find M and N.

Solution y = Mt coswt 4+ Ntsinwt has
y' = M(coswt — wtsinwt) + N (sinwt + wt cos wt).
Now compute Ay” + Cy when C = Aw?. The result is

AM (—2wsinwt — w?t coswt) + Aw? Mt coswt + AN (2w coswt — w?tsinwt) +
Aw? N sin wt = coswt.

Simplify to AM (—2w sin wt)+AN (2w coswt) = coswt. Then M = 0and N = 1/2Aw.

29 Put g(t) into the great formulas (17)-(18) to see the equations above them.
Solution The equation above (17) came frorgl the V of P equation (13) :t

Particular solution ettt T es2t o
Constant coefficients up(t) = Sg— 8§ /6 ' f(T)dT+S s e f(T)dT
2— 81 2 - 51y
_651(t—T) eSQ(t—T)
This is the integral of f(T) which is exactly g(t —T) f(T').
S2 — S1 So — 81

For equal roots s; = s3, the equation after (17) is the V' of P equation:
t t

yp(t) = —et / Te T f(T)dT + te*t / e T {(T)dT

0 0

Particular solution y,,
Null solutions e?, test
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This is the integral of —Te**=T) f(T) + te**=T) f(T) dt = (t — T)e**=1) f(T).
This is exactly g(t — T) f(T') when g(t) = te®" in the equal roots case.
Neat conclusion : Variation of Parameters gives exactly [ g(t — T') f(T)dT.

Problem Set 2.7, page 148

1 Take the Laplace transform of each term in these equations and solve for Y'(s),
with y(0) = 0 and ¢’ (0) = 1. Find the roots s; and s — the poles of Y (s):

Undamped y' + 0y +16y =0
Underdamped y'+ 2y + 16y =0
Critically damped y'+ 8y + 16y =0
Overdamped y" +10y + 16y = 0

For the overdamped case use PF2 to write Y (s) = A/(s — s1) + B/(s — s2).
Solution (a) Taking the Laplace Transform of y” 4+ 0y’ + 16y = 0 gives:
s2Y (s) — sy(0) —y’(0) +0-sY (s) — 0-y(0) + 16Y(s) =0
s?Y (s) =14+ 16Y(s) =0
Y(s)(s*+16) =1

1
Y(8) = —-—
s2 4+ 16
The poles of Y = roots of s> + 16 are s = 4i and —4i.
(b) Taking the Laplace Transform of y” + 2y’ + 16y = 0 gives:
s2Y (s) — sy(0) —y’(0) +2-sY (s) —2-y(0) + 16Y(s) =0
s2Y(s) — 1+ 2sY(s) + 16Y(s) =0
Y(s)(s?+2s+16) =1
1
V()= —
)= Fas+t1e

The roots of s> + 2s + 16 are —1 — i1/15 and —1 + i/15. Underdamping.
(c) Taking the Laplace Transform of /" + 8y’ + 16y = 0 gives:
s2Y (s) — sy(0) —y'(0) + 8- sY (s) — 2-y(0) + 16Y(s) =0
s2Y(s) — 1 +8sY(s) + 16Y(s) =0
Y(s)(s? +8s+16) =1

¥(s) = 1 1

2185416 (s 4)2
There is a double pole at s = —4. Critical damping.
(d) Taking the Laplace Transform of y” + 10y’ + 16y = 0 gives:
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s2Y (s) — sy(0) —y’(0) + 10 - sY (s) — 10 - y(0) + 16Y (s) =0
s2Y(s) =1+ 10sY (s) +16Y(s) =0
Y (s)(s* +10s + 16) = 1

1 1 1 1

Y(s) = =
) = 105716 572658 6612 6678
The poles of Y'(s) are —2 and —8: Overdamping.
2 Invert the four transforms Y () in Problem 1 to find y(t).

Solution (a) Y (s) = 824_#16 = i . 52—;—$16 inverts to y(t) = 3 sin(4t).

) Y(s) = m = m inverts by equation (28) to
y(t) = e~ cos(v/15t) /+/15.

©Y(s) = G _ﬁ4)2 inverts to y(t) = te 4.

dY(s) = 6(31— 2~ 6(514— ) inverts to y(t) = %e‘zt — %e_&.

3 (a) Find the Laplace Transform Y (s) from the equation 3y’ = e** with y(0) = A.
(b) Use PF2 to break Y (s) into two fractions Cy /(s — a) + C2/s.
(c) Invert Y (s) to find y(¢) and check that ¢’ = €' and y(0) = A.
Solution (a) Taking the Laplace Transform of iy’ = e gives:

1
Y(s) —y(0) =
¥ (5) ~y(0) = ——
Y(s)— A=
sY (s) P 1
Y(s) =—
() s + s(s —a)
A 1 =1
(b) By using partial fractions Y (s) = — + —2¢— + -+
s (s—a) s

(c) The inverse Laplace Transform of each term gives:

1 1

y(t) = A+ oot — 1
a a

1 1 1

—e = e withy(0) = A+ — — —

a a a

4 (a) Find the transform Y (s) when y” = e with y(0) = A and y/(0)
(b) Split Y (s) into C1 /(s — a) + C2/(s — a)® + C3/s.
(c) Invert Y () to find y(¢). Check y”” = e and y(0) = A and y/(0) = B.

Solution (a) The Laplace Transform of y” = et gives:

Differentiating gives: y/(t) = a

A.
B.
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1
2y (s) — sy(0) — y'(0) =
-0V O =
s?Y(s) =sA+ B+ ——
A B 71
Y(s) =242 4 -
() s 82 s%(s—a)
) 1 7Cs+D+ E  (s—a)(Cs+ D)+ Es?
s2(s—a)  s2 s—a s2(s—a) '
1 1 1
That numerator matches 1 when D = ——,C:——2,E: —-
a a a

1 t 1
©yt)=A+Bt+C+Dt+Ee**=A+ Bt — — — — + —e?.
a2 a a2

5 Transform these differential equations to find Y'(s) :
(@ y' —y = 1withy(0) =4 and y'(0) =0
) vy + y = cos wt with y(0) =¢'(0) =0and w # 1
(©) y"+ y = cos t with y(0) = y'(0) = 0. What changed forw =17

Solution (a) The Laplace Transform of y” — 3y’ = 11is

2 (s) = 59(0) ~ y'(0) ~ (s (s) ~ y(0)) =
2 (s) —ds — s (s) +4 =
Y (s)(s? — ) = é tds—4
v = S
Y(s) = - + !

)

> +

s2 s s-—1
(b) The Laplace Transform of "' + y = cos wt with y(0) = 0 and 3’

s2Y (s) — sy(0) —y’(0) + Y (s) = ﬁ
Y (s)+Y(s) = ﬁ

s
(s24+w?)(s?2+1)
(c) The Laplace Transform of y”/ + y = cost with y(0) = 0 and y’(0) = 0:

Y(s) =

(0) =0:

73
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2V (s) + Y (s) = ——
PV (5) +Y(8) = 5o
s
Y (s) = ————— : Double poles from resonance
(s) EFE p

6 Find the Laplace transforms Fi, F5, F3 of these functions f1, fo, f3:
(@) fi(t) =e —e (b) fat) = e + e (©) f3(t) =tcost

1 I a—>b
s—a s—b (s—a)(s—0b)
. b 1 1 2s
(b) The Laplace Transform of e** + e~ %" is + = .
s—a s+a s2—a?
(c) The Laplace Transform of te®! is ﬁ by equation (19). With a = ¢, write
tcost = ite’ + Lte~". Then the transform of ¢ cost is

Solution (a) The Laplace Transform of e — e% is

11 +1 1 I(s+i)2+(s—i)? s*2—-1
2(s—4)2  2(s+4)2 2 (s—9)2(s+14)?2  (s241)2
7 For any real or complex a, the transform of f = te? is . By writing
cos wt as (e + e~ ™) /2, transform g(t) = tcos wt and h(t) = te’ cos wt.
(Notice that the transform of h is new.)
Solution The transform of te® is ﬁ by equation (19). Here a = iw.
Then t coswt = 1te’™? + Lte=™! transforms to

1 1 1
2 (s — iw)? A (s+iw)? 2 (s—iw)(s+iw)®  (s2 +w?)?’
Similarly te! coswt = te(1+)t + Lte(1=#)t transforms to

1 1(s+iw)? + (s — iw)? 52 — w?

1
2

1 1 1 1(s—14iw)? + (s —1—iw)? (s —1)2 —w?

1
§(s—l—iw)2+§(s—1+iw)2 T2 (s—1-iw)?(s—14+iw)?  ((s—1)2+w?)?
8 Invert the transforms F}, F5, F3 using PF2 and PF3 to discover f1, fo, f3:

1 S 1

(@) Fi(s) = Goa(s—b (b) Fa(s) = G_as—b () Fs(s) = PR
, B 1 B 1 1
Solution (@) F1(s) = (s—a)(s—b) (a—b)(s—a) + (b—a)(s—b)
The inverse transform is f; = ! et + ! ebt
(a —b) (b—a) '

s a b

O ) = Gy T @ —a)  h—aG0)
) ) a b

The inverse transform is fo = et + ebt,

(a—0) (b—a)
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N|=
N

+

1+s—1

1 1 1 .
(c) F3(s) = el R 3 (R § using PF3.

+

s
) ) 1 1
The inverse transform is f3 = —1 + Ee_t + EEt'

9 Step 1 transforms these equations and initial conditions. Step 2 solves for Y (s).
Step 3 inverts to find y(¢):
@y —ay=twithy(0)=0
() y" + a*y = 1 with y(0) = 1 and y'(0) =2
© y" + 3y + 2y = 1 with y(0) = 4 and ¢'(0) = 5.

What particular solution y,, to (c) comes from using “undetermined coefficients” ? y, = %

1
Solution (a) y' — ay = t transforms to sY'(s) — y(0) — aY (s) = — with y(0) = 0.
s

1 %  —i: =
Y — — a a a
() s2(s —a) s + 52 +s—a
. . 1 1 1
The inverse transform is y(t) = —— — —t + — et
a? a a?

1
(b) y"" + a*y = 1 transforms to s?Y (s) — sy(0) — y'(0) + a?Y (s) = = with y(0) = 1
s
1
and y'(0) = 2. Thisis (s> + a®)Y (s) = y'(0) + sy(0) + —:
s

2 S 1 2 a s 1 1 S
Y(s) = + + =

$2+a? s24a® s(s?+a?) as?+a® s2+a® a?s a?s?+a?

. . 2 1 1
The inverse transform is y(t) = — sin(at) + cos(at) + — — —; cos(at).
a a a

1
(©)y"+3y’ +2y = 1 becomes s2Y (s) —sy(0) —y'(0)+3sY (s) —3y(0)+2Y (s) = ~.
S

Then y(0) = 4 and y'(0) = 5 give
Y (s) 1 n 4s +5 1 4(s+1)+1
5) = = .
s(s2+3s5+2) (s243s+2) s(s+1)(s+2) (s+1)(s+2)
The inverse transform can come from PF3 on page 143. It comes much more quickly
and directly (without Laplace transforms!) from knowing that

Y=Yp+yn=73+cre ' +coe
y(0) =+ 4+c1+c; =4andy’(0) = —c; —2¢c; = Haddto 3 —cz = 2 and
y(t) = % 4+ 127t — %e‘zt.

Questions 10-16 are about partial fractions.
10 Show that PF2 in equation (9) is correct. Multiply both sides by (s — a)(s — b):
*) 1= 4

(a) What do those two fractions in (*) equal at the points s = aand s =b?
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(b) The equation (x) is correct at those two points a and b. It is the equation of
a straight . So why is it correct for every s ?

Solution (using b instead of c in PF2):
s—b s—a

1= + after multiplying equation (9) by (s — a)(s — b).
a—b b—a
(a)Ats=awegetl = Z—:g.Ats:bwegetl = g:—g

(b) When the equation of a straight line is correct for two values s = @ and s = b, it is
correct for all values of s.

Here is the PF2 formula with numerators. Formula () had K = land H =0:

, Hs+K Ha+K Hb+ K
2 oa6-h G-ae-b  G-aG-b

To show that PF2’ is correct, multiply both sides by (s — a)(s — b). You are left
with the equation of a straight . Check your equation at s = @ and at s = b.
Now it must be correct for all s, and PF2’ is proved.

Solution Multiplying by (s — a)(s — b) produces
(Ha+ K)(s—b) (Hb+ K)(s—a)
+ .
a—b b—a
Ats =athisis Hao+ K = Ha + K + 0: correct. Similarly correct at s = b. Since

(*) is linear in s, it is the equation of a straight line. When correct at 2 points s = a and
s = b, it is correct for every s.

(*)Hs+ K =

Break these functions into two partial fractions using PF2 and PF2’ :

Hs+ K
(@) 5— ®) 5 © e 5+
. 1 1 : 1
Solution (a) 2_4 (s—2)(s+2) - (s —2)(2+2) + (s+2)(—4)
T 4(s—2) 4(s+2)
b) o = - = . =
O AT G961y -2+ A+
T2(s-2) " 2(s+2)
Hs+K = Hs+K
© 25516 5-2)(s-3)
2H + K 3H + K

T Go22-3)  B-2)(-3)
2H + K 3H + K
B s —2 s—3
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13 Find the integrals of (a)(b)(c) in Problem 12 by integrating each partial fraction. The
integrals of C/(s — a) and D /(s — b) are logarithms.

. 1 1 1
Solution s = _ d
(@ /32—4 ’ /4(5—2) 4(s+2) §
1. s—2

1 1
— (s —2)— -In(s+2) = -1
pils=Y - ghs+2) =m0

s 1 1
®) /52—4d82/2(s—2)+2(s+2)d8

1 1 1
:51n(s—2)+§ln(s+2):§ln(sz—4)

(© ds

Hs+ K / 2H+ K 3H+ K
ST R ge— [ - n
52 —-554+6 5—2 s—3

—(2H+ K)In(s —2)+ (3H 4+ K) In(s — 3)

14 Extend PF3 to PF3’ in the same way that PF2 extended to PF2’ :

PF3’ G+ Hs+K Ga*+Ha+K +z+z
(s—a)(s—b)(s—c) (s—a)a—b)a—c) ? 7

. Gs?+ Hs+ K A B C
Solution We want = .
(s—a)(s=b)(s—¢c) s—a s—b s—c

We can multiply both sides by (s — a)(s — b)(s — ¢) and solve for A, B, C.. Or we can
use A as given in the problem statement—and permute letters a, b, ¢ to get B and C
from A. That way is easier, and our three fractions are
a®*G+aH+ K 1 b’ G+bH+ K 1 G+cH+K 1
(a—b)(a—c) s—a b—a)b—c) s—b (c—a)(c—0b) s—c¢
15 The linear polynomial (s — b)/(a — b) equals 1 at s = a and 0 at s = b. Write down a
quadratic polynomial that equals 1 at s = aand 0 at s = band s = c.

(s =b)(s—c)
(a—Db)(a—r¢)
16 What is the number C so that C(s — b)(s — ¢)(s —d) equals l at s = a ?
Note A complete theory of partial fractions must allow double roots (when b = a). The
formula can be discovered from I’Hopital’s Rule (in PF3 for example) when

b approaches a. Multiple roots lose the beauty of PF3 and PF3'—we are happy
to stay with simple roots a, b, c.

Solution equals O for s = band s = c. Itequals 1 for s = a.

1

Solution Ch C= .
olution oose @—b)(a—o)(a—d)

Questions 17-21 involve the transform F'(s) = 1 of the delta function f(t) = 4(¢t).
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17 Find F(s) from its definition [ f(¢)e *'dt when f(t) = 6(t —T), T > 0.
0

Solution The transform of 6(t — T') is F'(s) = /5(t —T)e *dt = e~*T.
0

18 Transform y” — 2y’ + y = §(t). The impulse response y(t) transforms into Y (s) =
transfer function. The double root s; = so = 1 gives a double pole and a new y(t).

Solution With y(0) = y’(0) = 0, the transform is (s> — 2s + 1)Y(s) = 1. Then
Y(s) = ﬁ and the inverse transform is the impulse response y(t) = g(t) = te?.

19 Find the inverse transforms y(t) of these transfer functions Y(s) :

2
s s s
@ —— (b) P © 5=
Solution (a) Y (s) = 5 :s—a+a:1+ a
s—a s—a s—a
y(t) = 3(t) + aet
s s 1 1

(b) Using PF2 we have Y (s) = —— 5= G_alsta) = 30 —a) + 20+ a)

. ) 1 1
The inverse transform is y(t) = Eeat + Ee_at = coshat

s2 52 —a? +a? a? a a
(c) (5) s2 — g2 2 — g2 +82—a2 +2(S—a) 2(3+a)
y(t) = o(t) + geat — ge_at = 4(t) + asinh(at)

20 Solve " + y = J(t) by Laplace transform, with y(0) = ¢’(0) = 0. If you found
y(t) = sin t as I did, this involves a serious mystery : That sine solves y" +y = 0,
and it doesn’t have y’(0) = 0. Where does §(t) come from? In other words, what is
the derivative of ¢y’ = cos t if all functions are zero for t < 0 ?

If y = sint, explain why y”’ = —sint + §(t). Remember that y = 0 for ¢ < 0.

Problem (20) connects to a remarkable fact. The same impulse response y = g(t)
solves both of these equations: An impulse at ¢ = 0 makes the velocity y’(0) jump
by 1. Both equations start from y(0) = 0.

y" 4+ By' 4+ Cy = 6&(t) withy’(0) =0 y” + By’ + Cy = 0 with y'(0) = 1.
Solution y" +y = 6(t) transforms into s?Y (s) + Y (s) = 1.
Then Y (s) = S+H has the inverse transform y(¢) = sin¢.

At time ¢t = 0 the derivative of y’ = cos(t) is not y” = sin(0) = 0, but rather
y’" = sin(0) + &(t), since the function y’ = cos(t) jumps from 0 to 1 at ¢ = 0.
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21 (Similar mystery) These two problems give the same Y (s) = s/(s? + 1) and the same
impulse response y(t) = g(t) = cos ¢. How can this be ?

(a) y' = —sin t with y(0) = 1 (b) ¢ = —sin t + &(t) with “y(0) = 0”

Solution (a) The Laplace transform of y'(t) = — sin(t) with y(0) = 1 is

sY(s)—1= —ﬁ
sY(s)=1- 521-1 - 823—5—1; - = 528—7—1
Yis) = SQj— 1
(b) The Laplace transform of 3/ () = — sin(t) + §(t) with y(0) = 0 is
sY(s) —y(0) = —52_‘_% +1
sY(s)-0= 828—;—1; 1 - 528—7- 1
o=

These two problems (a) and (b) give the same Y (s) and therefore the same y(t). The
reason is that §(¢) in the derivative y’ gives the same result as an initial condition
y(0) = 1. Both cause a jump from y = 0 before ¢t = 0 to y = 1 right after t = 0. And
both transform to 1.

Problems 22-24 involve the Laplace transform of the integral of y(t).

22 If f(t) transforms to F'(s), what is the transform of the integral h(t) = [ f(T)dT ?

o,

Answer by transforming the equation dh/dt = f(t) with h(0) = 0.

t
Solution 1f h(t) = [ f(T)dT then dh/dt = f(t) with h(0) = 0. Taking the Laplace
0

Transform gives :

sH(s) = F(s) and H(s) = Fis).

t
23 Transform and solve the integro-differential equation ¢’ + [y dt = 1, y(0) = 0.
0
t
A mystery like Problem 20: y = cos t seems to solve ¢’ + [ ydt = 0,y(0) = 1.
0

t
Solution The Laplace transform of ¢/ + [y dt =1 with y(0) =0 is
0
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1 1
Y(s) = =
) (s+1)s s2+1
The inverse transform of Y (s) is y(t) = sin(t)
About the mystery: The derivative of cost is —sint + §(¢) because cost jumps at
t = 0 from zero for ¢ < 0 (by convention) to 1. But I am not seeing a new mystery.

t
Transform and solve the amazing equation dy/dt + [y dt = &(¢).
0

t

d Y
Solution The transform of d—i —i—/ydt =4(t) is sY(s) + (s) =1.

0
1 s

Then Y (s) = =
(s) (s+1)s s2+1
Note that this follows from Problem 20, where we found that cos(t) has integral sin(t)
and derivative — sin(t) + 6(¢).
The derivative of the delta function is not easy to imagine—it is called a “doublet”
because it jumps up to +00 and back down to —oo. Find the Laplace transform of the
doublet dd/dt from the rule for the transform of a derivative.

A doublet §’(¢) is known by its integral : [ §'(¢)F (t)dt = — [ §(¢)F'(t)dt = —F'(0).

Solution The Laplace transform of §(¢) is 1. The Laplace transform of the derivative
is sY (s) — y(0). The Laplace transform of the doublet §/(t) = d§/dt is therefore s.

and y(t) = cost.

(Challenge) What function y(t) has the transform Y (s) = 1/(s? + w?)(s? + a?)?
First use partial fractions to find H and K :
H K
Y =
(S) 52—|—w2 + 52+a2
1 1 1 1
S l t. Y == = — .
otion YO = A @) A ) () (@ o)
Then y/(t) sin wt sin at
en = — .
Y w(a? —w?) a(a? —w?)
Why is the Laplace transform of a unit step function H(t) the same as the Laplace

transform of a constant function f(¢) = 1?
Solution The step function and the constant function are the same for ¢ > 0.
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Problem Set 3.1, page 160

1

(a) Why do two isoclines f(t,y) = s1 and f(t,y) = s2 never meet ?

(b) Along the isocline f(t,y) = s, what is the slope of all the arrows ?

(c) Then all solution curves go only one way across an

Solution (a) Isoclines can’t meet because f (¢, y) has one fixed value along an isocline.
(b) The slope of the arrows is fixed at s along the isocline f(¢,y) = s.

(c) All solution curves go one way (with slope s) across the isocline f(¢,y) = s.

(a) Are isoclines f(t,y) = s1 and f(t,y) = s2 always parallel ? Always straight ?

(b) An isocline f(¢,y) = s is a solution curve when its slope equals

(c) The zerocline f(t,y) = 0 is a solution curve only when yis __ : slope 0.

Solution (a) In case f(t,y) does not depend on ¢ (autonomous equation) the isoclines
are horizontal lines. In general isoclines need to be parallel or straight.

(b) If the slope of the isoclines f(¢,y) = s happens to be s (slope of arrows equals slope
of curve, so the arrows go along the isocline) then the isocline is actually a solution
curve. Example: A steady state where f(y) = 0 has arrows of slope zero. That
horizontal isocline is also the graph of the constant solution y(t) = Y.

(c) The zerocline is a solution curve when the slope is zero and y is constant.

If 41 (0) < y2(0), what continuity of f(¢,y) assures that y; (t) < yo(¢) for all ¢ ?
Solution Two solution curves y; (t) and y2 () can’t meet or cross if they are continuous
curves : this will be true if f and 9 f /0y are continuous.

The equation dy/dt = t/y is completely safe if y(0) # 0. Write the equation as
ydy = tdt and find its unique solution starting from y(0) = —1. The solution curves
are hyperbolas—can you draw two on the same graph ?

Solution dy/dt = t/yleadsto [ydy = [tdt and y* = t* + C. If y(0) = —1 then
y(t) = —V/12 + 1. The hyperbolas y? = t? + C are asymptotic to the 45 ° and —45 °
linesy =tand y = —t.

The equation dy/dt = y/t has many solutions y = Ct in case y(0) = 0. It has

no solution if y(0) # 0. When you look at all solution curves y = C', which points
in the ¢, y plane have no curve passing through ?

Solution The solution curves y = Ct (allowing all numbers C') go through all points
(t,y) with suitable C' = y/t—except the points on the vertical line ¢ = 0 (other
than the origin (0, 0) that all the lines y = Ct will pass through). You cannot solve
dy/dt = y/t with an initial value like y(0) = 1, because the right side y/t would be
1/0.

For y' = ty draw the isoclines ty = 1 and ty = 2 (those will be hyperbolas).
On each isocline draw four arrows (they have slopes 1 and 2). Sketch pieces of so-
lution curves that fit your picture between the isoclines.

Solution The solution curves dy/dt = ty have dy/y = tdt and Iny = t* 4 c and
Yy = exp (%tQ +¢) = Cexp (%tz). Solution curves cross isoclines f(¢,y) = s with
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that slope s! The arrows with that slope are tangent to the curves as they cross the
isocline.

The solutions to y’ = y are y = Ce’. Changing C gives a higher or lower curve. But

y' = 1y is autonomous, its solution curves should be shifting right and left!

Draw y = 2¢! and y = —2e! to show that they really are right-left shifts of y = et
and y = — e’. The shifted solutions to 4y’ = 7 are !¢ and — e!*¢.

Solution For all autonomous equations dy/dt = f(y), the solution curves are horizon-
tal shifts of each other. In particular for f(y) = y, the curves y = Ce! shift right-left
as C' increases-decreases.

For y' = 1 — y? the flat lines y = constant are isoclines 1 — y?> = s. Draw the
linesy = 0Oand y = 1 and y = —1. On each line draw arrows with slope 1 — y2.
The picture says that y = and y = are steady state solutions. From
the arrows on y = 0, guess a shape for the solution curve y = (ef —e™t) /(e +e7t).

Solution The picture will show the horizontal lines y = 1 and y = —1 as “zeroclines”
where f(t,y) = s = 1 —y? = 0. So those are steady state solution curves y(t) =Y =
lor—1.

The isocline y = 0 is the x-axis, along with f(t,y) = 1 — y?> = 1 = 5. (The arrows
cross the x-axis at 45 °, with slope s = 1.) So the solution curves are S-curves going
up from the line y = —1 to the line y = 1, rising at 45 ° along the z-axis halfway
between those two lines.

The parabola y = ¢ /4 and the line y = 0 are both solution curves for y’ = /|y|.
Those curves meet at the point ¢ = 0, y = 0. What continuity requirement is failed
by f(y) = \/|y|, to allow more than one solution through that point ?

Solution The function f(y) = +/|y| is continuous at y = 0 but its derivative df /dy =

1/2+/]y| blows up (because of 1/0.) So two solutions can start from the same initial
value y(0) = 0, and they do.

Suppose y = 0 up to time 7" is followed by the curve y = (¢ — T')%/4. Does this solve
, . . . . . .
y’ = +/|y| ? Draw this y(t) going through flat isoclines 1/|y| = 1 and 2.

Solution Yes, y’ = +/y| is solved by the constant y(t) = 0. It is also solved by the
curve y(t) = (t — T')? /4 because dy/dt = (t — T)/2 equals the square root of |y(t)|.
So solution curves can lift off the z-axis y = 0 anywhere they want, and start upwards
on a parabola.

The equation y’ = y2 — t is often a favorite in MIT’s course 18.03: not too easy.
Why do solutions y(t) rise to their maximum on y? = t and then descend ?

Solution Below the parabola y?> = t (which opens to the right instead of opening
upwards) the right side of dy/dt = y? — t will be negative. The solution curves have
negative slope and they can’t cross the rising parabola.

Construct f(t,y) with two isoclines so solution curves go up through the higher
isocline and other solution curves go down through the lower isocline. True or false:
Some solution curve will stay between those isoclines : A continental divide.

Solution We want the isocline f(t,y) = s = 1 to be above the isocline f(t,y) =
s = —1. A simple example would be f(¢,y) = y. Then the equation dy/dt = y has
solution curves y = Cet, C > 0 going up through the isocline f(¢,y) = 1 (which is
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the flat line 5y = 1). The curves y = Ce? with C < 0 go down through y = —1. The
continental divide is the solution curve y(¢) = 0 with C' = 0. Certainly y(¢) = 0 does
solve dy/dt = y.

There is always a “continental divide” where solution curves (like water in the Rockies)
can’t choose between the Atlantic and the Pacific.

Problem Set 3.2, page 168

1

Draw Figure 3.6 for a sink (the missing middle figure) with y = cie™2 + coe™t.

Which term dominates as ¢ — oo ? The paths approach the dominating line as they
go in toward zero. The slopes of the lines are —2 and —1 (the numbers s; and s2).

Solution The coe™" term dominates at t — oo since it decays at a slower rate.

Th ) sin wt sin at
en = — .
Y w(a? —w?) a(a? — w?)
Draw Figure 3.7 for a spiral sink (the missing middle figure) with roots s = —1 +£ 1.
The solutions are y = Cie 'cost + Coe 'sint. They approach zero because

of the factor e~*. They spiral around the origin because of cost and sin t.

Solution The spiral goes clockwise in toward (0,0). Not easy to draw to scale, by
hand!

Which path does the solution take in Figure 3.6 if y = e' + e/2? Draw the
curve (y(t), y'(t)) more carefully starting at ¢ = 0 where (y,y’) = (2, 1.5).

Solution Ast — oo, the path of the point (y(t),y’(t)) comes closer and closer to the
path for y = e'—because e’ dominates the other term e®/2. The path for y = e
has points (y,y’) = (ef, ') so it is a straight 45 © line in the (y, y’) plane.

Which path does the solution take around the saddle in Figure3.6 if y = e'/2 4+ =% ?
Draw the curve more carefully starting at t = 0 where (y,y’) = (2, —3).

Solution The function y = e*/2 + e~* comes from exponents % and —1 (positive and
negative will give a saddle point. The graph shows the spiral is unwinding clockwise
as it leaves the tight spiral and goes outward. For large ¢ the dominant part of (y,y")
will be (e*/2, £e!/2) from the growing term e*/2 in y.

Redraw the first part of Figure 3.6 when the roots are equal: s; = s = landy =
cret + cotel. There is no so-line. Sketch the path for y = et + tet.

Solution 1y = e'+tel hasy’ = 2et +tel. The larger term te! gives (y,y') ~ (te!, te?)
on the 45 ° line in the y, y’ plane. At t = 0 it starts from (y(0),y'(0)) = (1,2).

The solution y = e2! — 4e! gives a source (Figure 3.6), with iy’ = 22! — 4et. Starting
att = 0 with (y,y’) = (=3,—2), where is (y,y’) when ¢! = 1.1 and e! = .25 and
et =27

Solution Substituting the values ¢ = 1n 1.1 and In 0.25 and In 2, we get:
1. For ¢! = 1.1 we have (y,y’) = (—3.19, —1.98)

2. For ¢! = .25 we have (y,y’) = (—0.9375, —0.875)

3. For e! = 2 we have (y,y’) = (—4,0)
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Those early times don’t show the situation for large ¢, when the dominant term e?* gives
(y,y") = (2%, 2¢?") and the path approaches a straight line with slope 2.

The solution y = e’(cost + sint) has y’ = 2e cost. This spirals out because of e’.
Plot the points (y,y’) att = 0 and t = 7/2 and t = 7, and try to connect them with a
spiral. Note that e™/? ~ 4.8 and ™ ~ 23.

Solution

1. Fort =0, (yvy/) = (172)

2.Fort =2, (y,y’) = (e7/3,0) ~ (4.8,0)

3.Fort =, (y,y’') = (—e™, —2e™) ~ (—23.1, —46.2)

Maybe we can see the path better by writing (y,y’) = e(cost, cost) + et (sint, cost).
The first term goes forward and back on the 45 ° line. the second term circles around
and spirals out because of ef. So we have a big circle around a moving slider.

The roots s; and sy are +2¢ when the differential equation is . Starting from
y(0) = 1 and y’(0) = 0, draw the path of (y(t),y’(t)) around the center. Mark the
points when ¢ = 7/2, 7, 37/2, 2. Does the path go clockwise ?

Solution The differential equationis y”’ + 4y = 0. The solution starting at (y,y’) =
(1,0) is (y(t),y'(t)) = (cos 2t, —2 sin 2t). This is an ellipse in the equation

yQ + Z(y/)Q = cos® 2t + sin?2t = 1.

The path is clockwise around that elliptical center.

The equation y” + By’ +y = O leads to s> + Bs +1 = 0. For B = -3, -2, —1, 0,
1, 2, 3 decide which of the six figures is involved. For B = —2 and 2, why do we not
have a perfect match with the source and sink figures ?

Solution To determine which figure is involved, we solve the quadratic equation:

—B++/B2 -4
s1 and s, are —
B = —3has s; = 325 ~ 0.38 and sy = 325 ~ 2.6. Source with 0 < s, < 5o

2 2
1 and sy = 1. Since 0 < s1 = s we have a source

B = —2 has s;

B = —1has s; = 25 and s, = 1537 Spiral Source (outward) Re(s;) = Re(s2) > 0

B = O0has sy =i and s; = —i. Since 0 = Re(s1) = Re(s2) we have a center

B = 1has s = ’HT@ and sy = ’”T‘/E Spiral Sink (inward) Re(s;) = Re(sz) < 0

B = 2has s; =—1 and sy = —1. Since s; = s < 0 we have a sink

B = 3has s = *%\/5 ~ —2.6 and s = # ~ —0.38. 51 < sy < 0. This is a sink

The special case B = 2 and B = —2 gave equal roots s; = s2. Then there will be a
factor “¢” in the null solution. The path won’t close on itself like a circle or ellipse. As
it turns, it will go slowly outward from that factor ¢.
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10

For y” + y’ + Cy = 0 with damping B = 1, the characteristic equation will be
52 + s+ C = 0. Which C gives the changeover from a sink (overdamping) to a spiral
sink (underdamping) ? Which figure has C' < 0?

Solution The solutions to the quadratic equation s2 + s + C' = 0 are
—1+v1-4C
2
The change from a sink to a spiral sink occurs at C' = i. Those are sinks because the

real part of s is negative. When C is less than zero, we change to one positive root and
one negative root. Then the path becomes a saddle.

s1 and sy are

Problems 11-18 are about dy/dt = Ay with companion matrices [ _ o 1 ] .

11

12

13

14

C —B
The eigenvalue equation is A2 + B\ + C = 0. Which values of B and C give com-
plex eigenvalues ? Which values of B and C' give A\ = A\ ?
Solution Look at the solution to the quadratic equation A2 + BA+ C = 0:

~B++vB?2-4AC -B++B?2-4C
24 - 2
Therefore when B2 < 4C' we get complex eigenvalues.
On the other hand, when B? = 4C we get A\| = Ay = —B/2 (the square root is 0).

Find A; and )\, if B = 8 and C' = 7. Which eigenvalue is more important as t — 0o ?
Is this a sink or a saddle?

Al and )\2 =

Solution 'We solve the quadratic eigenvalue equation for A\; and Ay :
- —B+VB? —4AC  —-8++/64—28
= 5 =

Since s; < sa < 0 we have a sink. The more negative Ay gives slower decay as
t — oo.

gives A\; = —7 and Ay = —1.

Why do the eigenvalues have A} + Ay = —B? Whyis \jAe = C?

Solution This refers to the eigenvalues of the companion matrix :

A= { 0 1] comes from v =Yz . Then y{' =y is y{’ + By{ +
-C -B y4 = —Cy — By, 1 Y2181 1

Cyl = 0.

The eigenvalues \; and ), are the roots of A2 + B + C = 0 just as the roots s; and
s are the roots of s2 + Bs + C = 0. We know from factoring into (s — s1)(s — s2) or
(A — A1) (X — X2) that the coefficient of A? is 1, the coefficient of A is B = —\; — Ao,
and the constant form is C' = \; times As.

Which second order equations did these matrices come from ?
0 1 0 1
Al = [ 1 0 } (saddle) Ay = [ 1 0 ] (center)

Solution Write the matrix equation 3’ = Ay as two coupled first order equations. For
A we get
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THERTE
Y2 =
Then y{' = y4 = y; and the second order equationis y "/ = y.
The second matrix As gives y{ = y2 and y5 = —y;.
Then y{’ = y5 = —y1 and the second order equation is y "/ 4+ y = 0. (Notice that we

also find y' = —ys.)

The equation y” = 4y produces a saddle point at (0,0). Find s; > 0 and s < 0
in the solution y = c1e°1* + coe®2t. If ¢1co # 0, this solution will be (large) (small) as
t — oo and also as t — —o0.

The only way to go toward the saddle (y,y’) = (0,0) ast — oo is ¢; = 0.

Solution Assuming a solution of the form y(t) = e*! gives:

y// — 4y =0
s2e5t _ 4est —
s2-4=0
s ==£2
Therefore s; = 2 and s = —2. The solution becomes y = cie?* 4 coe™2t. As

t — 00, the €2! term will grow unless ¢; = 0. Inthatcase (y,y’) = (cae ™2, —2coe %)
goes to the saddle point (0, 0).

If B =5 and C = 6 the eigenvalues are A\; = 3 and A2 = 2. The vectors v = (1, 3)
and v = (1, 2) are eigenvectors of the matrix A : Multiply Av to get 3v and 2v.

Solution v = (1, 3) is an eigenvector with eigenvalue A; = 3:

o2 -

Similarly v = (1, 2) is an eigenvector with eigenvalue Ay = 2:

0 11| _1|2| _ 9 1
—6 5| |2 4] (2|
Notice that these eigenvectors of the companion matrix A have the form v = (1, A).
In Problem 16, write the two solutions y = vert to the equations y’/ = Ay.

Write the complete solution as a combination of those two solutions.

Solution The eigenvectors v1 = (1,3) and v2 = (1,2) give two pure exponential
solutions y = ve't:

o3t o2t
Y1 = |:3e3t:| and Y2 = |:262t:| .
The complete solution is y(t) = ¢1y1 + coy2. Two constants to match two components
of the initial vector y(0) at ¢ = 0. Then y(0) = ¢1v1 + cava2.
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18

19

20

The eigenvectors of a companion matrix have the form v = (1, ). Multiply by A to
show that Av = \v gives one trivial equation and the characteristic equation A2 + B+

C=0.
0 1 1]_ [ . A=
~C -B AT 18 ~C—B)N =\2

Find the eigenvalues and eigenvectors of A = [ 515 515 } .

Solution The eigenvectors of a companion matrix have the special form v = (1, A), as
the problem statement shows—because —C' — B = A\? from the eigenvalue equation
A2+ B+ C=0.

The example A is not a companion matrix!
31 . 1 1 .
A= 1 3 has eigenvectors vy = 1 and v = 1 with Ay =4 and Ay =

sl b= sl =]

The equation for \ is A2 — 6+ 8 = 0 with 6 coming from the trace 3 + 3 and 8 coming
from the determinant 9 — 1.

An equation is stable and all its solutions y = cje®'t + cze®2! go to y(oo) = 0
exactly when

(51<00r52<0) (51<Oand32<0) (Resl<0andReSQ<O)?
Solution The correct answer is (Res; < 0 and Resy < 0).

If Ay” + By’ 4+ Cy = D is stable, what is y(c0) ?

Solution The steady state solution to this equation is the constant y(oco) = D/C.
Because the equation is stable, the null solution y,, (¢) will go to zero as t — oco. The
roots s; and sg have negative real parts.

Problem Set 3.3, page 182

1

If y/ = 2y + 32 + 4y + 522 and 2’ = 62 + Tyz, how do you know that Y = 0,
Z = 0 is a critical point ? What is the 2 by 2 matrix A for linearization around
(0,0) ? This steady state is certainly unstable because

Solution Here y' = f(y,2) and 2’ = g(y, z) have f = g = 0 at the point (y, z) =
(0,0). Then this point is a critical point (stationary point). The Jacobian matrix of
derivatives at that point (0, 0) is

of/oy 0f/0z 248y 3+10z 2 3
Bgfaly/ 39;62]_{ 7o 6+ 7y }_{0 6] at (y,z) = (0,0).

The eigenvalues of this triangular matrix are 2 and 6 (on the diagonal). Any positive
eigenvalue means growth and instability.
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In Problem 1, change 2y and 6z to —2y and —6z. What is now the matrix A for
linearization around (0,0) ? How do you know this steady state is stable ?

Solution

| 248y 3410z | | -2 3 ) o
A= { 72 -6+ Ty } o [ 0 —6 ] now has eigenvalues A\=—2, —6: stable.
The system y' = f(y,z) = 1 —y*> — 2z, 2/ = g(y,2) = —bz has a critical point

atY = 1, Z = 0. Find the matrix A of partial derivatives of f and g at that point:
stable or unstable ?

Solution Here f = g =0 when (Y, Z) = (1,0).
of/oy of/oz | | -2y -1 | | -2 -1
[ 0g/0y 0g/0z | — 0 -5 | 0 -5 |- Stable.

This linearization is wrong but the zero derivatives are correct. What is missing ?
Y =0, Z = 01is not a critical point of y’ = cos (ay + bz), 2’ = cos (cy + dz).

y" | | —asin0 —bsin0 y| |00 Yy
2! | 7| —ecsin0 —dsin0 z| |00 z |
Solution At the point (Y, Z) = (0, 0), the functions f = cos(0+0) and g = cos(0+0)
are equal to 1. This is not a critical point.
Find the linearized matrix A at every critical point. Is that point stable ?
r_ I .3
y =1-yz Yy =-y -z
@32, "% w» L

Solution (a) f(y,z) = 1 —yz and g(y,z) = y — 2> are both zero when y = 23 and
then1 —yz = 1—2%* = 0. Then Z = 1 goes with Y = 1 and Z = —1 goes with
Y = —1: two critical points.

= (o )15 Bl S e 3 3]

The eigenvalues solve det(A — AI) = 0.

At (1,1) det[_ll_A _;ﬁA}:A2+4A+4=0, A=—2,-2

1—A 1 2 . _
1 _3_A] =XN4+2\-4=0, A=-14++5
Then (Y, Z) = (1, 1) is stable but (—1, —1) is unstable (because —1 + /5 > 0).

) f = —y> —zand g = y + 2> are both zero at (Y,Z) = (0,0) and (1,—1)
and (—1,1): three critical points because f = 0 gives 2 = —y> and then g = 0
gives y = y?, leading to y = 0,1, or —1. The stability test applies to the matrix of
derivatives :

At (—1,—1) det {

-3y -1

A =
322

] has det(A — M) = A% + A(3y? — 322) + 1 — 922>

At (0,0) AN +1=0and \ = +i Unstable (neutrally stable)
At (1,—1)and (—1,1) A2 —-8=0 Unstable with A = /8.
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6 Can you create two equations y’ = f(y, z) and 2’ = g(y, z) with four critical points :
(1,1)and (1,-1)and (—1,1) and (—1,—1) ?

I don’t think all four points could be stable ? This would be like a surface with four
minimum points and no maximum.

Solution An example would be y’ = y? — 22 and 2z’ =1 — 22. Then 22 —1 =0
and y? — 2% = 0 have the four points (Y, Z) = (+1, £1) as critical points. In this case
the linearized matrix (Jacobian matrix) is

gg;gg gjgc;gj ] = [ 2Oy :;z } andonly (Y, Z) = (—1,1) is stable.

7 The second order nonlinear equation for a damped pendulum is y” + 3’ + siny = 0.
Write z for the damping term 4, so the equation is z’ + z + siny = 0.

Show that Y = 0, Z = 0 is a stable critical point at the bottom of the pendulum.
Show that Y = 7, Z = 0 is an unstable critical point at the top of the pendulum.

8 Those pendulum equations y’ = z and z’ = —siny — z have infinitely many critical
points ! What are two more and are they stable ?

Solutions to 7 and 8 The systemy’ = z and 2’ = —z — sin y has critical points when
z = 0 and sin y = 0 (this allows all values y = n).

The Jacobian matrix of derivatives of z and —z — sin y is a companion matrix :

Ao 0 17 [ o 1 0 1
| —cosy -1 |~ | -1 —1]° |1 -1

We have — cosy = —laty = 0,27, +4n,...and —cosy = +1laty = £m, +3m, ...
The eigenvalues satisfy A2 + A +1=0o0r A> + A —1 = 0:

A=1(-1+£+/=3) = 3(-1+iy/=3) is stable at y = 2nm.

A =1(-1£+/5) is unstable at y = (2n + 1)m.

The pendulum is stable hanging straight down (at 6:00) and unstable when balanced
directly upward (at 12:00).

9 The Liénard equation y” + p(y)y’ + q(y) = 0 gives the first order system y’ = z and
2! = . What are the equations for a critical point ? When is it stable ?

Solution The coupled equations are 4y’ = z and 2z’ = —p(y)z — q(y). These right
sides are zero (critical point) when z = 0 and ¢(y) = 0.

The first derivative matrix is

E A A N )

That companion matrix is stable (according to Section 3.1) when B > 0 and C > 0.

10 Are these matrices stable or neutrally stable or unstable (source or saddle) ?

EI R T e
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Solution The stability tests are trace < 0 and determinant > 0. This is because
determinant = (A\1)(A2) and trace = sum down the main diagonal = \; + Az. Apply
these tests to find

stable, unstable (saddle with det < 0), stable, unstable, stable.
The second matrix has A = 43¢ which gives undamped oscillation and neutral stability.

Suppose a predator x eats a prey y that eats a smaller prey z:
de/dt = —x + xy Find all critical points X, Y, Z
dy/dt = —zy +y + yz Find A at each critical point
dz/dt = —yz + 2z (9 partial derivatives)

Solution The right hand sides are 2(1 — y) and y(—x + 1 + 2) and z(—y + 2). These
are all zero at three critical points (X,Y, 7): (0,0,0) (0,2,—1), (1,1,0)

(Follow the two possibilities X = 0 or Y = 1 needed for X (1 — Y") = 0.) The matrix
of first derivatives of those right hand sides is

1—y —x 0
l -y —r+1+4+z y ] . Substitute the three critical vectors (X,Y, Z) :
0 —z 2—y

A:

1 00 -1 0 O 0 -1 0
0101 [—202] l—l 01]
0 0 2 0 1 0 0 0 1

The damping iny "+ (y')? 4y = 0 depends on the velocity y’ = z. Then 2z’ +23+y =
0 completes the system. Damping makes this nonlinear system stable—is the linearized
system stable ?

Solution y' = zand z’ = —y — 23 has only (Y, Z) = (0,0) as critical point :

A = first derivative matrix = [ _01 _;ZQ ] has determinant = 1, trace = —32%:
unstable.
Determine the stability of the critical points (0,0) and (2,1) :
' / 2
y'=-y+tdztyz y'=-y +4z
@) 2= —y— 224 2yz (b) 2! =y — 22%

Solution (a) The first derivative matrix at (y, z) = (0,0) or (2,1) is

|l z2=1 44y | | -1 4 0 6 | (unstable)
A_[z—l 2y—2}_[—1 —2](“2‘““)0{1 2} (trace 2)

(b) The first derivative matrix at (y, z) = (0,0) or (2,1) is (replace x by z)

_| "2y 4 _ | 0 4 | (unstable) -4 4
A= { 1 _8,3 } = { 1 0 } (trace 0) or { 1 -8 }(stahle).
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Problems 14-17 are about Euler’s equations for a tumbling box.

14

15

16

17

The correct coefficients involve the moments of inertia Iy, 5, I3 around the axes.
The unknowns z, y, z give the angular momentum around the three principal axes :

dx/dt = ayz with  a=(1/I3—1/I7)
dy/dt = bxz with b= (1/I; —1/13)
dz/dt = cxy with  ¢= (1/I,—1/I).
Multiply those equations by x, 3/, z and add. This proves that 2% + y? + 22 is .
Solution Multiply by z, y, and z to get
zr' = axyz
yy' = bayz
ZZ/ = CrYyz

2(@? +y*+2%) = (a+ b+ c)zyz = 0 for the given a,b,c.
Then 22 + 32 + 22 = constant because its derivative is zero.
Find the 3 by 3 first derivative matrix from those three right hand sides f, g, h.
What is the matrix A in the 6 linearizations at the same 6 critical points ?
Solution The first derivative matrix in Problem 14 is
of/0x Of/0y Of/0z 0 az ay
0g/0x 0g/0y O0g/0z | =| bz 0 bz
Oh/O0x Oh/Oy Oh/Oz cy cx O
The 3 right sides are zero at the 6 critical points (+1,0,0), (0, £1,0), (0,0, +1).

0 0 0 0 0 +a 0 4a 0
0 0 b, 0 0 0|, | £ 0 0
0 +c 0 tc 0 0 0 0 0

All six points are neutrally stable (Re A = 0).

You almost always catch an unstable tumbling book at a moment when it is flat.
That tells us: The point x(t), y(t), z(¢) spends most of its time (near) (far from)
the critical point (0, 1,0). This brings the travel time ¢ into the picture.

Solution This neat observation was explained to me by Alar Toomre. The velocity
(f,g9,h) = (ayz,bxz, cxy) is low near a critical point where z,y, z are small. Then
the book spends most time near the point where the book is flat and easy to catch.

In reality what happens when you

(a) throw a baseball with no spin (a knuckleball) ?

(b) hit a tennis ball with overspin ?

(c) hit a golf ball left of center ?

(d) shoot a basketball with underspin (a free throw) ?

Solution (a) The knuckleball is unstable—hard for the batter to judge.
(b) The topspin brings the tennis ball down faster with a higher bounce.
(c) The golf ball slices to the right off the fairway.

(d) The basketball with underspin is more stable with less bounce around the rim.
It is more likely to end up in the basket.
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Problem Set 3.4, page 189

1 Apply Euler’s method vy, +1 = yn + Atf, to find y; and yo with At = % :
@y’ =y by =y? ©y' =2ty (all with y(0) = yo = 1)

Solution (a) y1 = yo + At yo = 1+ At = 1.5 yo = (1 + At)? =y, =
(1+ At =225

Oy =go+ At R=1+At=15 yy=y +Aty} =1+ A+ At(1+2A¢ +
At?) = (14 At)(1 + At + At?) = (1.5)(1.75)

©y1 = (142t+ At)yo = 1 becauset =0 yo = (1 + 2t + At)y; = 1.5 because
t = At.

2 For the equations in Problem 3, find y; and y» with the step size reduced to At = %.
Now the value yo is an approximation to the exact y(¢) at what time ¢?
Then y32 in this question corresponds to which ¥, in Problem 3 ?

Solution With At = %, y2 will now be an approximation to the true solution y(%)
because 2A¢t = 1.

@y =1+At=5/4=1.35 Yo = (1+ At)? = 25/16
(b)yy1 =1+ At =1.25 v=01+71)1+1+1) =3 (%)
©y =1 yo = (L+ 26+ Aty = (1+ 55) = (3)
3 (a) For dy/dt = y starting from yo = 1, what is Euler’s y,, when At = 1?

(b) Is it larger or smaller than the true solution y = ¢! at time t = n ?

(¢) What is Euler’s y2,, when At = 1 ? This is closer to the true y(n) = e™.

Solution (a) Yn1+1 = (1 + At)yn = 2y so yp, = 2"

(b) 2™ is smaller than e”

©) Ynt1=1+ At)y, = %yn Then yo, = (1—1—%)2” is above 2" because (1—1—%)2 > 2.

4 For dy/dt = —y starting from yo = 1, what is Euler’s approximation y,, after n steps
of size At ? Find all the y,,’s when At = 1. Find all the y,,”s when At = 2. Those
time steps are foo large for this equation.

Solution yp+1 =Y, — Aty, so y, = (1 — At)"yo.
If At = 1thenall of Y7,Y5,Y5, ... are zero.

If At =2then Y, 11 = —y, and y, = (—1)™.

The approximation will blow up for At > 2.

In reality it seems useless for At > 0.1.

5 The true solution to y’ = y? starting from y(0) = 1is y(t) = 1/(1 —t). This
explodes at ¢ = 1. Take 3 steps of Euler’s method with At = = and take 4 steps
with At = i. Are you seeing any sign of explosion ?

1
3

Solution With At = %, Euler’s method for y’ = y? becomes yn41 = yn + Aty2.
Three steps with At = % and four steps with At = % give
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10

y1=13, Y2=322, ys=__ =2 yp=2 ys=_ w=_
We are not reaching infinity at time ¢ = nAt = 1 but as At — 0 and n = 1/At the
numbers y,, will keep growing past any bound.

The true solution to dy/dt = —2ty with y(0) = 1 is the bell-shaped curve y = eIt
decays quickly to zero.  Show that step n + 1 of Euler’s method gives
Ynt+1 = (1 — 2nAt?)y,. Do the y,,’s decay toward zero ? Do they stay there ?

Solution A step of Euler’s method starting at time ¢t = nAt gives yp41 = Yn —
2(nAt)yy. In the early steps we are multiplying y,, by 1 — 2nAt¢ which is normally
less than 1. So the y,, are decreasing at first. But when n is larger than 1/At, we are
multiplying by a number below —1. At that point the y,, start growing and changing
sign at every step : serious instability.

The equations ' = —y and z’ = —10z are uncoupled. If we use Euler’s method for

both equations with the same At between % and 2, show that y,, — 0 but |z,,| — 0.

The method is failing on the solution z = e~ 19 that should decay fastest.

Solution The Euler formulas are y,,+1 = (1 — At)y,, and 2,41 = (1 — 10At)z,. For
time steps At between 1% and 2, the y factor has |1 — A¢| < 1. But the z factor has

1 — 10A¢| > 1. The true solutions are y = Ce~* and z = Ce ™10,
Y

But that quickly decreasing z has a quickly increasing z,, when |1 — 10A¢| > 1:
instability.

What values y; and yo come from backward Euler for dy/dt = —y starting from
yo = 1?2 Show that yP < 1 and y¥ < 1 even if At is very large. We have absolute
stability : no limit on the size of At.

Solution Backward Euler for y/ = —y iS yni1 — yn = —Aty,1 (not —Aty,).
Then y,,+1 = yn /(1 + At). For any At that factor 1/(1 + At) is less than 1: absolute
stability.

The logistic equation y’ = y—12 has an S-curve solution in Section 1.7 that approaches
y(oo) = 1. This is a steady state because 3y’ = 0 when y = 1.

Write Euler’s approximation y,, 1 = to this logistic equation, with stepsize
At. Show that this has the same steady state : y,,+1 equals y,, if y,, = 1.

Solution y' = y—y? is approximated by ¥, 11 = yn +At(y, —y2). This equation has
a steady state when y,, 11 = y,—and this requires the At factor to be zero: y,, — yfl =
0. So the two steady states are (y,, = 1 forever) and (y,, = 0 forever).

The important question in Problem 3 is whether the steady state y,, = 1 is stable
or unstable. Subtract 1 from both sides of Euler’s ¢, 11 = yn + At(y, — y2):

Yni1 — L =yn + At(yn —yo) — 1 = (yn — 1)(1 — Atyn).

Each step multiplies the distance from 1 by (1 — Aty,,). Near the steady yoo = 1,
1 — At y, has size |1 — At|. For which At is this smaller than 1 to give stability ?

Solution y, — 1 1is the distance from steady state. The equation in the problem shows
that this distance is multiplied at each step by a factor 1 — Aty,,. This factor has
|1 — Aty,| < 1 when 0 < Aty,, < 2. When y,, is near 1, this means At can be
almost 2 for stability.
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11 Apply backward Euler y5, | = y,+Atf5 | = y,+At [yfﬂ - (yfﬂ)ﬂ to the logis-

tic equation y' = f(y) = y — y% Whatis yP if yo = § and At = 1?
You have to solve a quadratic equation to find y£. I am finding two answers for yZ.

A computer code might choose the answer closer to .

Solution At each new time step, Backward Euler becomes a quadratic equation for
Yn41 in the logistic equation. If yo = & and At = § the equation for y; (= y?) is

At(y1)* + (1 - At)yr —yo=0 OR iy% + Zyl - % =0.
Multiply by 4. The solutions of 3% + 3y; — 2 = 0 are
Y = #ﬁ The better choice (near %) is le = #ﬁ
12 For the bell-shaped curve equation y’ = —2ty, show that backward Euler divides

Yn by 1 + 2n(At)? to find y5 ;. As n — oo, what is the main difference from
forward Euler in Problem 3 ?

Solution Backward Euler for y' = —2ty is Yn41 — yn = —2tAtyni1 OF Ypi1 =
Yn/ (1 + 2t + Ab).
That fraction is smaller than 1 for all ¢ and A¢t. Then the numbers y,, are steadily
decreasing as n — o0, like the true solution y(t) = et (Forward Euler was hopeless
in Problem 6, with Y,, increasing and changing sign at every step beyond n = 1/At.)
13 The equation y’ = /|y[ has many solutions starting from y(0) = 0. One solution
stays at y(¢) = 0, another solution is y = t?/4. (Then y’ = t/2 agrees with \/y.)
Other solutions can stay at y = 0 up to ¢t = T, and then switch to the parabola
y = (t — T)?/4. As soon as y leaves the bad point y = 0, where f(y) = y'/?
has infinite slope, the equation has only one solution.
Backward Euler y; — At\/m = yo = 0 gives two correct values y° = 0 and
yP = (At)?. What are the three possible values of y2 ?

Solution Backward Euler for y2 will be yo — At /|y2| = Yi. If yP = 0 then y&

can be 0 or (At)2. If yP = (At)? then z = /|y¥| solves x? — Atz — (At)? = 0.
Again two possibilities :
1

Because +/|y| is continuous but its derivative blows up at y = 0, multiple solutions are
possible.

14 Every finite difference person will think of averaging forward and backward Euler :
. c _A 1 1 ..
Centered Euler / Trapezoidal Ypi1 — Yn = At > fn+ > I 11

For y/ = —y the key questions are accuracy and stability. Start with y(0) = 1.
1— At/2

1 1
c c : c
At ives = .
Y1 — Yo ( Yo y1> g Yy 1 \t/2 Yo

2 2

Stability Show that |1 — At/2| < |1 4+ At/2| for all At. No stability limit on At.



3.5. Higher Accuracy with Runge-Kutta 95

Accuracy For yo = 1 compare the exact y; = e 2 = 1 — At + %AtQ —
with y7 = (1 — %At)/(l — %At) =(1- %At)(l - %At—l— %AtQ — ).
An extra power of At is correct: Second order accuracy. A good method.

Solution Stability is |yn+1| < |yn| for an equation like y’ = —y where the true
solution y = e~! is decreasing. In this problem

o 1-At/2

B 1— At/2
T TTA2

1+ At/2

At At
1+7 > 11— —

yo has growth factor >

’ < 1 because

Accuracy is decided by comparing y§ to the exact ;. The two series agree in the terms
1 and —At and %(At)2 : Second order accuracy because the (At)? error appears in
1/At time steps to reach the typical time ¢ = 1. Sign correction in text to:

1 1
c
=|1-ZAt 1+-At ) =---
The rest is correct and produces 1 — At + %(Azﬁ)2 ... as required.

The website has codes for Euler and Backward Euler and Centered Euler. Those
methods are slow and steady with first order and second order accuracy. The test problems
give comparisons with faster methods like Runge-Kutta.

Problem Set 3.5, page 194

Runge-Kutta can only be appreciated by using it. A simple code is on math.mit.edu/dela.
Professional codes are ode 45 (in MATLAB) and ODEPACK and many more.

1 For y’ = y with y(0) = 1, show that simplified Runge-Kutta and full Runge-Kutta

give these approximations y; to the exact y(At) = eAt:

1 1 1 1
Yy =1+ At + 5(At)2 i =14 At + §(At)2 + E(At)3 + ﬂ(At)‘*
Solution Simplified Runge-Kutta (equation (1) in this section) when y' = f(¢,y) =y :

1 1
Yntl = Yn + At |:§f(tn7yn) + §f (tn+1a yrl?jll-llcr)]

2

1 1
=Yn + At |:§yn + 3 (yn + Atyn):|
1
= yp + Aty, + E(AtQ)yn (3 good terms ofety,,)

Full Runge-Kutta is in equation (5)—now applied when f(t,y) = y:

1 1 At At
1 At 1 At At
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Then the Runge-Kutta choice for y,, 11 is correct through (At)* !

At At At At
yn+?(k$1+2k2+2k3+k4):yn |:1+?+?<1+7)+

B (1A (1 &)Y 8 (g B0 (1 81)))

= Yn {1 + At + %(At)z + %(At)?’ + i(At)‘*}

24

With At = 0.1 compute those numbers ¢ and y*¥ and subtract from the exact y =
et The errors should be close to (At)3 /6 and (At)®/120.

Solution When yp = 1 and At = 1—10, the first step in the solution above gives

Simplified Runge-Kutta 1 + -5 + 4 (&)” = 1.105.

1o, 1(1N2 113 1 r1y4 1 1 1 1
Runge-Kutta 1+ 15+ 5 (15)” +5 (16)" + 21 (15) = 15 + 00 + 5000 + 270000 =
1.1051708.

The exact growth factor is exp (1) = 1.1051709. Error 10~ is near 10~°/120.

Those values y§ and 7 have errors of order (At)? and (At)°. Errors of this size at
every time step will produce total errors of size and at time 7', from N
steps of size At = T'/n.

Those estimates of total error are correct provided errors don’t grow (stability).

Solution Local errors of size (At)3 or (At)® produce global errors of size (At)? or
(At)* after 1/At—provided the system is stable and local errors don’t grow.

dy/dt = f(t) with y(0) = 0 is solved by integration when f does not involve y.
From time ¢ = 0 to At, simplified Runge-Kutta approximates the integral of f(¢):

f(At)
L & 5
yY = At (if(O) + §f(At)) is close to y(At) = /f(t)dt
0 0 At

Suppose the graph of f(¢) is a straight line as shown. Then the region is a frapezoid.
Check that its area is exactly y¥. Second order means exact for linear f.

Solution The area of a trapezoid is (base) (average height) = (A#)(f(0)+ f(At))/2.
This is exactly the answer chosen by simplified Runge-Kutta.

Suppose again that f does not involve y, so dy/dt = f(t) with y(0) = 0. Then full
Runge-Kutta from ¢ = 0 to At approximates the integral of f(t) by yf¥ :

ny = At (c1f(0) + caf (At/2) + c3 f(AL)) . Find c4, c2, c3.
At

This approximation to f f(t) dt is called Simpson’s Rule. It has 4™ order accuracy.
0

Solution Full Runge-Kutta allows the top edge of the trapezoid to be curved : it is the
graph of a nonlinear f(¢). The area under this curve is well approximated by Simpson’s
Rule :
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area =~ At [%f(O)—l— %f (%) + %f(At)} .

If you apply Runge-Kutta to y’ = f(t) from 0 to At, with the right hand side indepen-
dent of y, the result is

ki = %f(o) ka = %f (%) ks = %f (%) ka = %f (89)

At At 4At At
?(/{14—2]@-‘1—2/{34—/{4) = gf(())-i-?f (7

6 Reduce these second order equations to first order systems y’ = f(¢,y) for the vector
y = (y,y'). Write the two components of y¥ (Euler) and y7 .
@y"+yy' +yt =1 Omy” +by’ +ky = cost
Solutions to Problems 6 and 7 Write z for y’. The first order systems are

@y == b y' ==z
4

) + %f (At) : Simpson’s Rule

2 =1—-yz—y mz' = —ky — bz + cost

Then Euler’s method gives (y¥, 2) from (yo, 20) :

E
Y Yo 20
2z 20 1 —yoz0 — (20)
B z
SR S L N
mzf mzo —kyo — bzg + cos0

Simplified Runge-Kutta finds (y7,z7) from (yo,20) by adding half of those Euler
corrections plus half of the updated correction :

S I B O A LA A

2 20 2 | 1-yo0z0 — (20)* 2| 1-ylar = (&)
) y1s | Yo At | Zo n At | 2P

mzy 20 2 | —kyp... 2 | —kyf —b2F + cos At

8 For iy’ = —y and yo = 1 the exact solution y = e~* is approximated at time At by 2
or 3 or b terms:

1

3
(At) t34

yP=1-At yf = 1—At+%(At)2 Yyt = 1—At+%(At)2 (At)*

1
6
(a) With At = 1 compare those three numbers to the exact e~!. What error E ?
(b) With At = 1/2 compare those three numbers to e ~'/2. Is the error near £/16 ?
Solution (a) At = 1givesyf’ =0 y¥ =1 yRK =2 = 375 compared to the
exacte™ ' =.368 FEK =.007.
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(b) At =1givesyf =1 yf=3 JfK= % =.60677 e /2 =.60653
ERE = ,00024.
Two steps with At = % would leave an error about 2(.00024) = —.00048 which is

close to .007/16.
For y' = ay, simplified Runge-Kutta gives y5 ; = (1 + aAt + 3(aAt)?)y,.
This multiplier of y,, reaches 1 — 2 + 2 = 1 when aAt = —2: the stability limit.

(Computer experiment) For N = 1,2,...,10 discover the stability limit L = Ly
when the series for e~ is cut off after N + 1 terms:

1 3 1 N| _
FUARIEEEE T A ES

1
1-L+=L%—
*3 6

We know L = 2 for N =1 and N = 2. Runge-Kuttahas L = 2.78 for N = 4.
Solution The stability limits Ly for N = 1,. . .;10 come from MATLAB:
20 2.0 2513 2785 3.217 3.55 3.954 4.314 4.701 5.070.
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Problem Set 4.1, page 206

1 With A = I (the identity matrix) draw the planes in the row picture. Three sides of a
box meet at the solution v = (z,y, 2) = (2,3,4):

lr+0y+0z=2 1 0 0 T 2
0z 4+ 1y + 0z =3 or [O 1 O][y]:[?)}.
0 0 1

Ox+0y+1z=4 z 4

Draw the four vectors in the column picture. Two times column 1 plus three times
column 2 plus four times column 3 equals the right side b.
The columns are ¢ = (1,0,0) and 5 = (0,1,0) and k = (0,0,1) and b = (2,3,4) =
21+ 37 + 4k.

2 If the equations in Problem 1 are multiplied by 2, 3, 4 they become DV = B:

2c+0y+0z= 4 2 00 x 4
Oz +3y+0z= 9 or DV_[O 3 O][yl_l9]_B
Ox + 0y +4z =16 0 0 4 z 16

Why is the row picture the same? Is the solution V' the same as v? What is changed in
the column picture—the columns or the right combination to give B?

The planes are the same: 20 =4isz = 2,3y =9isy = 3,and 4z = 16 is z = 4. The
solution is the same point X = x. The columns are changed; but same combination.

3 If equation 1 is added to equation 2, which of these are changed: the planes in the row
picture, the vectors in the column picture, the coefficient matrix, the solution? The new
equations in Problem 1 wouldbe x =2,z +y =5, 2 = 4.

The solution is not changed! The second plane and row 2 of the matrix and all columns
of the matrix (vectors in the column picture) are changed.

4 Find a point with z = 2 on the intersection line of the planes z 4+ y + 32 = 6 and
x — y + z = 4. Find the point with z = 0. Find a third point halfway between.

If z = 2then z+y = 0 and x —y = z give the point (1,—1,2). If z = O thenz+y = 6
and z — y = 4 produce (5, 1,0). Halfway between those is (3,0, 1).

5 The first of these equations plus the second equals the third:

T+ y+ z=2
r+2y+ z2=3
2¢ + 3y + 2z = 5.

The first two planes meet along a line. The third plane contains that line, because
if x,y, z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole line L). Find three solutions on L.

If z,y, z satisfy the first two equations they also satisfy the third equation. The line
L of solutions contains v = (1,1,0) and w = (3,1,3) and w = v + fw and all
combinations cv + dw with ¢+ d = 1.
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6

Move the third plane in Problem 5 to a parallel plane 2x + 3y + 2z = 9. Now the three
equations have no solution—why not? The first two planes meet along the line L, but
the third plane doesn’t that line.

Equation 1 4 equation 2 — equation 3 is now 0 = —4. Line misses plane; no solution.
In Problem 5 the columns are (1, 1,2) and (1,2, 3) and (1, 1,2). This is a “singular
case” because the third column is . Find two combinations of the columns that
give b = (2,3,5). This is only possible for b = (4,6, ¢) if c =
Column 3 = Column 1 makes the matrix singular. Solutions (x,y,z) = (1,1,0) or
(0,1,1) and you can add any multiple of (—1,0,1); b = (4,6, ¢) needs ¢ = 10 for
solvability (then b lies in the plane of the columns).

Normally 4 “planes” in 4-dimensional space meet at a . Normally 4
vectors in 4-dimensional space can combine to produce b. What combination
of (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1) produces b= (3,3,3,2)?

Four planes in 4-dimensional space normally meet at a point. The solution to Ax =
(3,3,3,2) is « = (0,0,1,2) if A has columns (1,0,0,0),(1,1,0,0),(1,1,1,0),
(1,1,1,1). Theequationsare x + y + 2z +t =3,y +z+t =3,z +t = 3,t = 2.

Problems 9-14 are about multiplying matrices and vectors.

9

10

11

12

Compute each Ax by dot products of the rows with the column vector:
Loz 2100
-2 3 1 2 (b)
41 2 3 01 21
0 0 1 2
(a) Az = (18,5,0) and (b) Az =(3,4,5,5).

(a)

DO = =

Compute each Ax in Problem 9 as a combination of the columns:
1 2 4
9(a) becomes Axr=2|-2|+2| 3 | +3| 1| = .
—4 1 2

How many separate multiplications for Az, when the matrix is “3 by 3”?

Multiplying as linear combinations of the columns gives the same Ax. By rows or by
columns: 9 separate multiplications for 3 by 3.

Find the two components of Ax by rows or by columns:

3
2 3|14 3 6 2 1 2 4
{5 1} [2} and {6 12] [—1} and {2 0 1} h] :
Az equals (14,22) and (0,0) and (9, 7).
Multiply A times @ to find three components of Ax:

0 0 17T= 2 1 3 1 2 1 1
lO 1 O] [y] and ll 2 3] 11 and [1 2] [1}
1 0 0] L= 3 3 6]L1-1 3 3

Ax equals (z,y,x) and (0,0,0) and (3, 3,6).
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13 (a) A matrix with m rows and n columns multiplies a vector with components
to produce a vector with components.
(b) The planes from the m equations Ax = b are in -dimensional space. The
combination of the columns of A is in -dimensional space.

(a) @ has n components and Ax has m components (b) Planes from each equation
in Az = b are in n-dimensional space, but the columns are in m-dimensional space.

14 Write 2x + 3y + z + 5t = 8 as a matrix A (how many rows?) multiplying the column
vector x = (z,y, z,t) to produce b. The solutions « fill a plane or “hyperplane”
in 4-dimensional space. The plane is 3-dimensional with no 4D volume.

2x+3y+2+5t = 8is Ax = bwiththe 1 by 4 matrix A = [2 3 1 5]. The solutions
x fill a 3D “plane” in 4 dimensions. It could be called a hyperplane.

Problems 15-22 ask for matrices that act in special ways on vectors.
X

15 (a) What is the 2 by 2 identity matrix? [ times [y] equals [;f}
(b) What is the 2 by 2 exchange matrix? P times [} | equals [¥].

10 0 1
(a”—[o 1] (b)P_[l o]

16 (a) What 2 by 2 matrix R rotates every vector by 90° ? R times [ | is [_¥].
(b) What 2 by 2 matrix R? rotates every vector by 180° ?

90° rotation from & = [_(1) (1)}, 180° rotation from R? = [_(1) _(1)} = -1

17 Find the matrix P that multiplies (z,y, z) to give (y, z,2). Find the matrix @ that
multiplies (y, z, z) to bring back (z,y, z).

0 1 0 0 0 1
0 0 1] produces (y,z,z)and @ = [1 0 0] recovers (z,y, z). Q is the
1 0 0 0 1 0

inverse of P.
18 What 2 by 2 matrix E subtracts the first component from the second component ? What

3 by 3 matrix does the same ?
3 3
E[g]_[g} and F 5]—[2].
7 7
1 0 1 0 0
FE = [_ ] and F = [-1 1 0] subtract the first component from the second.
0 0 1

1 1
19 What 3 by 3 matrix E multiplies (z,y, z) to give (x,y,z + x) ? What matrix F~!
multiplies (:zr,y, z) to give (x,y,z — x) ? If you multiply (3,4,5) by E and then
)-

multiply by E~1, the two results are ( ) and (
1 0 0 1 0 0

E =101 0] and E-1 = l 0 1 0|, Ev = (3,4,8) and E~'Ev recovers
1 01 -1 0 1

(3,4,5).
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20

21

22

23

24

What 2 by 2 matrix P; projects the vector (z,y) onto the x axis to produce (z,0) ?
What matrix P projects onto the y axis to produce (0, y) ? If you multiply (5, 7) by Py
and then multiply by P», you get ( ) and ( ).

P = (1) 8 projects onto the z-axis and P, = [8 (1)] projects onto the y-axis.

5 5 0
v = [7} has Piv = [O] and P, Piv = [O]

What 2 by 2 matrix R rotates every vector through 45° ? The vector (1,0) goes to

(v/2/2,4/2/2). The vector (0, 1) goes to (—v/2/2,1/2/2). Those determine the matrix.
Draw these particular vectors in the xy plane and find R.

1 —
R= 3 [g g] rotates all vectors by 45°. The columns of R are the results from

rotating (1,0) and (0, 1)!

Write the dot product of (1,4,5) and (z,y, z) as a matrix multiplication Av. The
matrix A has one row. The solutions to Av = 0 lie on a perpendicular to the
vector . The columns of A are only in -dimensional space.
x
The dot product Az = [1 4 5] |y| = (1by3)(3by 1) is zero for points (z,y, z)
z

on a plane in three dimensions. The columns of A are one-dimensional vectors.

In MATLAB notation, write the commands that define this matrix A and the column
vectors v and b. What command would test whether or not Av = b ?

1 2 5) 1
S ER I 1
A=[12; 3 4]andx =[5 —2] andb=[1 7]’.7 = b— Axex prints as zero.

If you multiply the 4 by 4 all-ones matrix A = ones(4) and the column v = ones(4,1),
what is Axv ? (Computer not needed.) If you multiply B = eye(4) + ones(4) times
w = zeros(4,1) + 2xones(4,1), what is Bxw ?

ones(4,4) xones(4,1) =[4 4 4 4] ;Bxw=[10 10 10 10]’.

Questions 25-27 review the row and column pictures in 2, 3, and 4 dimensions.

25

26

Draw the row and column pictures for the equations x — 2y = 0, x +y = 6.

The row picture has two lines meeting at the solution (4, 2). The column picture will
have 4(1,1) 4+ 2(—2,1) = 4(column 1) + 2(column 2) = right side (0, 6).

For two linear equations in three unknowns z, y, 2, the row picture will show (2 or 3)
(lines or planes) in (2 or 3)-dimensional space. The column picture is in (2 or 3)-
dimensional space. The solutions normally lie on a

The row picture shows 2 planes in 3-dimensional space. The column picture is in
2-dimensional space. The solutions normally lie on a line.
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27

28

29

30

31

For four linear equations in two unknowns = and y, the row picture shows four
The column picture is in -dimensional space. The equations have no solution
unless the vector on the right side is a combination of

The row picture shows four /ines in the 2D plane. The column picture is in four-
dimensional space. No solution unless the right side is a combination of the two columns.

Challenge Problems

Invent a 3 by 3 magic matrix M3 with entries 1,2,...,9. All rows and columns
and diagonals add to 15. The first row could be 8,3,4. What is M3 times (1,1,1) ?
What is M, times (1,1,1, 1) if a 4 by 4 magic matrix has entries 1,...,16 ?

8 3 4 54u S5—u+v 5H—w
M=|1 5 9|=|5b—u—v 5 S54+u+ov|; Ms(1,1,1) = (15,15,15);
6 7 2 54v S54+u—v H—u

My(1,1,1,1) = (34, 34,34, 34) because 1 + 2 + - - - + 16 = 136 which is 4(34).

Suppose u and v are the first two columns of a 3 by 3 matrix A. Which third columns
w would make this matrix singular ? Describe a typical column picture of Av = b in
that singular case, and a typical row picture (for a random b).

A is singular when its third column w is a combination cu + dv of the first columns.
A typical column picture has b outside the plane of u, v, w. A typical row picture has
the intersection line of two planes parallel to the third plane. Then no solution.

Multiplying by A is a “linear transformation”. Those important words mean:

If w is a combination of v and v, then Aw is the same combination of Au and Av.

It is this “linearity” Aw = cAu + dAv that gives us the name linear algebra.

Ifu= [ (1) ] andv = [ (1) ] then Au and Awv are the columns of A.

Combine w = cu + dv. f w = [ ‘; } how is Aw connected to Au and Av ?

w = (5,7) is bu + Tv. Then Aw equals 5 times Au plus 7 times Av.

A 9by9 Sudoku matrix S hasthe numbers 1,...,9 in every row and column, and in
every 3 by 3 block. For the all-ones vector v = (1,...,1), whatis Sv ?

A better question is: Which row exchanges will produce another Sudoku matrix ?
Also, which exchanges of block rows give another Sudoku matrix ?

Section 4.5 will look at all possible permutations (reorderings) of the rows. I see
6 orders for the first 3 rows, all giving Sudoku matrices. Also 6 permutations of the
next 3 rows, and of the last 3 rows. And 6 block permutations of the block rows ?

x=(1,...,1) gives Sz = sum of eachrow = 1+---+9 = 45 for Sudoku matrices.
6 row orders (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2, 1) are in Section 2.7.
The same 6 permutations of blocks of rows produce Sudoku matrices, so 64 = 1296
orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)
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32 Suppose the second row of A is some number ¢ times the first row :

a b
A_{ca cb]'

Then if a # 0, the second column of A is what number d times the first column ?
A square matrix with dependent rows will also have dependent columns. This is a
crucial fact coming soon.

The second column is d = b/a times the first column. So the columns are “dependent”
when the rows are “dependent”.

Problem Set 4.2, page 215

Problems 1-10 are about elimination on 2 by 2 systems.

1 What multiple /2; of equation 1 should be subtracted from equation 2 ?

2z 43y =1
10z 4 9y = 11.

After this step, solve the triangular system by back substitution, y before x. Verify that
x times (2, 10) plus y times (3,9) equals (1,11). If the right side changes to (4, 44),
what is the new solution ?

Multiply by ¢2; = 1 = 5 and subtract to find 2z + 3y = 14 and —6y = 6. The
pivots to circle are 2 and —6. If the right hand side is multiplied by 4, the solution is
multiplied by 4.

2 If you find solutions v and w to Av = b and Aw = ¢, what is the solution u to
Au = b+ ¢? What is the solution U to AU = 3b + 4¢? (We saw superposition for
linear differential equations, it works in the same way for all linear equations.)

If Av = band Aw = cthen A(v + w) = b + ¢. The solution to AU = 3b + 4c is
U = 3v+4w.

3 What multiple of equation 1 should be subtracted from equation 2 ?

2z —4y =6
—x+ 5y =0.

After this elimination step, solve the triangular system. If the right side changes to
(—6,0), what is the new solution ?

Subtract —% times equation 1 from equation 2. This leaves Ox + 3y = 3. Theny = 1
and the first equation becomes 2x — 4 = 6 to give x = 5.

If the right side changes from (6,0) to (—6,0) the solution changes from (5, 1) to
(=5, -1).
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4 What multiple ¢ of equation 1 should be subtracted from equation 2 to remove cx ?

ar+by=f

cx+dy=g.
The first pivot is a (assumed nonzero). Elimination produces what formula for the
second pivot ? The second pivot is missing when ad = bc: that is the singular case.
Subtract ¢ = g times equation 1. The new second pivot multiplying y is d — (¢b/a) or
(ad — be)/a. Theny = (ag — c¢f)/(ad — be).

5 Choose a right side which gives no solution and another right side which gives

infinitely many solutions. What are two of those solutions ?

3z +2y =10
Singular system 6 + 4y =
6z + 4y is 2 times 3z + 2y. There is no solution unless the right side is 2 - 10 = 20.

Then all the points on the line 3z + 2y = 10 are solutions, including (0,5) and (4, —1).
(The two lines in the row picture are the same line, containing all solutions).

6 Choose a coefficient b that makes this system singular. Then choose a right side g that
makes it solvable. Find two solutions in that singular case.

22 + by = 16
dx + 8y = g.
Singular system if b = 4, because 4z + 8y is 2 times 2z + 4y. Then g = 32 makes the

lines become the same: infinitely many solutions like (8, 0) and (0, 4).
7 For which a does elimination break down (1) permanently or (2) temporarily ?

ax + 3y = —3
4x + 6y = 6.

Solve for z and y after fixing the temporary breakdown by a row exchange.
If a = 2 elimination must fail (two parallel lines in the row picture). The equations
have no solution. With a = 0, elimination will stop for a row exchange. Then 3y = —3
gives y = —1 and 4z + 6y = 6 gives x = 3.

8 For which three numbers k£ does elimination break down ? Which is fixed by a row
exchange ? In these three cases, is the number of solutions 0 or 1 or oo ?

kr+3y= 6
3z + ky = —6.
If £ = 3 elimination must fail: no solution. If £ = —3, elimination gives 0 = 0 in

equation 2: infinitely many solutions. If k¥ = 0 a row exchange is needed: one solution.

9 What test on b; and by decides whether these two equations allow a solution ? How
many solutions will they have ? Draw the column picture for b = (1, 2) and (1, 0).
3r — 2y =by
6x — 4y = bo.

On the left side, 6z — 4y is 2 times (3z — 2y). Therefore we need by = 2b; on the right
side. Then there will be infinitely many solutions (two parallel lines become one single
line).
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10

11

In the xy plane, draw the lines x + y = 5 and x + 2y = 6 and the equation y =

that comes from elimination. The line 5= — 4y = ¢ will go through the solution of these
equations if ¢ =

The equation y = 1 comes from elimination (subtract z + y = 5 from  + 2y = 6).
Then z = 4 and 5z — 4y = ¢ = 16.

(Recommended) A system of linear equations can’t have exactly two solutions. If (z, y)
and (X,Y") are two solutions to Av = b, what is another solution ?

If v = (x,y) and also V = (X,Y) solve the system Av = b, then another solution
is v + 1 V. (All combinations u = cv + (1 — ¢)V will be solutions since Au =
cAv+ (1 —c)AV =cb+ (1 —-c)b=0b.)

Problems 12-20 study elimination on 3 by 3 systems (and possible failure).

12

13

14

Reduce this system to upper triangular form by two row operations:
2043y +z =38
Eliminate z — dax+Ty + 52 =20
Eliminate y — —2y+22=0.

Circle the pivots. Solve by back substitution for z, y, .

Elimination leads to an upper triangular system; then comes back substitution.
20 +3y+ 2=38 x =2
y+32=4 gives y=1 Ifazerois at the start of row 2 or 3,
8z =38 z =1 that avoids a row operation.
Apply elimination (circle the pivots) and back substitution to solve

2x — 3y =3
dx —dby+ z=7
20 — y—3z=05.

List the three row operations : Subtract times row from row

2z — 3y =3 2z — 3y =3 20 —3y=3 x=3
dr —by+ z=T7 gives y+ z=1 and y+ z=1 and y=1
20— y—32=5 2y + 32 =2 —52=0 2=0

Subtract 2 x row 1 from row 2, subtract 1 x row 1 from row 3, subtract 2 X row 2
from row 3

Which number d forces a row exchange ? What is the triangular system (not singular)
for that d ? Which d makes this system singular (no third pivot) ?

2c4+5y+2=0
der+dy+2z=2
y—z=23.

Subtract 2 times row 1 from row 2 to reach (d—10)y—z = 2. Equation (3)isy—z = 3.
If d = 10 exchange rows 2 and 3. If d = 11 the system becomes singular.
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15

16

17

18

19

20

Which number b leads later to a row exchange ? Which b leads to a singular problem
that row exchanges cannot fix ? In that singular case find a nonzero solution z, v, z.
x4+ by =0
r—2y—2=0

y+2=0.

The second pivot position will contain —2 — b. If b = —2 we exchange with row 3. If
b = —1 (singular case) the second equation is —y — z = 0. A solution is (1,1, —1).
(a) Construct a 3 by 3 system that needs two row exchanges to reach a triangular
form.
(b) Construct a 3 by 3 system that needs a row exchange for pivot 2, but breaks down
for pivot 3.
Oz +0y+22=4 Exchange Oz + 3y +42=4
T+2y+22=5 ®) but then T+2y+22=5
Oz +3y+42=6 break down 0Oz + 3y +4z2=6
(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

If rows 1 and 2 are the same, how far can you get with elimination (allowing row
exchange) ? If columns 1 and 2 are the same, which pivot is missing ?

Example of
(a) 2 exchanges

Equal 2z - y+2=0 2z 4+2y+2z=0 Equal
rows 2x—y+z=0 dr+4y+2=0 columns
dx+y+2=2 6x + 6y + 2z = 2.

If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row
3 and there is no third pivot. If column 2 = column 1, then column 2 has no pivot.
Construct a 3 by 3 example that has 9 different coefficients on the left side, but rows
2 and 3 become zero in elimination. How many solutions to your system with b =
(1,10,100) and how many with b = (0,0,0)?

Example © + 2y + 3z = 0, 4o 4+ 8y + 122 = 0, 5z 4+ 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 become 0 = 0: infinitely many solutions.

Which number ¢ makes this system singular and which right side ¢ gives it infinitely
many solutions ? Find the solution that has z = 1.

r+4y—2z=1
T+ Ty—62==06
3y +qz=t.

Row 2 becomes 3y — 4z = 5, then row 3 becomes (¢ +4)z = ¢t — 5. If ¢ = —4 the
system is singular—no third pivot. Then if £ = 5 the third equation is 0 = 0. Choosing
z = 1 the equation 3y — 4z = 5 gives y = 3 and equation 1 gives x = —9.

Three planes can fail to have an intersection point, even if no planes are parallel.
The system is singular if row 3 is a combination of the first two rows. Find a third
equation that can’t be solved together withz +y+ 2 =0andz — 2y — z = 1.

Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes
form a triangle. This happens if rows 1+2 =row 3 on the left side but not the right side:
r4+y+2=0,z—2y—2z=1, 2x —y=1. No parallel planes but still no solution.
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21

22

23

24

25

26

Find the pivots and the solution for both systems (Av = b and Sw = b):
2z 4+ y =0 2r— y =0
r+2y+ =z =0 —r+2y— =z =0
y+2z4+ t=0 - y+2z— t=0
z+2t=95 — z+2t=05.
(a) Pivots 2, %, é, % in the equations 2x +y = 0, %y—l—z =0, %z—l—t =0, %t = 5 after
elimination. Back substitution gives t =4,z = -3,y =2,z = —1.

(b) If the off-diagonal entries change from +1 to —1, the pivots are the same. The
solution is (1,2, 3,4) instead of (—1,2,—3,4).

If you extend Problem 21 following the 1,2,1 pattern or the —1,2, —1 pattern,
what is the fifth pivot ? What is the nth pivot? S is my favorite matrix.

The fifth pivot is g for both matrices (1’s or —1’s off the diagonal). The nth pivot is
n+1

no

If elimination leads to z 4+ y = 1 and 2y = 3, find three possible original problems.

If ordinary elimination leads to  +y = 1 and 2y = 3, the original second equation
could be 2y + £(z +y) = 3+ ¢ for any . Then ¢ will be the multiplier to reach 2y = 3.

For which two numbers a will elimination fail on A = {Z Z] ?

Elimination fails on [Z Cﬂ ifa=2ora=0.

For which three numbers a will elimination fail to give three pivots ?
a 2 3

A= |a a 4| issingular for three values of a.
a a a

a = 2 (equal columns), a = 4 (equal rows), a = 0 (zero column).

Look for a matrix that has row sums 4 and 8, and column sums 2 and s :
Matrix — | ¢ b a+b=4 a+c=2
R ct+d=8 b+d=s
The four equations are solvable only if s = . Then find two different matrices

that have the correct row and column sums. Extra credit : Write down the 4 by 4 system
Av = (4,8,2,s) with v = (a, b, ¢, d) and make A triangular by elimination.

Solvable for s = 10 (add the two pairs of equations to get a + b+ c+ d on the left sides,
12 and 2 + s on the right sides). The four equations for a, b, ¢, d are singular! Two

1 1 0 0 1 1 0 0

. 1 3 0 4 1 01 0 0 -1 1 0
solutions are [1 7] and [2 6}”4: 00 1 1 and U = 0 0 1 1
01 0 1 0 0 0 O
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27 Elimination in the usual order gives what matrix U and what solution (z,y, z) to
this “lower triangular” system ? We are really solving by forward substitution :

3x =3
6z + 2y =8
9r —2y+ 2 =9.

Elimination leaves the diagonal matrix diag(3,2,1) in 3z = 3,2y = 2,z = 4. Then
r=1y=12=4.

28 Create a MATLAB command A(2, : ) = ... for the new row 2, to subtract 3 times
row 1 from the existing row 2 if the matrix A is already known.

A(2,:) = A(2,:) — 3% A(1,:) subtracts 3 times row 1 from row 2.

29 If the last corner entry of A is A(5,5) = 11 and the last pivot of A is
U(5,5) = 4, what different entry A(5,5) would have made A singular ?

A change up or down in A(5, 5) produces the same change in U (5, 5). If A(5,5) = 11
gave U(5,5) = 4, then subtract 4: A(5,5) = 7 will give U(5,5) = 0 and a singular
matrix—zero in the last pivot position U (5, 5).

Challenge Problems

30 Suppose elimination takes A to U without row exchanges. Then row ¢ of U is a com-
bination of which rows of A? If Av =0,isUv =0?If Av =b,isUv =b?

Row j of U is a combination of rows 1, ..., j of A. If Az = 0 then Ux = 0 (not true
if b replaces 0). U is the diagonal of A when A is lower triangular.

31 Start with 100 equations Av = 0 for 100 unknowns v = (v1,...,v100). Suppose
elimination reduces the 100th equation to 0 = 0, so the system is “singular”.
(a) Elimination takes linear combinations of the rows. So this singular system has the
singular property : Some linear combination of the 100 rows is

(b) Singular systems Av = 0 have infinitely many solutions. This means that some
linear combination of the 100 columns is

(c) Inventa 100 by 100 singular matrix with no zero entries.
(d) For your matrix, describe in words the row picture and the column picture of
Av = 0. Not necessary to draw 100-dimensional space.
The question deals with 100 equations Az = 0 when A is singular.
(a) Some linear combination of the 100 rows is the row of 100 zeros.
(b) Some linear combination of the 100 columns is the column of zeros.
(c) A very singular matrix has all ones: A = eye(100). A better example has 99

random rows (or the numbers 1°,. .., 1007 in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination of those rows with no
Zeros).

(d) The row picture has 100 planes meeting along a common line through 0. The
column picture has 100 vectors all in the same 99-dimensional hyperplane.
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Problem Set 4.3, page 223

Problems 1-16 are about the laws of matrix multiplication .

1 Ais3byb, Bisbby3,Cis5by1,and D is 3 by 1. All entries are 1. Which of these
matrix operations are allowed, and what are the results ?

BA AB ABD DBA A(B+0).

If all entries of A, B, C, D are 1, then BA = 3 ones(5) is 5 by 5; AB = 5 ones(3) is
3by3; ABD = 15 ones(3,1) is 3by 1. DBA and A(B + C) are not defined.

2 What rows or columns or matrices do you multiply to find
(a) the third column of AB ?
(b) the first row of AB?
(c) the entry in row 3, column 4 of AB?
(d) the entry in row 1, column 1 of CDE?

(a) A (column 3 of B) (b) Row 1of A) B (¢) (Row 3 of A)(column 4 of B)
(d) (Row 1 of C)D(column 1 of E).

3 Add AB to AC and compare with A(B + C):

1 5 0 2 3 1
A—[2 3] and B—[O 1} and C_[O 0}.

AB + AC is the same as A(B + C) = F’ 8} . (Distributive law).

6 9
4 In Problem 3, multiply A times BC'. Then multiply AB times C.

A(BC) = (AB)C by the associative law. In this example both answers are [8 8]

from column 1 of AB and row 2 of C' (multiply columns times rows).
5 Compute A% and A%. Make a prediction for A% and A" :

1 b 2 2
A:[O 1} and A:[O 0]

o |1 2b n_ |1 mb o |4 4 n_ |27 27
(a)A_[OlandA—O1.(b)A_00andA_00.

6 Show that (A + B)? is different from A? + 2AB + B?, when

A=l 8] wme s[4 0]

0 0 3 0
Write down the correctrule for (A + B)(A+ B) = A2+ + B2,
(A+B)? = [12 g] =A%+ AB + BA+ B2 But A2 + 2AB + B? = {12 (ﬂ
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7

8

10

11

True or false. Give a specific example when false :

(a) If columns 1 and 3 of B are the same, so are columns 1 and 3 of AB.
(b) If rows 1 and 3 of B are the same, so are rows 1 and 3 of AB.

(¢) If rows 1 and 3 of A are the same, so are rows 1 and 3 of ABC.

(d) (AB)? = A%2B2.

(a) True (b) False (c) True (d) False: usually (AB)? # A2B2.
How is each row of DA and E A related to the rows of A, when

3 0 0 1 a b
D:[O 5} and E:{O 1] and A:{C d}?

How is each column of AD and AFE related to the columns of A ?

The rows of DA are 3 (row 1 of A) and 5 (row 2 of A). Both rows of F/ A are row 2 of A.
The columns of AD are 3 (column 1 of A) and 5 (column 2 of A). The first column of
AF is zero, the second is column 1 of A + column 2 of A.

Row 1 of A is added to row 2. This gives E A below. Then column 1 of EF A is added
to column 2 to produce (EA)F. Notice F and F' in boldface.

1 0 a b a b
EA:[I 1}{0 d}:[a—i-c b—i—d]

O T L I S S

Do those steps in the opposite order, first multiply AF' and then E(AF). Compare
with (EA)F. What law is obeyed by matrix multiplication ?

a a-+b

AF = { J ] and E(AF) equals (FA)F because matrix multiplication is

c c+
associative.

Row 1 of A is added to row 2 to produce EA. Then F adds row 2 of F A to row 1.
Now F'is on the left, for row operations. The resultis F'(FA):

11 a b _ | 2a+c 2b+d
F(EA)_[O 1}[a+c b—l—d]_[ a—+c b—l—d}

Do those steps in the opposite order: first add row 2 to row 1 by F'A, then add row 1
of F'A to row 2. What law is or is not obeyed by matrix multiplication ?

at+c b+d at+c b+d

c a+2c b+2d
same as F'(E'A) because multiplication is not commutative.

FA= [ ] and then E(FA) = { } E(FA) is not the

(3 by 3 matrices) Choose the only B so that for every matrix A
(a) BA=4A
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(b) BA = 4B (tricky)
(¢) BA hasrows 1 and 3 of A reversed and row 2 unchanged
(d) All rows of BA are the same as row 1 of A.

0 0 1
(@ B=4I (b) B=0 (¢) B=|0 1 0 (d) Every row of B is 1,0, 0.
1 00
12 Suppose AB = BA and AC = C'A for these two particular matrices B and C':
a b . 10 0 1
A:{C d] commutes with B:[O O] and C:{O O].

Prove that @ = d and b = ¢ = 0. Then A is a multiple of /. The only matrices that
commute with B and C and all other 2 by 2 matrices are A = multiple of I.

a 0 a b
AB = [ 0 ] = BA = [ 0 0 ] givesb = ¢ = 0. Then AC = CA givesa = d.
c
The only matrices that commute with B and C' (and all other matrices) are multiples of
I: A=al.

13 Which of the following matrices are guaranteed to equal (A — B)?: A% — B2,
(B— A)%, A2 —2AB + B2, A(A— B)— B(A— B), A2~ AB— BA+ B*?

(A—B? = (B—A)? = A(A—B)— B(A—B) — A> — AB — BA+ B Ina
typical case (when AB # BA) the matrix A% — 2AB + B2 is different from (A — B)2.

14 True or false :

(a) If A? is defined then A is necessarily square.
(b) If AB and BA are defined then A and B are square.
(c) If AB and BA are defined then AB and B A are square.
(d) If AB= Bthen A =1.
(a) True (A? is only defined when A is square) (b) False (if A is m by n and B

is n by m, then AB is m by m and BA is n by n). (c) True (d) False (take
B =0).

15 If A is m by n, how many separate multiplications are involved when

(a) A multiplies a vector & with n components ?
(b) A multiplies an n by p matrix B ?
(c) A multiplies itself to produce A% ? Here m = n and A is square.
(a) mn (use every entry of A) (b) mnp = pxpart(a) (c) n> (n? dot products).

16 For A= [3 “3] and B = [1 § ], compute these answers and nothing more::

(a) column 2 of AB (b) row2of AB (¢) row 2 of A?
(d) row 2 of A3,

(a) Use only column 2 of B (b) Use onlyrow 2 of A (c)-(d) Use row 2 of first A.
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Problems 17-19 use a;; for the entry in row <, column j of A.

17 Write down the 3 by 3 matrix A whose entries are

(a) a;; = minimum of ¢ and j (b))  a; = (-1)"* (©) a;=1i/j.
1 1 1 1 -1 1
A=|1 2 2 |hasa;; =min(i,j). A=| -1 1 =1 [hasa;; =(-1)" =
1 2 3 1 -1 1
1/1 1/2 1/3
“alternating sign matrix”. A= | 2/1 2/2 2/3 | hasa,;; = i/j (this will be an ex-
3/1 3/2 3/3

ample of a rank one matrix).

18 What words would you use to describe each of these classes of matrices? Give a
3 by 3 example in each class. Which matrix belongs to all four classes ?

(a) Qi = 0if s #_] (b) Qi = 0ifz < _] (C) Ai5 = Qjj
(d) A5 = Q1j.

Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.
19 The entries of A are a;;. Assuming that zeros don’t appear, what is

(a) the first pivot ?
(b) the multiplier /31 of row 1 to be subtracted from row 3 ?
(c) the new entry that replaces aso after that subtraction ?
(d) the second pivot?
@ ain (b) €1 =asi/ann (©) a2 — (2)az () a2 — (§2)a2.
Problems 20-24 involve powers of A.

20 Compute A2, A3, A% and also Av, A%v, A%v, A% for

0 2 0 07 x
oo 20 |y
A=10 0 0 2| ad v=1;
0 0 0 0] t
0040 000 87
0004 0000
A? = ;AP = , A* = zero matrix for strictly triangular A.
0000 0000
0000 0000 |
T 2y 4z 8t
2z 4t
Then v =4 | 7 | = A2 = | Adp = Aty =0
z 2t 0
t 0
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21 Find all the powers A%, A3, ... and AB, (AB)?,. .. for

b b 1 0
A_{'5 '5] and B_{O _1].

)
D =5

22 By trial and error find real nonzero 2 by 2 matrices such that

5 5 .
A=A?2=A3=... = { 5 s ]butAB_ [ ]and(AB)2 = zero matrix!

A? =1 BC =0 DE = —ED (not allowing DE = 0).

(o1 o rpe [T =17[1 1] [0 o],
A—[—l o]haSA —_I’BC—[l —1] [1 1]—[0 0}’

DE = [(1) (1)} [_(1) (1)} = {_(1) (1)] = —FED. You can find more examples.

23 (a) Find a nonzero matrix A for which A% = 0.
(b) Find a matrix that has A% # 0 but A3 = 0.

0 1
A= [ 0 0o } has A? = 0. Note: Any matrix A = column times row = uvT will
01 0 00 1
have A2 = wvTuvT = 0ifvTu=0. 4= | 0 I lhasA2=1]0 0 0
0 0

o

0 0

o

but A3 = 0; strictly triangular as in Problem 20.
24 By experiment with n = 2 and n = 3 predict A™ for these matrices :

Alz[g }} and A2:|:} }} and A3:{8 8]

=[5 0 o=z [ ] o= [

Problems 25-31 use column-row multiplication and block multiplication.

25 Multiply A times [ using columns of A (3 by 3) times rows of 1.

a b c||1 0 O al [l 0 0] d{[0 1 0] c|[0 0 1]
d e f||0 1 0|=(d + e +|f
g h [0 0 1 g h i

26 Multiply AB using columns times rows :

10 1
AB = 24“?’3?]:{2][330“ = .
2 1 2
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Columns of A 1 0 330 000

times rows of BB 2([3 3 0]+ |4|[1 2 1)]=|6 6 0|+|4 8 4| =
2 1 6 6 0 1 2 1

3 30

[10 14 4| =AB

7 8 1

27 Show that the product of two upper triangular matrices is always upper triangular:

R ) R A T
O:c:c][O:c:c _l() ]
0 0 = 0 0 = 0 0 «

Proof using dot products (Row-times-column)  (Row 2 of A)-(column 1 of B)= 0.
Which other dot products give zeros ?

AB =

Proof using full matrices (Column-times-row) Draw z’s and 0’s in (column 2 of A)
times (row 2 of B). Also show (column 3 of A) times (row 3 of B).

(a) (row 3 of A)-(column 1 of B) and (row 3 of A) - (column 2 of B) are both zero.
T 0 =z =« T 0 0 =«
(b) lx] [0 2 x]:[O z x| and lx] [0 0 z]= [O 0 =z
0 0 0 O T 0 0 =«

28 If Ais 2by 3 withrows 1,1, 1 and 2, 2, 2, and B is 3 by 4 with columns 1, 1, 1 and 2,
2,2 and 3, 3, 3 and 4, 4, 4, use each of the four multiplication rules to find AB :

: both upper.

(1) Rows of A times columns of B.  Inner products (each entry in AB)

(2) Matrix A times columns of B. Columns of AB

(3) Rows of A times the matrix B.  Rows of AB

(4) Columns of A times rows of B.  Outer products (3 matrices add to AB)

1 2
1 1 1 3 6 9 12
AB :{ ] 1o :{ ]
2

2 2 2 6 12 18 24

w w w
=

(1) Two rows of A times four columns of B = eight numbers

3
(2) A times the first column of B gives [ 6 ] . The later columns are multiplied by

2,3, and 4.

(3) The first row of A is multiplied by B to give 3, 6, 9, 12. The second row of A is
doubled so the second row of AB is doubled.

(4) Column times row multiplication gives three matrices (in this case they are all the
same!)

1 12 3 471 _
[1 2 3 4]= times 3 gives AB.
2 2 4 6 8



116 Chapter 4. Linear Equations and Inverse Matrices

29

30

31

32

33

Which matrices F2; and E3; produce zeros in the (2,1) and (3, 1) positions of Ea; A

and E31A?
2 10
-2 01 ] .
8 5 3

Find the single matrix £ = E3; Fo; that produces both zeros at once. Multiply F'A.

A:

1 0 0 1 0 0
FEo = [1 1 OlandFE33 =] 0 1 0] produce zeros in the 2, 1 and 3, 1 entries.
0 0 1 —4 0 1
1 0 0 2 1 0
Multiply E’s to get E = E31Ey = 1 1 O}.ThenEA: 0 1 1] is the
-4 0 1 0 1 3

result of both E’s since (E31E21)A = E31(F21 A).

Block multiplication produces zeros below the pivot in one big step:

1 0 a b a b .
EA:{_C/Q I}[c D]:[O D_cb/a]wuhvectorso,b,c.

In Problem 29, what are ¢ and D and what is the block D — ¢b/a ?

In29, ¢ = {_é}, D= {(5) é], D —cb/a= [i :ﬂ in the lower corner of F A.

With i? = —1, the product of (A + iB) and (z + iy) is Az + iBx + iAy — By. Use
blocks to separate the real part without ¢ from the imaginary part that multiplies ¢ :

A -B x | | Ax— By | real part
? ? y | ? imaginary part

A —-B| |x|_ |Ax — By | real part Complex matrix times complex vector
B  A|ll|lyl| ™ imaginary part. needs 4 real times real multiplications.

Bz + Ay
(Very important) Suppose you solve Av = b for three special right sides b :

1 0 0
Avl_[O] and Avg_lll and Avg—l()
0 0 1

If the three solutions v1, v, v3 are the columns of a matrix X, what is A times X ?
Atimes X = [x1 @2 3] will be the identity matrix I = [ Ax; Azy Azs].

If the three solutions in Question 32 are v; = (1,1,1) and vo = (0,1,1) and
vy = (0,0, 1), solve Av = b when b = (3,5, 8). Challenge problem: What is A ?

3 3 1 0 0
b= |5|gvesx = 3x; +5x2+8x3 = | 8|; A= |-1 1 0| will have
8 16 0 -1 1

those 1 = (1,1,1),x2 = (0,1,1), 23 = (0,0, 1) as columns of its “inverse” A~



4.3. Matrix Multiplication 117

34

35

Practical question Suppose A is m by n, B is n by p, and C' is p by ¢q. Then
the multiplication count for (AB)C is mnp + mpq. The same answer comes from
A times BC, now with mng + npq separate multiplications. Notice npq for BC.

(a) If Ais2by 4, Bis4 by 7,and C is 7 by 10, do you prefer (AB)C or A(BC')?

(b) With N-component vectors, would you choose (uTv)w™ or uT (vw™) ?

(c) Divide by mnpq to show that (AB)C is faster whenn=* + ¢~ <m~=1 +p~L.

Multiplying AB = (m by n)(n by p) needs mnp multiplications. Then (AB)C needs
mpq more. Multiply BC' = (n by p)(p by ¢) needs npq and then A(BC') needs mng.

(a) If m,n,p,q are 2,4,7,10 we compare (2)(4)(7) + (2)(7)(10) = 196 with the
larger number (2)(4)(10) + (4)(7)(10) = 360. So AB first is better, so that we
multiply that 7 by 10 matrix by as few rows as possible.

(b) If w,v,w are N by 1, then (uTv)w?T needs 2N multiplications but uT (vw?)

needs N2 to find vw™ and N2 more to multiply by the row vector u™. Apologies

to use the transpose symbol so early.

(c) We are comparing mnp + mpq with mnqg + npq. Divide all terms by mnpq:
Now we are comparing ¢~ ' + n~! with p~! + m~!. This yields a simple im-
portant rule. If matrices A and B are multiplying v for ABv, don’t multiply the
matrices first.

Unexpected fact A friend in England looked at powers of a 2 X 2 matrix:
112 2 | 7 10 3 | 37 54 +_| A B
A_[?, 4} A_[15 22} A_[81 118} AT = C D

He noticed that the ratios 2/3 and 10/15 and 54/81 are all the same. This is true for all
powers. It doesn’t work for an n X m matrix, unless A is tridiagonal. One neat proof is
to look at the equal (1, 1) entries of A™ A and AA™. Can you use that idea to show that
B/C = 2/3 in this example ?

1 2
The off-diagonal ratio % in A= [ 3 4 ] stays the same for all powers of A™. Peter

Larcombe gave a proof by induction. Ira Gessel compared the (1, 1) entries on the left
and right sides of the true equation A" A = AA™:

A B 1 2 1 2 A B
A"A = = .

C D 3 4 3 4 C D
The (1, 1) entries give A + 3B = A + 2C and therefore B/C = 2/3. This ratio stays
the same for A1

The same idea applies when the matrix A is N by IV, provided it is tridiagonal (three
nonzero diagonals):

The (1,1) entry of A”A = is still A + 3B.

Q Q=

B E 1 2
D F 3 4 5
H I 6 7
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Problem Set 4.4, page 234

1 Find the inverses of A, B, C' (directly or from the 2 by 2 formula):

03 20 3 4
A:L 0] and B:[4 2} and 02[5 7].

1|0 3 1 0 4| 7 -4
A _{% OandB = % and C =15 3|

2 For these “permutation matrices” find P! by trial and error (with 1’s and 0’s) :

1

— rol

00 1 01 0
P=101 0 and P=|00 1
10 0 10 0
0 0 1
A simple row exchange has P? = [ so P! = P. Here P~! = ll 0 0. Always
0 1

P~ = “transpose” of P, coming in Section 2.7.

3 Solve for the first column (z,y) and second column (¢, z) of A=1:
10 20 [«] |1 d 10 201 [¢] [0
20 50| [y| ~ |o] *™ |20 50| |2 T 1]

— 1 —
[z] = {_g} and [i} = [ ﬂ so A7 = o [_g ﬂ This question solved

AA~! = I column by column, the main idea of Gauss-Jordan elimination.
4 Show that [} 2] is not invertible by trying to solve AA™! = I for column 1 of A~ :

L2 fz] 1 For a different A, could column 1 of A~!
3 6 1o be possible to find but not column 2?

The equations are x + 2y = 1 and 3z + 6y = 0. No solution because 3 times equation
1 gives 3z + 6y = 3.

5 Find an upper triangular U (not diagonal) with U? = I which gives U = U ~".

1
0

6 (a) If Aisinvertible and AB = AC, prove quickly that B = C.
(b) If A= [11], find two different matrices such that AB = AC.
(a) Multiply AB = AC by A~ to find B = C (since A is invertible) (b) As long

as B — C has the form {_i _Z],wehaveAB_ACforA_ E ﬂ

An upper triangular U with U? = Tis U = [ _(i] for any a. And also —U.
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7

10

11

12

13

(Important) If A has row 1 + row 2 = row 3, show that A is not invertible :

(a) Explain why Av = (1,0, 0) cannot have a solution.

(b) Which right sides (b1, ba, b3) might allow a solution to Av = b?

(c) What happens to row 3 in elimination?
(@) In Az = (1,0,0), equation 1 + equation 2 — equation 3is 0 = 1 (b) Right
sides must satisfy by + by = b3 (c) Row 3 becomes a row of zeros—no third pivot.
If A has column 1 + column 2 = column 3, show that A is not invertible :

(a) Find a nonzero solution x to Az = 0. The matrix is 3 by 3.

(b) Elimination keeps column 1 + column 2 = column 3. Why is no third pivot ?
(a) The vector x = (1,1, —1) solves Az = 0 (b) After elimination, columns 1
and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot.

Suppose A is invertible and you exchange its first two rows to reach B. Is the new
matrix B invertible and how would you find B! from A=1?

If you exchange rows 1 and 2 of A to reach B, you exchange columns 1 and 2 of A~!
to reach B~!. In matrix notation, B = PAhas B~ = A=1P~1 = A~1P for this P.

Find the inverses (in any legal way) of
00 02 32 00
Ao 00 30 i B 43 00
“lo4a 00 ™ "7 lo0 65
50 00 00 76
0 0 0 1/5 3 =2 0 0
A7l = 8 1(/)3 1(/)4 8 and B~! = _3 ?) g _g (invert each
1/2 0 0 0 0 0 -7 6
block of B).
(a) Find invertible matrices A and B such that A + B is not invertible.

(b) Find singular matrices A and B such that A + B is invertible.

(a) If B = — A then certainly A+ B = zero matrix is not invertible. (b) A = [(1) 8]

0 1

If the product C' = AB is invertible (A and B are square), then A itself is invertible.
Find a formula for A~ that involves C~! and B.

Multiply C' = AB on the right by C~! and on the left by A=! to get A=! = BC~!.
If the product M = ABC of three square matrices is invertible, then B is invertible.
(So are A and C.) Find a formula for B~! that involves M ~' and A and C.

M~! = C~'B7'A~! so multiply on the left by C and the right by A : B~! =
CM~tA.

and B = [O 0} are both singular but A + B = [ is invertible.
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14 If you add row 1 of A to row 2 to get B, how do you find B~! from A~1?

10
11

Notice the order. The inverse of B = [ ] A s

—1
B l=24"1 E (1)} =A"! [_1 (1)] subtract column 2 of A~! from column 1.

15 Prove that a matrix with a column of zeros cannot have an inverse.
If A has a column of zeros, so does BA. Then BA = I is impossible. There isno A~!.
16 Multiply [‘C* fﬂ times [_d _Z} . What is the inverse of each matrix if ad # bc?

Cc

a b d =b| _|ad—bc 0 The inverse of each matrix is
c d||-c a 0 ad —be | the other divided by ad — bc

17 (a) What 3 by 3 matrix E has the same effect as these three steps? Subtract row 1
from row 2, subtract row 1 from row 3, then subtract row 2 from row 3.

(b) What single matrix L has the same effect as these three reverse steps? Add row 2
to row 3, add row 1 to row 3, then add row 1 to row 2.

1 1 1 1
E32E31E21 = [ 1 ‘| [ 1 ‘| [—1 1 = [—1 1 = F. Re-
-1 1] (1 1 1 0 -1 1
1
verse the order and change —1 to +1 to get inverses E2_11 E3—11 EP)_Q1 = ll 1 =
1 11

L = E—!'. Notice the 1’s unchanged by multiplying in this order.
18 If B is the inverse of A2, show that AB is the inverse of A.
A?B = I can also be written as A(AB) = I. Therefore A~!is AB.

19 (Recommended) A is a 4 by 4 matrix with 1’s on the diagonal and —a, —b, —c on the
diagonal above. Find A~! for this bidiagonal matrix.
-1

1 —a O 0 1 —a ab abc

A1 = 1 =6 O B 1 b be
1 —c 1 c

1 1

20 Find the numbers a and b that give the inverse of 5 eye(4) — ones(4,4) :

-1

4 -1 -1 -1 a b b b
[5/—ones] ! — -1 4 -1 -1 _ b a b b
-1 -1 4 -1 b b a b
-1 -1 -1 4 b b b a
What are a and b in the inverse of 6 x eye(5) — ones(5,5) ? In MATLAB, I = eye.
The (1, 1) entry requires 4a — 3b = 1; the (1, 2) entry requires 2b —a = 0. Then b = %
and a = %.FortheSbyScaseSa—élb: land 2b =a give b = % and a = %
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21 Sixteen 2 by 2 matrices contain only 1’s and 0’s. How many of them are invertible?

Six of the sixteen 0 — 1 matrices are invertible, including all four with three 1’s.

Questions 22-28 are about the Gauss-Jordan method for calculating A—1.

22 Change I into A~! as you reduce A to I (by row operations) :

13 10

(4 1}_[2 - 1] and [A I]=

1 3 10 N 1 3 1 0 N 1 0 7
2 7 01 0o 1 -2 1 0 1 -2
1 4 10 N 1 4 10 N 1 0 -3
39 01 0 -3 -3 1 0 1 1

210100
[AI]=]12 10 10
0120 01

E

-3
1

Ne)

4/3]

-1/3
23 Follow the 3 by 3 text example of Gauss-Jordan but with all plus signs in A.
Eliminate above and below the pivots to reduce [A I]to [I A~']:

1 0
0 1

1A

=[I A7'].

21 0|1 00 2 1 0 1 00
[A I]= [1 2 1|0 1 O] — lO 3/2 1|-1/2 1 O] —
01 2|0 0 1 0 1 2 0 01
2 1 0 1 0 0 2 1 0 1 0 0
lO 3/2 1|-1/2 1 O] — [0 3/2 0|-3/4 3/2 —3/41 —
0 0 4/3 1/3 -2/3 1 0 0 4/3 1/3 —-2/3 1
2 0 0] 3/2 -1 1/2 1 0 0] 3/4 -1/2 1/4
0 3/2 0|-3/4 3/2 —3/4] — lO 1 0]-1/2 1 —1/2] =
0 0 4/3 1/3 —-2/3 1 0 0 1 1/4 -1/2  3/4
I A1,
24 Use Gauss-Jordan elimination on [U 1] to find the upper triangular U ! :
1 a b 1 0 0
Uu ' =1 01 ¢ |z 2 x3|=|0 1 0
0 0 1 0 0 1
1 a b1 00 1 a 01 0 =b 1 0 01 —a ac—0b
lO 1 ¢ 0 1 01%[0 10 01 —c}%lO 1 00 1 —c].
0 01 0 01 0 01 00 1 0010 O 1
25 Find A~! and B! (if they exist) by eliminationon [A I]and [B I]:
211 2 -1 -1
A=1]12 1 and B=|-1 2 -1

11 2 -1 -1 2
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26

27

28

29

30

2 1 1770 3 -1 -1 2 1 —17T1 0

ll 2 11 =—-|-1 3 —1];{—1 2 —1] ll} = [O so B~ ! does
11 2 411 -1 3] |-1 -1 2]t 0

not exist.

What three matrices Fo; and Fqo and D! reduce A = [1 2] to the identity

2 6
matrix? Multiply D' E15E»; to find A1,

G L e R L | R b

[\]

Multiply by D = {(1) 1/3] to reach DF13E91 A = I. Then A~! = DE19Fy =
1| 6 -2
21-2 1|
Invert these matrices A by the Gauss-Jordan method starting with [A T]:
10 0 11 1
A=121 3 and A= |12 2
00 1 12 3

1 0 O 2 -1 0
A7l = [—2 1 —31 (notice the pattern); A~ = [—1 2 —11 .

0 0 1 0 -1 1
Exchange rows and continue with Gauss-Jordan to find A~ :

0210}

[4 1] = [2 2 0 1
O210_>2201_>20—11_>10—1/21/2
2 2 01 0 210 0 2 10 01 1/2 0 |

This is [I A1 ] : row exchanges are certainly allowed in Gauss-Jordan.

True or false (with a counterexample if false and a reason if true) :

(a) A 4 by 4 matrix with a row of zeros is not invertible.
(b) Every matrix with 1’s down the main diagonal is invertible.
(c) If A is invertible then A~! and A? are invertible.
(a) True (If A has a row of zeros, then every AB has too, and AB = [ is impossible)

(b) False (the matrix of all ones is singular even with diagonal 1’s: ones (3) has 3 equal
rows) (¢) True (the inverse of A~! is A and the inverse of A2 is (A~1)2).

For which three numbers c is this matrix not invertible, and why not?
2 ¢ ¢
A=1|c ¢ ¢
8 7 ¢

This A is not invertible for ¢ = 7 (equal columns), ¢ = 2 (equal rows), ¢ = 0 (zero
column).
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31 Prove that A is invertible if @ # 0 and a # b (find the pivots or A=1):

a b b

A=1|a a b

a a a
1 a 0-b
Elimination produces the pivots e anda —band a —b. A~! = —a a 0].
a(a—b)[ 0—a a]

32 This matrix has a remarkable inverse. Find A~! by eliminationon [A I]. Extend to a
5 by 5 “alternating matrix” and guess its inverse; then multiply to confirm.

1 -1 1 -1 1
0 1 -1 1 1
Invert A = 0 0 1 —1 and solve Av = )
0 O 0 1 1
1100
A1 0 1 1 0 . o
=lo 0 1 1| When the triangular A alternates 1 and —1 on its diagonal,
0 0 01

A~ is bidiagonal with 1’s on the diagonal and first superdiagonal.

33 (Puzzle) Could a 4 by 4 matrix A be invertible if every row contains the numbers
0,1, 2,3 in some order? What if every row of B contains 0, 1,2, —3 in some order?

A can be invertible with diagonal zeros. B is singular because each row adds to zero.
34 Find and check the inverses (assuming they exist) of these block matrices :

i len) 73]
L& ] i ]2 1)
Problem Set 4.5, Page 245

Questions 1-9 are about transposes AT and symmetric matrices S = ST.
1 Find AT and A=' and (A=1)T and (AT)~! for

A:{Sl) g] and also A:{i (c)]

A= Ll) g] has AT = [(1) g},A—lz [_é 1/g]7(A—1)T:(AT)_1: {1 -3
A= {1 g] has AT = Aand A~* = ~ {0 0] _ (A,

c 2le -1
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2 (a) Find 2 by 2 symmetric matrices A and B so that AB is not symmetric.

(b) With AT = A and BT = B, show that AB = BA ensures that AB will now
be symmetric. The product is symmetric only when A commutes with B.

0 1 1 0 . 0 0 0 1
(a)A:[1 O] B:[O O] glveAB:{1 O} andBA:[O O}'

(b) If AB = BAand AT = A, BT = B then (AB)T = BTAT = BA = AB. Thus
AB is symmetric when A and B commute.
3 (a) The matrix ((AB)~1)T comes from (A~1)T and (B=1)T. In what order?
(b) If U is upper triangular then (U ~1)T is triangular.
@ (AB)™H)T = (B71AHT = (A=H)T(B~1)T. This is also (AT)~}(BT)~1.
(b) If U is upper triangular, so is U~ ': then (U~1)7T is lower triangular.
4 Show that A% = 0 is possible but AT A = 0 is not possible (unless A = zero matrix).

A= {8 (1)] has A% = 0. The diagonal of AT A has dot products of columns of A with

themselves. If AT A = 0, zero dot products = zero columns = A = zero matrix.
5 Every square matrix A has a symmetric part and an antisymmetric part :

. . . A+ AT A—AT
A = symmetric + antisymmetric = 5 + 5 .

Transpose the antisymmetric part to get minus that part. Split these in two parts :

14 8
A_{g g] A= 0 26].
00 3

Transposing %(A — AT) gives %(AT — A): this part is antisymmetric.

7= sl

1 4 8 1 2 4 0 2 4
lO 2 61 = l2 2 31+-2 0 3] .
0 0 3 4 3 3 -4 -3 0
6 The transpose of a block matrix M = [é B] is MT = . Test an example

to be sure. Under what conditions on A, B, C, D is the block matrix symmetric?
AT CT
MT = [BT DT};MT = M needs AT = Aand BT = C and DT = D.
7 True or false:

(a) The block matrix [ § 4] is automatically symmetric.
(b) If A and B are symmetric then their product AB is symmetric.
(c) If A is not symmetric then A~! is not symmetric.
(d) When A, B, C are symmetric, the transpose of ABC'is C BA.
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(a) False: {31 X(ﬂ is symmetric only if A = A™. (b) False: The transpose of AB
AT

o)

So (AB)T = AB needs BA = AB. (c) True: Invertible symmetric matrices have

symmetric in verses! Easiest proof is to transpose AA~! = I. (d) True: (ABC)7T is
CTBT AT (= CBA for symmetric matrices A, B, and C).

(a) How many entries of S can be chosen independently, if S = ST is 5 by 5?

is BTAT = BA when A and B are symmetric [91 61] transposes to [

(b) How many entries can be chosen if A is skew-symmetric ? (AT = —A).

Answers: 15 and 10. If S = ST is 5 by 5, its 5 diagonal entries and 10 entries above
the diagonal are free to choose. If AT = — A, the 5 diagonal entries of A must be zero.

Transpose the equation A~' A = I. The result shows that the inverse of AT is
If S is symmetric, how does this show that S —1js also symmetric ?

A~'A = T transposes to AT(A=1)T = I. This shows that the inverse of AT is
(AT)=1 = (A=H)T. If S is symmetric (ST = 9) then this statement becomes
S—1 = (S™HT. Therefore S~ is symmetric.

Questions 10-14 are about permutation matrices.

10

11

12

13

14

Why are there n! permutation matrices of size n ? They give n! orders of 1,...,n.

The 1 in row 1 has n choices; then the 1 in row 2 has n — 1 choices ... (n! overall).

If P; and P, are permutation matrices, so is P; P». This still has the rows of I in some
order. Give examples with P; P, # P, Py and P3P, = Py Ps.
01 0711 0 O 0 0 1 0 1 0
PP, = |0 0 1]]0 0 1 = 0 1 0f but RLP = 1 0 0].
1 0 0]J]10 1 O 1 0 0 0 0 1

If P; and P, exchange different pairs of rows, Ps Py, = P, P3 does both exchanges.

There are 12 “even” permutations of (1,2,3,4), with an even number of exchanges.
Two of them are (1, 2, 3,4) with no exchanges and (4, 3, 2, 1) with two exchanges. List
the other ten. Instead of writing each 4 by 4 matrix, just order the numbers.

(3,1,2,4) and (2,3, 1,4) keep 4 in place; 6 more even P’s keep 1 or 2 or 3 in place;
(2,1,4,3) and (3,4, 1,2) exchange 2 pairs. (1,2, 3,4), (4, 3,2, 1) make 12 even P’s.

If P has 1’s on the antidiagonal from (1, n) to (n, 1), describe PAP. Is P even?

The “reverse identity” P takes (1,...,n) into (n,...,1). When rows and also columns
are reversed, (PAP);; iS (A)p—i+1,n—j+1. In particular (PAP)11 is Apy,.

(a) Find a 3 by 3 permutation matrix with P? = I (but not P = I).
(b) Find a 4 by 4 permutation with P* # I.

010
AcyclicP= |0 0 1] or its transpose will have P? = I : (1,2,3) — (2,3,1) —
1 00

1 0

(3,1,2) - (1,2,3). P = {o e

} for the same P has P* = P # 1.
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Questions 15-18 are about first differences A and second differences AT A and AAT.

15

16

17

18

Write down the 5 by 4 backward difference matrix A.

(a) Compute the symmetric second difference matrices S = ATA and L = AAT.
(b) Show that S is invertible by finding S~'. Show that L is singular.

1 2 -1
K i -1 2 -1
-1 2 -1
0 0 -1 1 2
0 0 0 -1
1 -1
-1 2 -1
-1 2 -1
-1 1
L (5by 5) is singular: Lz =0 forx = (1,1,1,1,1)
4 3 2 1
is i ; 113 6 4 2
Lo-1_ 2
S (4 by 4) is invertible: S~! = ~15 4 6 3
1 2 3 4

In Problem 15, find the pivots of S and L (4 by 4 and 5 by 5). The pivots of S in
equation (8) are 2, 3/2,4/3. The pivots of L in equation (10) are 1,1, 1, 0 (fail).

3 4 5

The pivots of S are 2, 3, 3, 7.

explains 1/5in S~1,

Multiply those pivots to find determinant = 5. This

The pivots of L are 1,1,1, 1,0 (no pivot).

(Computer problem) Create the 9 by 10 backward difference matrix A. Multiply to find
S = ATAand L = AAT. If you have linear algebra software, ask for the determinants
det(S) and det(L).

Challenge : By experiment find det(S) when S = AT A is n by n.

Correction The backward difference matrix A will be 10 by 9. Then S = AT A is
9 by 9 (the —1, 2, —1 matrix) with det.S = 10. In general det S = n when A is n by
n — 1.

L = AAT is 10 by 10 (the —1,2 — —1 matrix except that L;; = 1 and L,,,, = 1). Then
L is singular and det L = 0.

(Infinite computer problem) Imagine that the second difference matrix .S is infinitely
large. The diagonals of 2’s and —1’s go from minus infinity to plus infinity:

-1 2 -1

Infinite tridiagonal matrix S = 1 9 1

(a) Multiply S times the infinite all-ones vectorv = (...,1,1,1,1,...)
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(b) Multiply S times the infinite linear vector w = (...,0,1,2,3,...)
(c) Multiply S times the infinite squares vectoru = (...,0,1,4,9,...).
(d) Multiply S times the infinite cubes vector ¢ = (...,0,1,8,27,...).

The answers correspond to second derivatives (with minus sign) of 1 and 22 and 23.

S times all-ones gives the zero vector
S times linear w  gives the zero vector
S times squares ©  gives —2 times all-ones
S times cubes ¢ gives —6 times linear w

Those correspond to 0, 0, —2, —6x = minus the second derivatives of 1, x, 22, x3.

Questions 19-28 are about matrices with QTQ = I. If Q is square, then it is an
orthogonal matrix and QT = Q! and QQT = 1I.

19 Complete these matrices to be orthogonal matrices :

11
-1
(a) Q—F/z 1/2] (b) Q—%l 2 ] © Q=%
2 1 -1
11 1 1
[ 12 V32 Y 111 -1 -1
Q_{ﬁm 1/2] Q‘ﬁ[% % _f @=511 -1 -1 1
1 -1 1 -1

Note: You could complete to @ with different columns than these.
20 (a) Suppose @ is an orthogonal matrix. Why is Q' = Q7 also an orthogonal matrix ?

(b) From QTQ = I, the columns of @ are orthogonal unit vectors (orthonormal
vectors). Why are the rows of () (square matrix) also orthonormal vectors ?
(a) Q! is also orthogonal because (Q~1)T(Q~!) = (QT)TQT =QQT =I.

(b) The rows of (Q are orthonormal vectors because QQ" = I. For square matrices,
Q7 is a right-inverse of () whenever it is a left-inverse of (). So rows are orthonormal
when columns are orthonormal.

21 (a) Which vectors can be the first column of an orthogonal matrix ?

(b) fQTQ1 = I and QT Q2 = I, is it true that (Q1Q2)T(Q1Q2) = I ? Assume that
the matrix shapes allow the multiplication Q1 Q2.

(a) Any unit vector (length 1) can be the first column of Q.

(b) YES, (Q1Q2)T(Q1Q2) = Q3 (QTQ1)Q2 = Q3 Q2 = 1I.

22 If w is a unit column vector (length 1, uTu = 1), show why H = I — 2uuT is

(a) a symmetric matrix: H = HT (b) an orthogonal matrix: HTH = I.

The Householder matrix H = I — 2uu” is symmetric (because uu™

and also orthogonal (because uTu = 1):
HYH = (I — 2uu™)? = I — 4uu” + duuTuu® = 1.

is symmetric)
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23

24

25

26

27

28

If w = (cos®,sinf), what are the four entries in H = I — 2uu™? Show that
Hu = —u and Hv = v for v = (—sinf,cosf). This H is a reflection matrix :
the v-line is a mirror and the w-line is reflected across that mirror.

1—2cos?f —2sinfcosf
—2sin 6 cos 0 1—2sin%6

H=1-2 {cgsﬂ [cosf sinf]| = [
sin 6

:[ cos 20 —sin29}

—sin20 —cos?6
Hu=u - 2uuT™u = —u Hv=v—2uuTv=v sinceuTv =0.
Suppose the matrix @ is orthogonal and also upper triangular. What can () look like ?

Must it be diagonal ?

If ) is orthogonal and upper triangular, its first column must be ¢; = (+1,0,...,0).
Then its second column g, must start with 0 to have the orthogonality qT g, = 0. Then
g, = (0,£1,0,...,0). Then g5 must start with 0, 0 to have g1 gq; = 0 and gX q; = 0
(and so onward). Thus @ is diagonal: @ = diag (£1, ..., £1).

(a) To construct a 3 by 3 orthogonal matrix () whose first column is in the direction
w, what first column q; = cw would you choose ?

(b) The next column g, can be any unit vector perpendicular to g, . To find g5, choose
a solution v = (v1,v2,v3) to the two equations g1 v = 0 and q3 v = 0. Why is
there always a nonzero solution v ?

(a) The first column of @ will be g; = w/||w]|| to have length 1.

(b) The next column g, has g7 g, = 0 and ||g,|| = 1. Then there will be a vector v
orthogonal to q; and g, because gTv = 0 and g3 v = 0 give 2 linear equations in 3
unknowns vy, v, Us.

Why is every solution v to Av = 0 orthogonal to every row of A ?
Writing out Av = 0 shows that every row is orthogonal to v:
row 1 0
row n 0
Suppose QT Q = I but Q is not square. The matrix P = QQ™ is not I. But show that
P is symmetric and P? = P. This is a projection matrix.

If @ has n orthogonal columns and n < m, then the m by m matrix P = QQ7 is not
I. (Some vector v in R™ will solve the n equations QTv = 0. Then QQTv = 0 and
QQ" # I.) But P is symmetric and P? = QQTQQ" = QIQT = P. Thus Pisa
projection matrix.

A 5 by 4 matrix Q can have QTQ = I but it cannot possibly have QQT = 1I.
Explain in words why the four equations Qv = 0 must have a nonzero solution v.
Then v is not the same as QQ™v and I is not the same as QQT.

The four equations Qv = 0 have 5 unknowns vy, va, v3, vy, vs. With only 4 rows,
Q7 cannot have more than 4 pivots. There must be a free column in Q™ and a nonzero
special solution to Qv = 0.
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Challenge Problems

29 Can you find a rotation matrix @ so that QDQ™" is a permutation ?
cosf) —sinf| |1 cosf sin@ | 0 1
sin 6 cos @ —1| | —sinf cosé equais 1 0f"

| O I Y B )

30 Split an orthogonal matrix (QTQ = QQT = I) into two rectangular submatrices :

T T
Q=[Qi1Q] and QTQ:[gifgi 8@82]

(a) What are those four blocks in QTQ =1 ?
1) QQT = Q10T + Q2QF = I is column times row multiplication. Insert

the diagonal matrix D = [é _(}] and do the same multiplication for QDQ™.

Note: The description of all symmetric orthogonal matrices S in (??) becomes
S =QDQT = Q1QT — Q2Q7. This is exactly the reflection matrix I — 2Q2Q1 .

(a) The four blocks in QT Q are I, 0,0, I because all the columns of Q; are orthogonal
to all the columns of (). (All together they are the columns of the orthogonal matrix

Q)
(b) Column times row multiplication gives
T
[Ql QQ} [g;] = Q107 + Q5 = 1.
a1l a1
QDQT = [Ql Q2} D lQTl = [Ql QZ] l_QTl = Q1Q — Q2Q3

— [ —20:Q8. : i
Then QDQT is both symmetric and orthogonal.

31 The real reason that the transpose “flips A across its main diagonal” is to obey
this dot product law: (Av) - w = v - (ATw). That rule (Av)Tw = vT(ATw)
becomes integration by parts in calculus, where A = d/dz and AT = —d/du.

(a) For 2 by 2 matrices, write out both sides (4 terms) and compare :
a b||v wi | . (%1 a c||w
([ ) [])- ] mewro [3]- ([5 5] [22]):
(b) Therule (AB)T = BT AT comes slowly but directly from part (a) :

(AB)v - w= A(Bv) - w=Bv - A"w=v - BY(ATw)=v - (BTA")w

Steps 1 and 4 are the law. Steps 2 and 3 are the dot product law.
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32

The connection between (Az)" y = x (ATy) and integration by parts is developed
in the Chapter 7 Notes. The idea is that A becomes the derivative d/dx and the dot
product becomes an integral :

(Af)Tg:/%g(I)dI:_/f(I);l—idx:fT(ATg).

That last step identifies ATg as —dg/dz. So the first derivative A = d/dx is like an
antisymmetric matrix. Our functions f and g are zero at the ends of the integration

interval, so the “by parts formula” above has zero from the other usual term [ f g] (1).
In 31(b), steps 1 and 4 are the associative law (AB)v = A(Bv).

How is a matrix S = ST decided by its entries on and above the diagonal ?
How is ) with orthonormal columns decided by its entries below the diagonal ?
Together this matches the number of entries in an n by n matrix. So it is reasonable
that every matrix can be factored into A = SQ (like re*?).

If S is symmetric, then the entries on and above the diagonal tell you the entries below
the diagonal. If () is orthogonal, here is how the entries below the diagonal decide the
matrix. In column 1, the top entry ()17 has to complete a unit vector (no choice except
a & sign). In column 2, the two top entries are decided by (1) orthogonality to column
1 and (2) unit vector. Every column, in order, has no free numbers available on and
above the diagonal.

So there are a total of n? choices available : on and above the diagonal of S and below
the diagonal of Q. This n? matches the number of equations in A = SQ (linear
equations in S = AQT). “polar factorization” of a matrix is possible.
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Problem Set 5.1, Page 258

Questions 1-10 are about the “subspace requirements”: v + w and cv (and then all
linear combinations cv + dw) stay in the subspace.

1 One requirement can be met while the other fails. Show this by finding

(a) A set of vectors in R? for which v + w stays in the set but %v may be outside.

(b) A set of vectors in R? (other than two quarter-planes) for which every cv stays in
the set but v 4+ w may be outside.

(a) The set of vectors with integer components (adding v + w produces integers,
multiplying by 3 may not).

(b) One option for the set is to take two lines through (0, 0). Then cv stays on these
lines but v + w may not.

2 Which of the following subsets of R? are actually subspaces ?

(a) The plane of vectors (b1, ba, bg) with by = bs.
(b) The plane of vectors with b; = 1.
(c) The vectors with b1b2bs = 0.
(d) All linear combinations of v = (1,4,0) and w = (2,2, 2).
(e) All vectors that satisfy by 4+ by + bs = 0.
(f) All vectors with by < by < bs.
The only subspaces are (a) the plane with by = b (d) the linear combinations of v
and w (e) the plane with by + by + b3 = 0.
3 Describe the smallest subspace of the matrix space M that contains

(a)[ég]and[gé] (b)[(l)(l)] (c)[(l)g]and[(l)(l)}

. a b
(a) All matrices {0 0

4 Let P be the plane in R3 with equation = + y — 2z = 4. The origin (0,0, 0) is not in
P ! Find two vectors in P and check that their sum is not in P.

For the plane v 4+ y — 2z = 4, the sum of (4,0, 0) and (0, 4, 0) is not on the plane. (The
key is that this plane does not go through (0, 0,0).)

5 Let Py be the plane through (0,0,0) parallel to the previous plane P. What is the
equation for Py ? Find two vectors in Py and check that their sum is in Pg.

] (b) All matrices {8 8} (c) All diagonal matrices.

The parallel plane P has the equation v + y — 2z = 0. Pick two points, for example
(2,0,1) and (0,2,1), and their sum (2,2, 2) is in Py.

6 The subspaces of R? are planes, lines, R? itself, or Z containing only (0,0, 0).
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(a) Describe the three types of subspaces of R?.

(b) Describe all subspaces of D, the space of 2 by 2 diagonal matrices.
(a) The subspaces of R? are R? itself, lines through (0,0), and (0, 0) by itself (b) The
subspaces of R* are R* itself, three-dimensional planes m - v = 0, two-dimensional

subspaces (11 - v = 0 and nz - v = 0), one-dimensional lines through (0, 0,0, 0), and
(0,0,0,0) by itself.

7 (a) The intersection of two planes through (0,0, 0) is probably a but it could
be a .Itcan’tbe Z!
(b) The intersection of a plane through (0,0,0) with a line through (0,0,0) is
probably a but it could be a .

(c) If S and T are subspaces of R®, prove that their intersection S N T is a
subspace of R®. Here S N T consists of the vectors that lie in both subspaces.
Check the requirements on v + w and cv.

(a) Two planes through (0, 0, 0) probably intersect in a line through (0, 0, 0)
(b) The plane and line probably intersect in the point (0, 0, 0)
(c) If v and y are in both S and T', v + y and cv are in both subspaces.

8 Suppose P is a plane through (0,0,0) and L is a line through (0, 0, O) The smallest
vector space P + L containing both P and L is either or

The smallest subspace containing a plane P and a line L is either P (when the line LL
is in the plane P) or R? (when L is not in P).

9 (a) Show that the set of invertible matrices in M is not a subspace.
(b) Show that the set of singular matrices in M is not a subspace.

(a) The invertible matrices do not include the zero matrix, so they are not a subspace

(b) The sum of singular matrices [(1) 8} + [8 (1)] is not singular: not a subspace.

10 True or false (check addition in each case by an example):

(a) The symmetric matrices in M (with AT = A) form a subspace.
(b) The skew-symmetric matrices in M (with AT = —A) form a subspace.
(c) The unsymmetric matrices in M (with AT # A) form a subspace.

(a) True: The symmetric matrices do form a subspace (b) True: The matrices with
AT = — A do form a subspace (c) False: The sum of two unsymmetric matrices
could be symmetric.

Questions 11-19 are about column spaces C(A) and the equation Av = b.
11 Describe the column spaces (lines or planes) of these particular matrices :

1 2 10 10
00] B= 02] C = 20].

0 0 0 0 0 0

A:

The column space of A is the z-axis = all vectors (z,0,0). The column space of B
is the xy plane = all vectors (x,y,0). The column space of C' is the line of vectors
(z,2z,0).
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For which right sides (find a condition on by, ba, b3) are these systems solvable ?

1 4 2 U1 b1 1 4 bl
JEER RO RIERIARS
- bs 1 —4 | L™2 bs

1 —4 -2 V3
(a) Elimination leads to 0 = by — 2b; and 0 = b; + b3 in equations 2 and 3:
Solution only if by = 2b; and b3 = —b; (b) Elimination leads to 0 = by + 2b3 in
equation 3: Solution only if by = —b;.

Adding row 1 of A to row 2 produces B. Adding column 1 to column 2 produces C.
Which matrices have the same column space ? Which have the same row space ?

A=y o] wma -] |

A combination of the columns of C' is also a combination of the columns of A. Then
1 3 1
c - [

1 3
2 6

1 3
3 9

1 4

} and C—[2 ]

2 6 and A = ; Z have the same column space. B = 3 2 has a

different column space.
For which vectors (b1, b2, b3) do these systems have a solution ?

1 1 I bl 1 I
Bl L
0 1 I3 b3 I3
1 X1 bl
and [ 0 0 1 ] [ T2 ] [ bo ] .
0 0 1 I3 b3

(a) Solution for every b (b) Solvable only if b3 =0 (c) Solvable only if b3 = bs.

(Recommended) If we add an extra column b to a matrix A, then the column space gets
larger unless Give an example where the column space gets larger
and an example where it doesn’t. Why is Av = b solvable exactly when the
column space doesn’t get larger ? Then it is the same for A and [A b} .

OO =
o O
O ==
O =

The extra column b enlarges the column space unless b is already in the column space.
(A b= 1 0 1] (larger column space) 1 0 1] (bisin column space)
“ |10 0 1| (nosolutionto Av=>b) |0 1 1| (Av = b has a solution)

The columns of AB are combinations of the columns of A. This means: The
column space of AB is contained in (possibly equal to) the column space of A.
Give an example where the column spaces of A and AB are not equal.

The column space of AB is contained in (possibly equal to) the column space of A.
The example B = 0 and A # 0 is a case when AB = 0 has a smaller column space
than A.

Suppose Av = b and Aw = b* are both solvable. Then Az = b + b* is solvable.
What is z? This translates into: If b and b* are in the column space C(A), then
b+ b" isalso in C(A).

The solutionto Az =b+b"isz=a +y. fband b" are in C(A4) sois b+ b".
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18

19

20

21

22

23

If A is any 5 by 5 invertible matrix, then its column space is . Why ?

The column space of any invertible 5 by 5 matrix is R°. The equation Ax = b is
always solvable (by v = A~'b) so every b is in the column space of that invertible
matrix.

True or false (with a counterexample if false) :
(a) The vectors b that are not in the column space C'(A) form a subspace.
(b) If C(A) contains only the zero vector, then A is the zero matrix.

(¢) The column space of 2A equals the column space of A.

(d) The column space of A — I equals the column space of A (test this).

(a) False: Vectors that are not in a column space don’t form a subspace.
(b) True: Only the zero matrix has C(A4) = {0}. (c) True: C(A) = C(2A).

(d) False: C(A—1)# C(A)whenA=Tor A= [(1) 8} (or other examples).

Construct a 3 by 3 matrix whose column space contains (1, 1,0) and (1,0, 1) but not
(1,1,1). Construct a 3 by 3 matrix whose column space is only a line.
1 20
2 4 0

3 6 0

A:

11 0 1 1 2
10 O] and ll 0 1] do not have (1,1,1) in C(A). A =
0 1 0 01 1

has C(A) = line.

If the 9 by 12 system Av = b is solvable for every b, then C(A) must be

When Av = b is solvable for all b, every b is in the column space of A. So that space
is RY.

Challenge Problems

Suppose S and T are two subspaces of a vector space V. The sum S 4 T contains all
sums s + t of a vector s in S and a vector ¢ in T. Then S + T is a vector space.

If S and T are lines in R™, what is the difference between S + T and S U T'?
That union contains all vectors from S and all vectors from T'. Explain this statement :
The spanof SUT is S+ T.

(@) fuwand v are bothin S + T, thenu = 81 +t; and v = s5 +t3. Sou +v =
(814 82) + (t1 + t2) isalsoin S + T. And sois cu = ¢s1 + cty: a subspace.

(b) If S and T are different lines, then S U T is just the two lines (not a subspace) but
S + T is the whole plane that they span.

If S is the column space of A and T is C(B), then S + T is the column space of
what matrix M ? The columns of A and B and M are all in R™. (I don’t think
A + B is always a correct M.)

If S =C(A) and T = C(B) then S + T is the column space of M = [A B].
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24

25

Show that the matrices A and [A AB] (this has extra columns) have the same
column space. But find a square matrix with C(A?) smaller than C(A).

The columns of AB are combinations of the columns of A. So all columnsof [A AB]
are already in C'(A). But A = {8 (1)] has a larger column space than A% = {8 8} .
For square matrices, the column space is R™ when A is invertible.

An n by n matrix has C(A) = R" exactly when Aisan __ matrix.

(Key question) The column space of an n by n matrix A is all of R™ exactly when A
is invertible. In this invertible case, every vector b is in C'(A) because we can solve
Av = b. And if A were not invertible, elimination would lead to a row of zeros—then
Awv = b could not be solved for some (most !) vectors b.

Problem Set 5.2, Page 269

Questions 1-4 and 5-8 are about the matrices in Problems 1 and 5.

1

Reduce these matrices to their ordinary echelon forms U :

2 4 2
A= 044].
0 8 8

1 2 2 4 6
1 2 3 6 9] B =
001 2 3

Which are the free variables and which are the pivot variables ?

122 4.6 Free variables vo, v4, v 2 402 Free v
(@) U=0 0 1 23 Pivotvariablesj, 131, P (b)) U=|0 4 4 Pivotg v
00000 18 000 Do
For the matrices in Problem 1, find a special solution for each free variable. (Set the

free variable to 1. Set the other free variables to zero.)

(a) Free variables vo, v4, v5 and solutions (—2, 1, 0,0, 0), (0,0, —2,1,0), (0,0, —3,0,1)
(b) Free variable v3: solution (1, —1, 1). Special solution for each free variable.

By combining the special solutions in Problem 2, describe every solution to Av = 0
and Bv = 0. The nullspace contains only v = 0 when there are no

The complete solution to Av = 0 is (—2vs2, v, —2v4 — 3v5, V4, v5) With vo, vy, v5 free.
The complete solution to Bv = 0 is (2vs, —v3, v3). The nullspace contains only v = 0
when there are no free variables.

By further row operations on each U in Problem 1, find the reduced echelon form R.
True or false : The nullspace of R equals the nullspace of U.

12 0 0 O 1 0 -1
0 01 2 3 0o 1 1
0 00 0O 0o 0 O

R = , R= , R has the same nullspace as U and A.
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5 By row operations reduce this new A and B to triangular echelon form U. Write down
a2 by 2 lower triangular L such that B = LU.

-1 3 5 ~1 3 5
A::[—z 6 10} B::[—2 6 7}'

0 0 -3
6 For the same A and B, find the special solutions to Av =0 and Bv = 0. For an m by
n matrix, the number of pivot variables plus the number of free variables is
(a) Special solutions (3,1,0) and (5,0,1) (b) (3,1,0). Total of pivot and free is n.

7 In Problem 5, describe the nullspaces of A and B in two ways. Give the equations for
the plane or the line, and give all vectors v that satisfy those equations as combinations
of the special solutions.

(a) The nullspace of A in Problem 5 is the plane —v + 3y + 5z = 0; it contains all
the vectors (3y + 5z, y, 2) = y(3,1,0) 4+ 2(5,0, 1) = combination of special solutions.
(b) The line through (3,1, 0) has equations —v+ 3y + 5z = 0 and —2v+ 6y + 7z = 0.
The special solution for the free variable vy is (3, 1,0).

8 Reduce the echelon forms U in Problem 5 to R. For each R draw a box around the
identity matrix that is in the pivot rows and pivot columns.

1 -3 —5] . o 1t =3 0] ... [10
R:{O 0 O] w1thI:[1],R—[O 0 1} w1thI—[O 1}.

Questions 9-17 are about free variables and pivot variables.

9 True or false (with reason if true or example to show it is false):

(a) A square matrix has no free variables.
(b) An invertible matrix has no free variables.
(c) An m by n matrix has no more than n pivot variables.
(d) An m by n matrix has no more than m pivot variables.
(a) False: Any singular square matrix would have free variables (b) True: An in-

vertible square matrix has no free variables. (c) True (only n columns to hold pivots)
(d) True (only m rows to hold pivots)

10 Construct 3 by 3 matrices A to satisfy these requirements (if possible) :

(a) A has no zero entries but U = I.
(b) A has no zero entries but R = 1.
(c) A has no zero entries but R = U.
d A=U=2R.

(a) Impossiblerow 1 (b) A = invertible (c) A=allones (d) A=2I,R=1.
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12

13

14

15

16

17

Put as many 1’s as possible in a 4 by 7 echelon matrix U whose pivot columns are
(@ 2,4,5

(b) 1,3,6,7

(c) 4 and 6.

06111111721 111113700 01111
0o o0o01111{|joo0o 1 111100 0O0O0T11
000011 1{j0 0000110 O0O0O0O0TO0OTO0
0 0o0o0O0OTGO0/[OOOOO0OOT1]000O0O0O0TOQ 0

Put as many 1’s as possible in a 4 by 8 reduced echelon matrix R so that the free
columns are

(@ 2,4,5,6

(b) 1,3,6,7,8.

11011100 01100111

0 0111100 00 01 0 111 . S
000000 10l"loooo 111 1.Notlcetheldentlty
000 0 O0O0O0 1 00 00 0 O0O0O

matrix in the pivot columns of these reduced row echelon forms R.

Suppose column 4 of a 3 by 5 matrix is all zero. Then vy is certainly a variable.
The special solution for this variable is the vector s =

If column 4 of a 3 by 5 matrix is all zero then vy is a free variable. Its special solution
isv =1(0,0,0,1,0), because 1 will multiply that zero column to give Av = 0.

Suppose the first and last columns of a 3 by 5 matrix are the same (not zero). Then
is a free variable. Find the special solution for this variable.

If column 1 = column 5 then vs is a free variable. Its special solutionis (—1,0,0,0, 1).

Suppose an m by n matrix has r pivots. The number of special solutions is . The
nullspace contains only v = 0 when r = . The column space is all of R™ when
T =

If a matrix has n columns and r pivots, there are n — r special solutions. The nullspace
contains only v = 0 when r = n. The column space is all of R” when r = m. All
important!

The nullspace of a 5 by 5 matrix contains only v = 0 when the matrix has
pivots. The column space is R® when there are pivots. Explain why.

The nullspace contains only v = 0 when A has 5 pivots. Also the column space is R,
because we can solve Av = b and every b is in the column space.

The equation z — 3y — z = 0 determines a plane in R®. What is the matrix A in this
equation ? Which are the free variables ? The special solutions are (3, 1, 0) and

A=[1 —3 —1]givesthe plane v — 3y — z = 0; y and z are free variables. The
special solutions are (3,1,0) and (1,0, 1).
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18 (Recommended) The plane x — 3y — z = 12 is parallel to the plane x — 3y — 2 = 0
in Problem 17. One particular point on this plane is (12,0, 0). All points on the plane
have the form (fill in the first components)

0 ] |
1

-1

v
Fill in 12 then 4 then 1 to get the complete solution to v — 3y — z = 12: [y} =

+y +z

1
0

z
12 4 1
8 +y (1) +z (1) = Yparticular T Ynullspace-

19 Prove that U and A = LU have the same nullspace when L is invertible :

If Uv =0 then LUv =0. If LUv =0, how do you know Uv =07

If LUv = 0, multiply by L~! to find Uv = 0. Then U and LU have the same
nullspace.

20 Suppose column 1 + column 3 + column 5 = 0 in a 4 by 5 matrix with four pivots.
Which column is sure to have no pivot (and which variable is free) ? What is the special
solution ? What is the nullspace ?

Column 5 is sure to have no pivot since it is a combination of earlier columns. With
4 pivots in the other columns, the special solution is s = (1,0, 1,0, 1). The nullspace
contains all multiples of this vector s (a line in R?).

Questions 21-28 ask for matrices (if possible) with specific properties.

21 Construct a matrix whose nullspace consists of all combinations of (2,2,1,0)and (3, 1,0, 1).
For special solutions (2,2,1,0) and (3,1,0,1) with free variables v3,vq: R =
10 -2 -3
01 -2 -1
22 Construct a matrix whose nullspace consists of all multiples of (4, 3,2,1).
1 0 0 —4
0 1 0 —3] is the line through (4,3,2,1).
0 01 =2
23 Construct a matrix whose column space contains (1, 1, 5) and (0, 3, 1) and whose nullspace
contains (1,1, 2).

} and A can be any invertible 2 by 2 matrix times this R.

The nullspace of A =

1 0 —1/2

A=1|1 3 —21 has (1,1,5) and (0,3,1) in C(A) and (1, 1,2) in N (A). Which
5 1 -3

other A’s?

24 Construct a matrix whose column space contains (1, 1,0) and (0, 1, 1) and whose nullspace
contains (1,0, 1) and (0,0, 1).

This construction is impossible: 2 pivot columns and 2 free variables, only 3 columns.
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25

26

27

28

29

30

31

32

Construct a matrix whose column space contains (1, 1, 1) and whose nullspace is the
line of multiples of (1,1,1,1).

1 -1 0 0

A=1|1 0 -1 0] has (1,1,1) in C(A) and only the line (¢, ¢, ¢, c) in N (A).
1 0 0 -1

Construct a 2 by 2 matrix whose nullspace equals its column space. This is possible.

A= {8 (1)} has N (A)=C/(A) and also (a)(b)(c) are all false. Notice rref(AT)= [(1) 8} .

Why does no 3 by 3 matrix have a nullspace that equals its column space ?

If nullspace = column space (with 7 pivots) thenn —r = r. If n = 3 then 3 = 27 is
impossible.

(Important) If AB = 0 then the column space of B is contained in the of A.
Give an example of A and B.

If A times every column of B is zero, the column space of B is contained in the nullspace

of A. Anexampleis A = 1 % and B = {_1 _%] Here C(B) equals N (A).

(For B = 0,C(B) is smaller.)
The reduced form R of a 3 by 3 matrix with randomly chosen entries is almost sure to
be . What reduced form R is virtually certain if the random A is 4 by 3 ?

For A = random 3 by 3 matrix, R is almost sure to be I. For 4 by 3, R is most likely
to be I with fourth row of zeros. What about a random 3 by 4 matrix?

Show by example that these three statements are generally false :

(a) Aand AT have the same nullspace.
(b) A and AT have the same free variables.
(c) If R is the reduced form of A then R™ is the reduced form of AT.
0 1 . o [1 0
A= 0 0 shows that (a)(b)(c) are all false. Notice rref(A" ) = 0 ol

If the nullspace of A consists of all multiples of v = (2,1,0,1), how many pivots
appear in U 7 What is R ?

If N(A) = line through v = (2,1,0, 1), A has three pivots (4 columns and 1 special

1 0 0 =2
solution). Its reduced echelon formcanbe R= [0 1 0 -— 11 (add any zero rows).
0 0 1 0

If the special solutions to Rv = 0 are in the columns of these N, go backward to find
the nonzero rows of the reduced matrices R :

2 3 0
N:[l O] and N:[O
0 1 1

and N =

1 (empty 3 by 1).

Any zero rows come after these rows: R =[1 —2 —3], R= [O 1 O}’ R=1.
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33 (a) What are the five 2 by 2 reduced echelon matrices R whose entries are all 0’s and
1’s?

(b) What are the eight 1 by 3 matrices containing only 0’s and 1’s ? Are all eight of
them reduced echelon matrices R ?

(a) [(1) (1)} , {(1) 8], [(1) (1)], [8 (1)}, {8 8} (b) All 8 matrices are R’s !

34 Explain why A and — A always have the same reduced echelon form R.

One reason that R is the same for A and — A: They have the same nullspace. They also
have the same column space, but that is not required for two matrices to share the same
R. (R tells us the nullspace and row space.)

Challenge Problems

35 If A is 4 by 4 and invertible, describe all vectors in the nullspace of the 4 by 8 matrix
B=1[A A].

The nullspace of B =[A A] contains all vectors v = {_Z] for y in R*.

B
If Cv = 0 then Av =0and Bv = 0. So N(C) = N(A) N N(B) = intersection.

36 How is the nullspace IV (C) related to the spaces N (A) and N (B), if C = [ 4 } ?

37 Kirchhoff’s Law says that current in = current out at every node. This network has
six currents yi,...,Yys (the arrows show the positive direction, each y; could be
positive or negative). Find the four equations Ay = 0 for Kirchhoff’s Law at the
four nodes. Reduce to Uy = 0. Find three special solutions in the nullspace of A.

| —» 2
LY \"\. - ._.
Y V4 gl

Sy ey L &
) L )
W e, P __."l
LY oy d r

oY - -.-'
4
F
L] 1\. _)l'r.'l-';-
Yasx .-".
y .-_I."
' .
L1 ¥
’
3

Currents: y1 —ys+ys = —y1+y2 + +ys = —Y2+ya + Y6 = —Ya — Y5 — Y6 = 0.
These equations add to 0 = 0. Free variables ys, y5, yg: watch for flows around loops.
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Problem Set 5.3, Page 280

1 (Recommended) Execute the six steps of Worked Example 3.4 A to describe the column
space and nullspace of A and the complete solution to Av = b:

2 4 6 4 b1 4
2576] b_[b2]_l3]
2 3 5 2 b3 )

2 4 6 4 by 2 4 6 4 by 2 4 6 4 by

2 5 7 6 bg]alo 1 1 2 bg—b1]—>l0 1 1 2 by—Dby

2 3 5 2 bs 0-1-1-2 bz—by 0 0 0 0 bs+by—2b;
Awv = b has a solution when b3 + by — 2b; = 0; the column space contains all combi-
nations of (2,2, 2) and (4, 5, 3). This is the plane b3 + b2 — 2b; = 0 (!). The nullspace
contains all combinations of s; = (—1,—1,1,0) and s2 = (2, —2,0, 1); Veomplete =
VUp + €181 + C282;

1 01 -2 4

[R d]_lO 1 1 2 —1] gives the particular solution v, = (4, —1,0, 0).
0 0O 0 0

A:

2 Carry out the same six steps for this matrix A with rank one. You will find two condi-
tions on by, ba, bs for Av = b to be solvable. Together these two conditions put b into

the space.
3 b 10
9 b= b | =] 30
6 b3 20

17 [2 1 3]
TR
2

A:

= O N
Do W =

2 1 3 by 2 1 3 by 1 1/2 3/2 5
6 39 byl —>|0 0 0 by—3by| Then[R d]=1]0 0 0 0
4 2 6 by 0 0 0 by—2by 00 0 0

Av = b has a solution when b, — 3b; = 0 and b3 — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planes bo — 3by = 0 and b3 — 2b; = 0;
the nullspace contains all combinations of s; = (—1/2,1,0) and s, = (—3/2,0,1);
particular solution v, = d = (5,0, 0) and complete solution v, + ¢151 + c252.

Questions 3—15 are about the solution of Av = b. Follow the steps in the text to vp
and vp. Start from the augmented matrix [ A b].

3 Write the complete solution as v, plus any multiple of s in the nullspace :
r+3y+3z=1

2z 4+6y+92z =5
—x—3y+3z=25.

-2 -3
v = O +wve | 1]|. The matrix is singular but the equations are
complete 1 0

still solvable; b is in the column space. Our particular solution has free variable y = 0.
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4 Find the complete solution (also called the general solution) to

1 3 1 2 1
l2648] _lB].
0 0 2 4 1

1 1
vcomplete =V + U, = (5, 0, bL O) + 1)2(—3, 1,0, O) + 1)4(0, 0, -2, 1).

5 Under what condition on by, bs, b3 is this system solvable ? Include b as a fourth column
in elimination. Find all solutions when that condition holds :

e R

T+2y—2z2=10
2z + 5y — 4z = by
4z + 9y — 8z = bs.

1 2 -2 b 1 2 -2 h
lQ 5 —4 b2‘| — [O 1 0 b2 — 2b1

4 9 -8 b3 0 0 0 b3 —2b1 — b
Back-substitution gives the particular solution to Av = b and the special solution to

solvable if bg — 2b; — by = 0.

5b1 — 2bg [2
AU—OIU—[b2—2b1 + v3 O].
0 11
6 What conditions on by, ba, b3, by make each system solvable ? Find v in that case :
1 2 b1 7 1 2 3 - [ by
2 4| [vr ] | bo 2 4 6 o
2 5 ve | | b3 2 5 7 UQ | bs
39 by | 39 12 ]+-73 | by
: [5b1 — 203 |
(a) Solvable if by = 2b; and 3b; — 3b3 + by = 0. Then v = =
| b3 — 2b1 | P
5b; — 2b3 -1
(b) Solvable if by = 2b; and 3by — 3b3 + by = 0. v = [ b3 —2b1 | + 3 —1] .
0 1

7 Show by elimination that (by, ba, bs) is in the column space if bg — 2by + 4b; = 0.

1 3 1

3 8 2.

2 40

What combination y1 (row 1) + y2(row 2) + y3(row 3) gives the zero row ?

1 3 1 b 1 3 1 b
[3 8 2 b2]—>l0 -1 —1 by—3by| row 3 — 2 (row?2) + 4(row 1)
2 4 0 b3 0o -2 =2 b3 — 2b1 provided b3—2b2—|—4b1=O.
8 Which vectors (b1, b2, b3) are in the column space of A ? Which combinations of the
rows of A give zero ?

A:

One more step gives [0 0 0 0] =
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10

11

12

13

14

15

111
(a) A= 124].
2 4 8

(a) Every bis in C(A): independent rows, only the zero combination gives 0.
(b) We need bz = 2bs, because (row 3) — 2(row 2) = 0.

In Worked Example 5.3 A, combine the pivot columns of A with the numbers
—9 and 3 in the particular solution v,. What is that linear combination and why ?

1 0 0171 2 3 5 by 1 2 3 5 b
LU c]:l2 10]{00221)2—2171 ]:24812 b21
3 =1 1][0 0 0 O bs+by—>bby 3 6 7 13 b3
= [A b]; particular v, = (—9,0,3,0) means —9(1,2,3) + 3(3,8,7) = (0,6, —6).
This is Av, =b.
Construct a 2 by 3 system Av = b with particular solution v, = (2,4,0) and
null (homogeneous) solution v,, = any multiple of (1,1, 1).

[(1) (1) :ﬂ x = Lﬂ has x, = (2,4,0) and ;1 = (¢, ¢, ¢).

Why can’ta 1 by 3 system have v, = (2,4, 0) and v,, = any multiple of (1,1,1)?

121
263] b A=
025

A 1Dby 3 system has at least two free variables. But &, in Problem 10 only has one.
(a) If Av = b has two solutions v; and v», find two solutions to Av = 0.
(b) Then find another solution to Av = b.
(a) ©1 — 2 and 0 solve Ax = 0 (b) A(2x1 —2x2) =0,A(2x1 —x2) = b
Explain why these are all false :

(a) The complete solution is any linear combination of v, and v,.
(b) A system Av = b has at most one particular solution.

(c) The solution v, with all free variables zero is the shortest solution (minimum
length ||v]|). Find a 2 by 2 counterexample.

(d) If A is invertible there is no solution v, in the nullspace.

(a) The particular solution z, is always multiplied by 1 ~ (b) Any solution can be

(©) [g g} [ﬂ = [(65} Then [}] is shorter (length 1/2) than [(2)} (length 2)

(d) The only “homogeneous” solution in the nullspace is «,, = 0 when A is invertible.
Suppose column 5 has no pivot. Then v5 is a variable. The zero vector (is)
(is not) the only solution to Av = 0. If Av = b has a solution, then it has
solutions.

If column 5 has no pivot, vs is a free variable. The zero vector is not the only solution
to Az = 0. If this system Ax = b has a solution, it has infinitely many solutions.
Suppose row 3 has no pivot. Then that row is . The equation Rv = d is only
solvable provided . The equation Av = b (is) (is not) (might not be) solvable.

If row 3 of U has no pivot, that is a zero row. Ux = c is only solvable provided
c3 = 0. Ax = b might not be solvable, because U may have other zero rows needing
more ¢; = 0.
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16

17

18

19

20

21

Questions 16-21 are about matrices of “full rank” » = morr = n.

The largest possible rank of a 3 by 5 matrix is . Then there is a pivot in
every of U and R. The solution to Av = b (always exists) (is unique).
The column space of A is . An example is A =

The largest rank is 3. Then there is a pivot in every row. The solution always exists.
The column space is R®. An exampleis A = [I F'] for any 3 by 2 matrix F.

The largest possible rank of a 6 by 4 matrix is . Then there is a pivot in every
of U and R. The solution to Av = b (always exists) (is unique).
The nullspace of A is . An example is A =

The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every column. The
solution is unique. The nullspace contains only the zero vector. An example is A =
R =[I F]forany 4 by 2 matrix F.

Find by elimination the rank of A and also the rank of AT :

1 4 0 1 01
A=1] 2 11 5 1 and A=|1 1 2 | (rankdependson q).
-1 2 10 11 ¢

Rank = 2; rank = 3 unless ¢ = 2 (then rank = 2). Transpose has the same rank!
Find the rank of A and also of AT A and also of AAT :

2 0

1 1.

1 2

Both matrices A have rank 2. Always AT A and AA™ have the same rank as A.
Reduce A to its echelon form U. Then find a triangular L so that A = LU.

34 10
A_{6521] and A= ]

10 03712 0 1 O
2 1 0(|]0 2 =2 3.

1 1 5
A:{l 0 1} and A=

1
2
0

SN O
QO =
=~ w o

A_LU_[1 0“3 4 1 0

2 1|0 =3 0 1};‘4—“]

0 3 1]10 0 11 -5

Find the complete solution in the form v, + v,, to these full rank systems :

_ r+y+z=4
@ r+y+z=4 (b) vyt =4
T 4 -1 -1 T 4 -1
(a) [y =|0|+y| 1|+2z| O] (b [y] = 10| 4z 01. The second
z 0 0 1 Z 0 1

equation in part (b) removed one special solution.
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22

23

24

25

If Av = b has infinitely many solutions, why is it impossible for Av = B (new right
side) to have only one solution ? Could Av = B have no solution ?

If Ax; = b and also Azs = b then we can add ;1 — x5 to any solution of Ax = B:
the solution @ is not unique. But there will be no solution to Az = B if B is not in
the column space.

Choose the number ¢ so that (if possible) the ranks are (a) 1, (b) 2, (c) 3:

6 4 2
-3 =2 —11 and B—[g ! 3}.

A:
9 6 ¢ qg 2 g

For A, g = 3 gives rank 1, every other ¢ gives rank 2. For B, g = 6 gives rank 1, every
other ¢ gives rank 2. These matrices cannot have rank 3.

Give examples of matrices A for which the number of solutions to Av = b is

(a) Oor 1, depending on b
(b) oo, regardless of b

(c) 0 or oo, depending on b
(d) 1, regardless of b.

11
(a) [}] [z] = [gj has 0 or 1 solutions, dependingon b (b) [ ] i; =[b]
has infinitely many solutions for every b  (c) There are 0 or co solutions when A has
rank 7 < m and r < n: the simplest example is a zero matrix.  (d) one solution for

all b when A is square and invertible (like A = TI).
Write down all known relations between r and m and n if Av = b has

(a) no solution for some b
(b) infinitely many solutions for every b
(c) exactly one solution for some b, no solution for other b

(d) exactly one solution for every b.

@ r<m,alwaysr<n (M) r=m,r<n() r<m,r=n(d) r=m=n.

Questions 26-33 are about Gauss-Jordan elimination (upwards as well as downwards)
and the reduced echelon matrix R.

26

Continue elimination from U to R. Divide rows by pivots so the new pivots are all 1.
Then produce zeros above those pivots to reach R :

2 4 4 2 4 4
U=|0 3 6 and U = 036].
0 0O 0 0 5
2 4 4 1 0 -2 2 4 4
lO 3 6|l =R=1|0 1 2] and[O 3 6| >R=1.
0 0 O 0 0 0 0 0 5
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27 Suppose U is square with n pivots (an invertible matrix). Explain why R = I.

If U has n pivots, then R has n pivots equal to 1. Zeros above and below those pivots
make R = I.

28 Apply Gauss-Jordan eliminationto Uv = 0 and Uv = ¢. Reach Rv = 0and Rv = d:

wol=[g 51 0] mwe=|g5di)

Solve Rv = 0 to find v, (its free variable is v = 1). Solve Rv = d to find v,
(its free variable is v = 0).

1230 1200}, 7_3.1235 120 -1
0040/ 70010 l"food48 "[o01 2|
Free vy = 0 gives v, = (—1,0, 2) because the pivot columns contain I.

29 Apply Gauss-Jordan elimination to reduce to Rv = 0 and Rv = d:

3 0 6 0 30 6 9
U o0|=({00 20 and U c|=]00 2 4/.
0 00O 0 00 5
Solve Uv = 0 or Rv = 0 to find v,, (free variable = 1). What are the solutions to
Rv=d?
1 0 0 0 0 100 -1
[Rd] = |0 0 1 Of leads to @, = |1|; [Rd] = |0 0 1 2]:
0 00O 0 0 00 5

no solution because of the 3rd equation

30 Reduce to Uv = ¢ (Gaussian elimination) and then Rv = d (Gauss-Jordan):

U1

10 2 3 v 2
Av = 1320] UQ _[5 =b.
2 0 4 9 3 10

vy

Find a particular solution v, and all homogeneous (null) solutions v,,.

1023 2 102 3 2 1020 —4 _g _g
1320 53|—-]030-33|—-(0100 3;O;wn:x31.
204910 000 36 0001 2 9 0

31 Find matrices A and B with the given property or explain why you can’t:
2 Jieo=[9]

2 |isv= 1l

3

1
(b) The only solution of Bv = [ (1) } isv= [ 2 1
3

(a) The only solution of Av =
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32

33

34

35

11 1
For A= |0 2] , the only solution to Ax = 2] isx = [ﬂ . B cannot exist since 2
0 3 3

equations in 3 unknowns cannot have a unique solution.

Reduce [A b] to [R d} and find the complete solution to Av = b:
1 3 1 1 M1
A= ; i g and b= g and then b= 8
1 15 5 L 0
1 31 1 1 3 17
1 2 3 . 11 0 -1 2 .
A= 9 4 ¢ factors into LU = 9 9 1 0 0 0 and the rank is
1 15 12 0 1][0 0 0}
r = 2. The special solution to Az = 0 and Uz = 0is s = (—7,2,1). Since
b = (1,3,6,5) is also the last column of A, a particular solution to Az = b is
(0,0,1) and the complete solution is & = (0, 0, 1) + ¢s. (Or use the particular solution
x, = (7,—2,0) with free variable x5 = 0.)

For b = (1,0,0,0) elimination leads to Uz = (1,—1,0, 1) and the fourth equa-
tion is 0 = 1. No solution for this b.

The complete solution to Av = [ é } isv = [ (1) } +c [ (1) ] Find A.

. 1]. 1 0 10
If the complete solution to Ax = {3} isx = {0} + [c] then A = [3 0].

Challenge Problems

Suppose you know that the 3 by 4 matrix A has the vector s = (2,3, 1,0) as the only
special solution to Av = 0.

(a) What is the rank of A and the complete solution to Av = 0?

(b) What is the exact row reduced echelon form R of A ? Good question.

(¢) How do you know that Av = b can be solved for all b?

(a) If s = (2,3,1,0) is the only special solution to Az = 0, the complete solution is
x = c¢s (line of solution!). The rank of A mustbe 4 — 1 = 3.

1 0 -2 0
(b) The fourth variable x4 is not free in s, and R must be [O 1 -3 01 .
0 0 0 1

(¢) Ax = b can be solve for all b, because A and R have full row rank r = 3.

If you have this information about the solutions to Av = b for a specific b, what does
that tell you about the shape of A (m and n)? And possibly about r and b.

1. There is exactly one solution.
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. All solutions to Av = b have the formv = [2] + ¢[1].

. There are no solutions.

. All solutions to Av = b have the form v = [(ﬂ +c {(ﬂ

wn A W

. There are infinitely many solutions.

. 7 = n (no special solutions) and b is in the column space
. n —r = 1 (one special solution)
b is not in the column space (so r < m)

Same conclusion as part 2

R NP S

r < n (there are special solutions) and b is in the column space

36 Suppose Av = b and Cv = b have the same (complete) solutions for every b.
Isittruethat A =C?

If Az = b and Cx = b have the same solutions, A and C' have the same shape and
the same nullspace (take b = 0). If b = column 1 of A, x = (1,0,...,0) solves
Ax=bsoit solves Cx=>b. Then A and C share column 1. Other columns too: A=C'

Problem Set 5.4, page 295

Questions 1-10 are about linear independence and linear dependence.

1 Show that u;, w2, us are independent but u;, us, us, u4 are dependent:

J e li] (1] 18]

Solve cyuy + cous + csus + c4uy = 0 or Ac = 0. The w’s go in the columns of A.

1 11
lO 1 1]
0 0 1

11 1 2 0

independent. But lO 11 31 [c] = [O] is solved by ¢ = (1,1,—4,1). Then
0 01 4 0

u1 + us — 4us + ug = 0 (dependent).

u; =

4]
621 = 0 gives c3 = co = ¢; = 0. So those 3 column vectors are
c3

2 (Recommended) Find the largest possible number of independent vectors among

1 1 1 0 0 0
~1 0 0 1 1 0

W= g|¥2= | || og|M= | |W=| o|%=]| 1
0 0 1 0 1 1

U1, U2, uz are independent (the —1’s are in different positions). All six vectors are on
the plane (1,1,1,1) - w = 0 so no four of these six vectors can be independent.

) 3 )
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3 Prove thatifa = 0 ord = 0 or f = 0 (3 cases), the columns of U are dependent :

a b ¢

0 d e 1 .

0 0 f

If a = 0 then column 1 = 0; if d = 0 then b(column 1) — a(column 2) = 0; if f =0
then all columns end in zero (they are all in the xy plane, they must be dependent).

U =

4 If a,d, f in Question 3 are all nonzero, show that the only solution to Uv = 0is v = 0.
Then the upper triangular U has independent columns.

a b c]Jx 0

Uv = [O d e] [y] = [O] gives z = 0 then y = O then x = 0. A square
0 0 f] L= 0

triangular matrix has independent columns (invertible matrix) when its diagonal has no

Zeros.

5 Decide the dependence or independence of

(a) the vectors (1,3,2) and (2,1, 3) and (3,2,1)
(b) the vectors (1,—3,2) and (2,1, —3) and (—3,2,1).

1 2 3 1 2 3 1 2 3

@ (3 1 21 — l() -5 —71 — [O -5 —7]: invertible = independent
12 3 1 0 -1 -5 0 0 —18/5

columns.
! 2 -3 1 2 -3 1 2 -3 1 0

(b) | -3 1 2] — [O 7 —7] =10 7 =T|;A|1l]| = [O],columns
| 2 -3 1 0 -7 7 0 0 0 1 0

add to 0.

6 Choose three independent columns of U and A. Then make two other choices.

SO O N

Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).
Same column numbers (not same columns!) for A.

7 If wi,ws, ws are independent vectors, show that the differences v; = wo — w3 and
vo = w1 — w3 and v3 = wi — ws are dependent. Find a combination of the v’s that
gives zero. Which singular matrix gives [ v v2 v3 ] =[w; wy w3 ]| A?

The sum v; — v2 +v3 = 0 because (wa — w3) — (w1 —ws) + (w3 —wsz) = 0. So the
0 1 -1
1 0 —1‘|.

1 -1 0

difference are dependent and the difference matrix is singular: A =
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8 If w;, ws, w3 are independent vectors, show that the sums v; = ws + w3 and vy =

wi + w3 and vy = w; + wq are independent. (Write c1v1 + cov2 + c3vz = 0 in
terms of the w’s. Find and solve equations for the ¢’s, to show they are zero.)
If C1 ('11)2 —|—’LU3) +c2 ('11)1 +'Ll)3) “+c3 ('11)1 +'Ll)2) = 0 then (CQ +Cg)’UJ1 + (Cl +Cg)’UJ2 +
(c1 + c2)ws = 0. Since the w’s are independent, c3 + ¢3 = ¢1 +¢3 = ¢1 +¢c2 = 0.
The only solution is ¢; = co = ¢3 = 0. Only this combination of v, vs, v3 gives 0.

9 Suppose ui, usz, U3, uq are vectors in R®.

(a) These four vectors are dependent because
(b) The two vectors u; and us will be dependent if
(c) The vectors u; and (0, 0, 0) are dependent because

(a) The four vectors in R? are the columns of a 3 by 4 matrix A. There is a nonzero
solution to Ax = 0 because there is at least one free variable (b) Two vectors are
dependent if [©; w9 ] has rank 0 or 1. (OK to say “they are on the same line” or “one
is a multiple of the other” but not “us is a multiple of w;” —since w; might be 0.)
(¢) A nontrivial combination of w3 and 0 gives 0: Ouy + 3(0,0,0) = 0.

10 Find two independent vectors on the plane z + 2y — 3z —¢ = 0 in R*. Then find three
independent vectors. Why not four? This plane is the nullspace of what matrix?

The plane is the nullspace of A = [1 2 —3 —1]. Three free variables give three
solutions (z,y, z,t) = (2,—1 —0—0) and (3,0, 1,0) and (1,0,0,1). Combinations
of those special solutions give more solutions (all solutions).
Questions 11-14 are about the space spanned by a set of vectors. Take all linear com-
binations of the vectors, to find the space they span.

11 Describe the subspace of R? (is it a line or plane or R3?) spanned by

(a) the two vectors (1,1, —1) and (—1,—1,1)

(b) the three vectors (0,1, 1) and (1,1, 0) and (0, 0, 0)
(c) all vectors in R3 with whole number components
(d) all vectors with positive components.

(a) Line in R® (b) Plane in R® (c) All of R® (d) All of R®.

12 The vector b is in the subspace spanned by the columns of A when has a solu-
tion. The vector c is in the row space of A when has a solution.
True or false : If the zero vector is in the row space, the rows are dependent.
b is in the column space when Az = b has a solution; c is in the row space when
ATy = chas a solution. False. The zero vector is always in the row space.

13 Find the dimensions of these 4 spaces. Which two of the spaces are the same?
(a) column space of A (b) column space of U (c) row space of A (d) row space

of U:
1 1 0 1 1 0
A=|1 3 1 and U=|0 2 1 |.
31 -1 0 0 O

The column space and row space of A and U all have the same dimension = 2. The row
spaces of A and U are the same, because the rows of U are combinations of the rows
of A (and vice versa!).
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14

v + w and v — w are combinations of v and w. Write v and w as combinations of
v + w and v — w. The two pairs of vectors the same space. When are they a
basis for the same space?

v=3(v+w)+ i(v—w)andw = (v +w) — 3(v — w). The two pairs span the

same space. They are a basis when v and w are independent.

Questions 15-25 are about the requirements for a basis.

15

16

17

18

19

Ifvy,...,v, arelinearly independent, the space they span has dimension . These
vectors are a for that space. If the vectors are the columns of an m by n matrix,
then m is than n. If m = n, that matrix is

The n independent vectors span a space of dimension n. They are a basis for that space.
If they are the columns of A then m is not less than n. (m > n).

Suppose v1, va, . .., Vg are six vectors in R*.

(a) Those vectors (do) (do not) (might not) span R
(b) Those vectors (are) (are not) (might be) linearly independent.

(c) Any four of those vectors (are) (are not) (might be) a basis for R

(a) The 6 vectors might not span R* (b) The 6 vectors are not independent
(c) Any four might be a basis.
. . 1 01 01
Find three different bases for the column space of U = [ 010101l Then

find two different bases for the row space of U.
101 01
01010

and row 2) or (row 1 and row 1 + row 2) and (row 1 and — row 2) are bases for the row
spaces of U.

The column space of U = } is R? so take any bases for R?; (row 1

Find a basis for each of these subspaces of R*:

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(c) All vectors that are perpendicular to (1,1,0,0) and (1,0,1,1).
(d) The column space and the nullspace of I (4 by 4).

These bases are not unique! (a) (1,1,1,1) for the space of all constant vectors
(¢,c,c,c) (b) (1,-1,0,0),(1,0,—-1,0),(1,0,0, —1) for the space of vectors with
sum of components = 0 (© (1,-1,-1,0),(1,-1,0,—1) for the space perpendic-
ular to (1,1,0,0) and (1,0,1,1) (d) The columns of I are a basis for its column
space, the empty set is a basis (by convention) for N (I) = {zero vector}.

The columns of A are n vectors from R"™. If they are linearly independent, what
is the rank of A? If they span R™, what is the rank? If they are a basis for R"™,
what then? Looking ahead : The rank r counts the number of columns.

n-independent columns = rank n. Columns span R™ = rank m. Columns are basis
for R™ = rank = m = n. The rank counts the number of independent columns.
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20

21

22

23

24

Find a basis for the plane  — 2y + 3z = 0 in R®. Find a basis for the intersection of that
plane with the zy plane. Then find a basis for all vectors perpendicular to the plane.

One basis is (2,1,0), (—=3,0,1). A basis for the intersection with the zy plane is
(2,1,0). The normal vector (1, —2, 3) is a basis for the line perpendicular to the plane.

Suppose the columns of a 5 by 5 matrix A are a basis for R°.

(a) The equation Av = 0 has only the solution v = 0 because

(b) If bis in R® then Av = b is solvable because the basis vectors RS.

Conclusion: A is invertible. Its rank is 5. Its rows are also a basis for R5.

(a) The only solution to Av = 0 is v = 0 because the columns are independent
(b) Av = b is solvable because the columns span R>. Key point: A basis gives
exactly one solution for every b.

Suppose S is a 5-dimensional subspace of R®. True or false (example if false) :

(a) Every basis for S can be extended to a basis for R® by adding one more vector.

(b) Every basis for R® can be reduced to a basis for S by removing one vector.

(a) True (b) False because the basis vectors for R® might not be in S.
U comes from A by subtracting row 1 from row 3 :
1 3 2 1 3 2
A=10 1 1 ] and U=|0 1 1 ] .
1 3 2 0 0 O

Find bases for the two column spaces. Find bases for the two row spaces. Find bases
for the two nullspaces. Which spaces stay fixed in elimination?

Columns 1 and 2 are bases for the (different) column spaces of A and U; rows 1 and
2 are bases for the (equal) row spaces of A and U; (1, —1,1) is a basis for the (equal)
nullspaces.

True or false (give a good reason) :

(a) If the columns of a matrix are dependent, so are the rows.
(b) The column space of a 2 by 2 matrix is the same as its row space.
(c) The column space of a 2 by 2 matrix has the same dimension as its row space.

(d) The columns of a matrix are a basis for the column space.

(a) False A = [1 1] has dependent columns, independent row (b) False column
space # row space for A = [8 (1) (¢) True: Both dimensions = 2 if A is invert-
ible, dimensions = 0 if A = 0, otherwise dimensions = 1 (d) False, columns may

be dependent, in that case not a basis for C'(A).
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25 For which numbers ¢ and d do these matrices have rank 2?

1 2 5 0 5 ¢ d
0 0 ¢ 2 and B_{d }
0 0 0

A= 2 c
d 2

Ahasrank 2ifc =0andd = 2; B
c= —d.

[2 g] has rank 2 except when ¢ = d or

Questions 26-28 are about spaces where the “vectors’ are matrices.

26 Find a basis (and the dimension) for these subspaces of 3 by 3 matrices :

(a) All diagonal matrices.

(b) All skew-symmetric matrices (AT = —A).
0

1 0 0] [0 0 0] [0
00 o0|,[01 0f, |0 0
000/ (oo ol lo 1

0
0
0
01 0 0 0 17 [0 0 0
(b)l—lOO],[O oo],lo 0 1].
000 [-1 00 0o -10

These are simple bases (among many others) for (a) diagonal matrices (b) skew-
symmetric matrices. The dimensions are 3, 6, 3.

(a)

27 Construct six linearly independent 3 by 3 echelon matrices Uy, . . ., Ug. What space of
3 by 3 matrices do they span?

1 00 1 0 0 1 10 1 01 1 0 0
I, {0 1 0f,|0 2 0,0 1 O, (0 1 Of, [0 1 1
0 0 2 0 0 1 0 0 1 0 01 0 0 1

ces do not form a subspace; they span the upper triangular matrices (not every U is
echelon).

; echelon matri-

The echelon matrices span all upper traingular matrices. (How could you produce the
matrix with ags = 1 as its only nanzero entry ?)

28 Find a basis for the space of all 2 by 3 matrices whose columns add to zero.
Find a basis for the subspace whose rows also add to zero.

1 00 0o 1 0 0 0o 1| |1 -1 0 J 1 0 -1
-1 0 0|0 =1 oo 0 —1[|-1 1 o™ |-1 o 1
Questions 29-32 are about spaces where the “vectors” are functions.

29 (a) Find all functions that satisfy % =

(b) Choose a particular function that satisfies % =3.
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30

31

32

33

34

35

36

(c) Find all functions that satisfy g—g =

(a) y(x) = constant C'  (b) y(x) = 3 this is one basis for the 2 by 3 matrices with
(2,1,1) in their nullspace (4-dim subspace). (¢) y(z) = 3z + C = y, + y» solves
dy/dx = 3.

The cosine space F3 contains all combinations y(z) = A cosz + B cos 2z + C cos 3x.
Find a basis for the subspace S with y(0) = 0. What is the dimension of S ?

y(0) = O requires A + B + C' = 0. One basis is cos x — cos 2z and cos z — cos 3z.

Find a basis for the space of functions that satisfy
@ % _2y=0 (b)) L=

(@) y(x) = €* is a basis for, all solutions to 3/ = 2y (b) y = =z is a basis for all
solutions to dy/dx = y/x (First-order linear equation = 1 basis function in solution
space).

Suppose y1,y2,ys are three different functions of x. The space they span could
have dimension 1, 2, or 3. Give an example of y1, y2, y3 to show each possibility.

y1(z),y2(x), y3(x) can be x, 2x, 3z (dim 1) or z, 2x, 22 (dim 2) or z, 2, 23 (dim 3).

Find a basis for the space S of vectors (a, b, ¢,d) with a + ¢ + d = 0 and also for the
space T with a + b = 0 and ¢ = 2d. What is the dimension of the intersection S N T?

Basis for S: (1,0, —1,0), (0, 1,0,0), (1,0,0, —1); basis for T: (1, —1,0,0) and (0,0, 2,1)
SNT = multiples of (3, —3,2,1) = nullspace for 3 equation in R* has dimension 1.

Which of the following are bases for R3?

(a) (1,2,0) and (0,1, —1)

) (1,1,-1),(2,3,4),(4,1,-1),(0,1,-1)

(©) (1,2,2),(-1,2,1),(0,8,0)

@ (1,2,2),(-1,2,1),(0,8,6)

(a) No, 2 vectors don’t span R? (b) No, 4 vectors in R? are dependent (c) Yes, a
basis (d) No, these three vectors are dependent

Suppose A is 5 by 4 with rank 4. Show that Av = b has no solution when the 5 by 5
matrix [A b] is invertible. Show that Av = b is solvable when [ A b] is singular.

If the 5 by 5 matrix [A b] is invertible, b is not a combination of the columns of A.
If [A b] is singular, and the 4 columns of A are independent, b is a combination of
those columns. In this case Av = b has a solution.

(a) Find a basis for all solutions to d*y/dz* = y(x).
(b) Find a particular solution to d*y/dz* = y(x) + 1. Find the complete solution.

(a) The functions y = sinz, y = cosz, y = e, y = e~ ¥ are a basis for solutions to
d*y/dz* = y(x).

(b) A particular solution to d'y/dz* = y(z)+1is y(z) = —1. The complete solution
isy(z) = =14 ¢,sinx + cacosx + cze® + ¢4~ * (or use another basis for the
nullspace of the 4th derivative).

)
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37

38

39

40

Challenge Problems

Write the 3 by 3 identity matrix as a combination of the other five permutation
matrices ! Then show that those five matrices are linearly independent. (Assume a
combination gives c; P} + - - - 4+ ¢5P5 = zero matrix, and prove that each ¢; = 0.)

1 1 1 1 1 The six P’s
I =11 - 1 1 1] — |1 . .
1 1 1 1 1 are dependent
Those five are independent: The 4th has P;; = 1 and cannot be a combination of the
others. Then the 2nd cannot be (from P32 = 1) and also 5th (P32 = 1). Continuing,

a nonzero combination of all five could not be zero. Further challenge: How many
independent 4 by 4 permutation matrices?

Intersections and sums have dim(V) 4+ dim(W) = dim(V N'W) 4+ dim(V + W).
Start with a basis w1, .. ., u, for the intersection V.1 ' W. Extend with v1,...,vstoa
basis for V, and separately with w1, . . . , w; to a basis for W. Prove that the u’s, v’s and
w’s together are independent. The dimensions have (r+s)+ (r+t) = (r)+(r+s+t)
as desired.

- -

The problem is to show that the w’s, v’s, w’s together are independent. We know the
u’s and v’s together are a basis for V', and the w’s and w’s together are a basis for W.
Suppose a combination of u’s, v’s, w’s gives 0. To be proved: All coefficients = zero.

Key idea: In that combination giving 0, the part  from the »’s and v’s is in V. So
the part from the w’s is —a. This part is now in V' and also in W. But if —x is in
V N W it is a combination of u’s only. Now the combination uses only u’s and v’s
(independent in V'!) so all coefficients of w’s and v’s must be zero. Then & = 0 and
the coefficients of the w’s are also zero.

Inside R"™, suppose dimension (V) + dimension (W) > n. Why is some nonzero vector
in both V and W? Start with bases vy, ...,v, and wy,...,wy, p+ ¢ > n.

If the left side of dim (V) + dim(W) = dim(V N'W) + dim(V + W) is greater than
n, then dim(V N 'W) must be greater than zero. So V.N'W contains nonzero vectors.
Suppose A is 10 by 10 and A%? = 0 (zero matrix): A times each column of A is 0.

This means that the column space of A is contained in the . If A has rank r,
those subspaces have dimension r < 10 — r. So the rank of A is r < 5, if A? =0.

If A% = zero matrix, this says that each column of A is in the nullspace of A. If the
column space has dimension r, the nullspace has dimension 10 — 7, and we must have
r<1l0—randr <5.

Problem Set 5.5, page 308

1

2

(a) Row and column space dimensions = 5, nullspace dimension = 4, dim(N(A™))
=2 sum=16=m+n (b) Column space is R3; left nullspace contains only 0.
A: Row space basis = row 1 = (1,2,4); nullspace (—2,1,0) and (—4,0, 1); column
space basis = columnl = (1,2); left nullspace (—2,1). B: Row space basis =
both rows = (1,2,4) and (2, 5, 8); column space basis = two columns = (1,2) and
(2,5); nullspace (—4,0,1); left nullspace basis is empty because the space contains
only y = 0.
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10

11

12

13

14

15

16
17

Row space basis = rows of U = (0, 1,2, 3,4) and (0,0, 0, 1, 2); column space basis =
pivot columns (of AnotU) = (1,1,0) and (3,4,1); nullspace basis (1,0,0,0,0),
(0,2,—1,0,0), (0,2,0,—2, 1); left nullspace (1, —1, 1) = last row of E~*!

1 0
(@) ll O] (b) Impossible: r+(n—r) mustbe3  (c) [1 1] (d) {_g _ﬂ
0 1
(e) Impossible Row space = column space requires m = n. Thenm —r = n —
r; nullspaces have the same dimension. Section 4.1 will prove IN(A) and IN(AT)
orthogonal to the row and column spaces respectively—here those are the same space.

A= B } (1)] has those rows spanning its row space B = [1 —2 1] has the same

rows spanning its nullspace and BAT = 0.

A: dim 2,2,2,1: Rows (0,3,3,3) and (0,1,0,1); columns (3,0,1) and (3,0,0);
nullspace (1,0,0,0) and (0,—1,0,1); N(AT) (0,1,0). B: dun 1,1,0,2 Row space
(1), column space (1,4, 5), nullspace: empty basis, N (AT) (—4,1,0) and (=5,0,1).
Invertible 3 by 3 matrix A: row space basis = column space ba51s = (1,0,0), (0,1,0),
(0,0, 1); nullspace basis and left nullspace basis are empty. Matrix B = [A  A]: row
space basis (1,0,0,1,0,0), (0,1,0,0,1,0) and (0,0,1,0,0,1); column space basis
(1,0,0), (0,1,0), (0,0, 1); nullspace basis (—1,0,0,1,0,0) and (0,—1,0,0,1,0) and
(0,0,—1,0,0, 1); left nullspace basis is empty.

[/ O)Jand[I I; 0 O0]and[0] = 3 by 2 have row space dimensions = 3,3,0 =
column space dimensions; nullspace dimensions 2, 3, 2; left nullspace dimensions 0,2, 3.
(a) Same row space and nullspace. So rank (dimension of row space) is the same
(b) Same column space and left nullspace. Same rank (dimension of column space).

For rand (3), almost surely rank= 3, nullspace and left nullspace contain only (0, 0, 0).
For rand (3, 5) the rank is almost surely 3 and the dimension of the nullspace is 2.

(a) No solution means that » < m. Always » < n. Can’t compare m and n here.
(b) Since m — r > 0, the left nullspace must contain a nonzero vector.

11 10 1 2 21
A neat choiceis |0 2 {1 9 O] =12 4 0f;
10 1 01
not match 2 + 2 = 4. Only v = 0 is in both N (A4) and C(A™).
(a) False: Usually row space # column space (same dimension!) (b) True: A and —A
have the same four subspaces (¢) False (choose A and B same size and invertible: then
they have the same four subspaces)
Row space basis can be the nonzero rows of U: (1,2,3,4), (0,1,2,3), (0,0,1,2);
nullspace basis (0,1, —2,1) as for U; column space basis (1,0,0), (0,1,0), (0,0,1)
(happen to have C(A) = C(U) = R?); left nullspace has empty basis.
After a row exchange, the row space and nullspace stay the same; (2,1, 3,4) is in the
new left nullspace after the row exchange.

r+(n—r) =n = 3 does

If Av = 0andvisarowof Athenv-v = 0.

Row space = yz plane; column space = zy plane; nullspace = z axis; left nullspace
= z axis. For I + A: Row space = column space = R?, both nullspaces contain only
the zero vector.
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19

20
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23

24

25

26

27

28

29

30

31

32

33

34

Row 3—2 row 2+ row 1 = zero row so the vectors ¢(1, —2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accident for this matrix).

(a) Elimination on Az = 0 leads to 0 = b3 — by — by so (—1,—1,1) is in the left
nullspace. (b) 4 by 3: Elimination leads to b3 — 2b; = 0 and by + bs — 4b; = 0, so
(—=2,0,1,0) and (—4, 1,0, 1) are in the left nullspace. Why? Those vectors multiply the
matrix to give zero rows. Section 4.1 will show another approach: Az = b is solvable
(bisin C(A)) when b is orthogonal to the left nullspace.

(a) Special solutions (—1,2,0,0) and (—i, 0, —3, 1) are perpendicular to the rows of
R (and then ER). (b) ATy = 0 has 1 independent solution = last row of E~*.
(E~'A = R has a zero row, which is just the transpose of ATy = 0).

(a) wand w (b) vand z (c) rank < 2if w and w are dependent or if v and z
are dependent (d) The rank of uvT + wzT is 2.

1 2 10 3 27 has column space spanned
A=[u w][vT 2] = [2 2] {1 1} = [4 2] by u and w, row space

4 1 5 1] spannedby v and z.
As in Problem 22: Row space basis (3,0, 3), (1,1,2); column space basis (1,4,2),
(2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either
factor, so rank < 2 and the 3 by 3 product is not invertible.

ATy = d puts d in the row space of A; unique solution if the left nullspace (nullspace
of AT) contains only y = 0.

(a) True (A and AT have the same rank) (b) False A=[1 0]and AT have very
different left nullspaces (¢) False (A can be invertible and unsymmetric even if
C ’EA) =C(AT)) (d) True (The subspaces for A and — A are always the same. If
AT = Aor AT = — A they are also the same for AT)

The rows of C' = AB are combinations of the rows of B. So rank C' < rank B. Also
rank C' < rank A, because the columns of C' are combinations of the columns of A.

Choose d = bc/a to make [ﬁ 3} a rank-1 matrix. Then the row space has basis (a, b)
and the nullspace has basis (—b, a). Those two vectors are perpendicular !

B and C (checkers and chess) both have rank 2 if p £ 0. Row 1 and 2 are a basis for the
row space of C, BTy = 0 has 6 special solutions with —1 and 1 separated by a zero;
N(CT) has (-1,0,0,0,0,0,0,1) and (0, —1,0,0,0,0,1,0) and columns 3,4,5,6 of
I; N(C) is a challenge.

a1 = 1,a12 = 0,a13 = 1,a22 = 0,a32 = 1,a31 = 0,a23 = 1,a33 = 0,a21 = 1.
There are vectors along the floor and along a wall that are not perpendicular. In fact

the vectors where the wall meets the floor are in both subspaces (and not perpendicular
to themselves).

Every yin N(A") has ATy = 0. Each row of AT (= each column of A) has a zero dot
product with y—those dot products are the zeros on the right hand side of ATy = 0.

The plane P is exactly the nullspace of the matrix A = [1 1 1 1]. Then P~ is the row
space of A, and the vector v = (1, 1,1, 1) is a basic for P,

The vector (1,4, 5) in the row space of A would have to be orthogonal to (4,5, 1) in
the nullspace—and it’s not. So no matrix A.
The subspaces for A = uwv™ are pairs of orthogonal lines (v and v+, w and u™).

If B has those same four subspaces then B = cA with ¢ # 0.
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35

36

37

38

(a) AX = 0 if each column of X is a multiple of (1,1,1); dim(nullspace) = 3.
(b) If AX = B then all columns of B add to zero; dimension of the B’s = 6.
(¢) 3+ 6 =dim(M3*3) = 9 entries in a 3 by 3 matrix.

The key is equal row spaces. First row of A = combination of the rows of B: only
possible combination (notice I) is 1 (row 1 of B). Same for each row so F' = G.

If a vector v is in the subspace S, then v is perpendicular to every vector in S-. There-
fore v belongs to (S+)1. Those lines show that S is contained in (S1)1. But if
S has dimension d, S+ will have dimension n — d and (S+)* will have dimension
n—(n—d)=d

If the d-dimensional space S is contained in the d-dimensional space (S+)+, the two
spaces must be the same ! (Why is that true ?)

This problem shows that A and AT A have the same nullspace (a very important fact,
proved again on page 391). The proof here starts from AT Av = 0, which puts Av
in the nullspace of AT. But Aw is also in the column space of A (Av is always a
combination of the columns, by matrix multiplication). So Av isin N (AT) and C(A),
perpendicular to itself and therefore Av = 0.

Conclusion: AT Av = 0 leads to Av = 0. And certainly Av = 0 leads to AT Av =0
(just multiply by A). So N(ATA) = N(A).

Problem Set 5.6, page 319

1

-1 1 0 c 1
A=(-1 0 1] ; nullspace contains [01 ; [01 is not orthogonal to that nullspace.
0 -1 1 c 0

2 ATy =0fory = (1,—1,1); current along edge 1, edge 3, back on edge 2 (full loop).

3 Elimination leads to

—v1 +ve =by —v; +v2=b
—vo +v3=by—b; andthen —vy +v3="0by— by
—vg +v3 = b3 0=0b3 —bz+ by

The two nonzero rows of R are 1 —1 0 and 0 1 —1 (signs were reversed to make the
pivot = +1). Row 3 of R is zero. The tree has edges from node 1 to 2 and node 2 to 3.

The equations in 5.6.3 can be solved when b3 — by +b; = 0 (this is actually Kirchhoff’s
Voltage Law). These are exactly all the vectors b that are orthogonal to y = (1, —1,1).

ayTs # 0, then KVL fails and Av = b has no solution.)

Kirchhoff’s Current Law ATy = f is solvable for f = (1, —1,0) and not solvable for
f =1(1,0,0); f must be orthogonal to (1,1, 1) in the nullspace: f; + fo + f3 = 0.

2 -1 -1 3 1 c
AT Av = l—l 2 -1|v= l—?)] = f produces v = |—1| 4 | c|; potentials
-1 -1 2 0 0 c

v =1,—1,0and currents —Av = 2, 1, —1; f sends 3 units from node 2 into node 1.
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7

10

11

12

13

14

The triangle graph has AT A = graph Laplacian :

-1 -1 0 -1 1 0 2 -1 -1
[1 0_1H_1 01]:[_1 2_1].
0 1 1 0 -1 1 -1 -1 2

All vectors (c, ¢, ¢) are in nullspace of A = nullspace of AT A.

-1 1 00 1 -1 0
-1 0 10 1 1 0
A= 0 -1 1 0] leadsto v = 1 andy = | —1| and 1| solving
0 -1 01 1 0 -1
0 0 -1 1 0 1
ATy =0.

Elimination on Av = b always leads to y'b = 0 in the zero rows of U and R:
—by + ba — b3 = 0 and bg — by + b5 = 0 (those y’s are from Problem 8§ in the
left nullspace). This is Kirchhoff’s Voltage Law around the two loops.

- (1) _1 (1) 8 The nonzero rows of U keep
The echelon formof AisU = 0 0-11 edges 1, 2, 4. Other spanning trees
0 0 0 0 from edges, 1,2,5;1,3,4;1,3,5;

0 0 0 0 1,4,5;2,3,4;2,3,5;2,4,5.

(a) The diagonal 2, 3, 3,2 counts edges that go in or out of nodes 1,2, 3,4 on the
graph. When AT multiplies A, those diagonal entries are dot products (row i of
A™T) . (column i of A) = ||column i||? = number of —1’s or 1’s in column i =
degree of node i.

(b) Column ¢ (from node %) overlays column j (from node j) only when an edge
connects nodes ¢ and j. Then the row of A for that edge has —1 and 1 in those
columns—those numbers multiply to give —1.

The nullspace of AT A contains (1,1,1,1) just like N(A). Therankis4 — 1 = 3. A
vector f is in the column space of AT A (= row space by symmetry) exactly when f is
orthogonal to the nullspace—which means that f; + fo + fs + f1 = 0. If you add up
the 4 equations AT Av = f, you see this again.

The n by n adjacency matrix for the 4 node graph is
01 10 21 1 2
|1 0 11 s |1 3 21
w 11 01 we= 1 2 3 1
01 10 2 1 1 2

You can check that the i, j entry of W?2 is the number of 2-step paths from i to j. When
1 = j those paths go out and back. Only one 2-step path connects nodes 1 and 2, going
through node 3.

The number of loops in this connected graphisn —m+1 =7 -7+ 1 = 1.
What answer if the graph has two separate components (no edges between)?
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15 Start from (4 nodes) — (6 edges) + (3 loops) = 1. If a new node connects to 1 old
node, 5 — 7 4+ 3 = 1. If the new node connects to 2 old nodes, a new loop is formed:
5—8+4=1.

16 (a) 8 independent columns (b) f must be orthogonal to the nullspace so f’s add
tozero (c) Each edge goes into 2 nodes, 12 edges make diagonal entries sum to 24.

17 A complete graph has 5 +4 4+ 3 + 2 + 1 = 15 edges. With n nodes that count is
14+ (n—1)=mn(n—1)/2. Tree has 5 edges.

18 IN(A) contains all multiplies of (1,1, ...,1) and no other vectors. The equations Av =
0 tell you that v; = v; when nodes ¢ and j are connected by an edge. Then every
v; = v; whenever the graph is connected—just go from node % to node j using edges
in the graph.
19 (a) With n nodes and all edges, AT A will have n — 1 along its diagonal (the degree
of every edge). It will gave —1 in every off-diagonal entry (a complete graph has
an edge between every pair of nodes ¢ and j).

(b) If the edge connecting nodes 1 and 3 is removed, this reduces by 1 the degrees
(AT A)q1; and (AT A)33 on the diagonal: those degrees are now n — 2. And
(ATA);3 = (AT A)31 = 0 because that edge is gone.

20 With batteries b; to bs in the 5 edges of the square graph, the equation AT (Av—b) = 0
gives the voltages vy, va, v3, v4 at the 4 nodes. Here b = (1,1,1,1,1).

2 -1-1 07 lwn “1-1 0 0 0 } -2
T e | =1 3-1-1||w| | 1 0-1-1 0 -1
Atdv=A"bis | 1 1 3 ||| =] 0 1 1 0-1 } = 1
0—-1-1 2| |w 00 0 1 1]]; 2

Notice that adding the 4 equations gives 0 = 0: good. The solution v gives voltages

-2 1 where the particular
_ | =5/4 1 solution
V=UptUn = —3/4 Tl was chosen to
0 1 have vy = 0.

Chapter 5 Notes, page 321

1let+y#y+xandz+ (y+ 2) # (x+y)+ zand (¢1 + c2)x # 1 + cox.

2 When ¢(x1,22) = (cx1,0), the only broken rule is 1 times @ equals . Rules (1)-(4)
for addition & + vy still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Also no 0 and no —x
(b) c(x + y) is the usual (xy), while cx + cy is the usual (x¢)(y). Those are equal.
With ¢ = 3,z = 2,y = 1 this is 3(2 + 1) = 8. The zero vector is the number 1.

. . .10 0f. 1, |1 -1 -2 2

4 The zero vector in matrix space M is {0 0] i3 A= [1 _1} and —A = [_2 2}.
The smallest subspace of M containing the matrix A consists of all matrices cA.
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5 When f(z) = z? and g(z) = 5, the combination 3f — 4g in function space is
h(z) = 3f(z) — 4g(z) = 32* — 20.

6 Rule 8 isbroken: If cf(x) is defined to be the usual f(cx) then (¢1+c2)f = F((c1+
¢2)x) is not generally the same as ¢1 f + cof = f(c12) + f(cox).
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Problem Set 6.1, page 333

1

A has eigenvalues 1 and 1, A? has eigenvalues 1 and (%)2 = %, A has eigenvalues 1
and 0 (notice ($)> = 0).

(a) Exchange the rows of A to get B:

B = [g 7} has eigenvalues 1 and —1.

B is still a Markov matrix, so A = 1 is still an eigenvalue. The sum down the main

diagonal (the “trace”) is now .5 so the second eigenvalue must be —.5. Then
trace=.2+.3=1-.5.

Zero eigenvalues remain zero after elimination because the matrix remains singular and
its determinant remains zero.

Ahas \y = —1 and A\, = 5 with eigenvectors x; = (—2,1) and 2 = (1,1). The
matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.
That zero eigenvalue correctly indicates that A + [ is singular.

A has Ay = 2 and Ay = —1 (check trace and determinant) with ; = (1,1) and
@ = (2, —1). A~! has the same eigenvectors, with eigenvalues 1/\ = § and —1.
A has A\y = —3 and Ay = 2 (check trace = —1 and determinant = —6) with z; =

(3,—2) and x5 = (1,1). A? has the same eigenvectors as A, with eigenvalues \3 = 9
and \3 = 4.

A and B have eigenvalues 1 and 3. A + B has A\; = 3, Ay = 5. Eigenvaluesof A + B
are not equal to eigenvalues of A plus eigenvalues of B.

Aand Bhave \; = 1and A\, = 1. AB and BA have A\ = 2 + /3. Eigenvalues of AB
are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of AB and BA
are equal (this is proved in section 6.6, Problems 18-19).

U is triangular so its eigenvalues are the diagonal entries w11, u22, . .., Upy,. (This is
because det (U — AI) will be just the product (u3; — A)(uge — A) ... (tUny — A) from
the main diagonal.)

1 1 . 1 1
A:{ ]w1th/\:2and0 U:{O 0

11 }has/\zlando.

8 (a) Multiply Ax to see Az which reveals A (b) Solve (A — M)z = 0 to find .
9 (a) Multiply by A: A(Axz) = A(\x) = Mz gives A%z = A%z (b) Multiply by
1

10

11

A7l = A7 Az = A7\ = M lx gives A7l = %:v (c) Add Iz = x:
(A+Dxe =X+ 1)z.

Ahas A\ = land \y = 4 with x; = (1,2) and 2 = (1,—1). A* has A\; = 1 and
A2 = 0 (same eigenvectors). A% has \; = 1 and Ay = (.4)1°° which is near zero. So
A0 is very near A%°: same eigenvectors and close eigenvalues.

With A\ = 0,1, 2 the rank is 2. The eigenvalues of B? are 0, 1,4. The eigenvalues of
(B*+I)tare(0+1)'=1,1+1)"t=354+1) =1
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12 The projection matrix P has A = 1,0, 1 with eigenvectors (1, 2,0), (2, —1,0), (0,0, 1).
Add the first and last vectors: (1,2, 1) also has A = 1. Note P? = P leads to A\? = X
soA=0orl.

13 (a) Pu = (uvul)u = u(uTu) =uso\= (b) Pv = (uub)v = u(utv) =
0() z; =(-1,1,0,0), &2 = (-3,0,1, ) = (—5,0,0,1) all have Pz = 0z =
0.

14 Two eigenvectors of this rotation matrix are 1 = (1,4) and 2 = (1,—%) (more

generally cx1, and dxo with cd # 0).

15 These matrices all have A; = 0 and Ay = 0 (which we can see from trace = 0 and
determinant = 0):

_ 0 0 _ 0 1 2 _|la —a 2
A—{O O] A—{O O} has A* =0 A—[a —a} has A® = 0.

16 A = 0,0,6 (notice rank 1 and trace 6) with x; = (0,—2,1), 3 = (1,—2,0), 3 =
(1

17 [
[ [ZIS] = (a+b) E] S0 [ﬂ is an eigenvector.

The other eigenvalue is d — b to make trace = a +d = (a + b) + (d — b).

[\
—
S—

1} [ﬂ = [(65} so A\; = 6. Then Ao = 1 to make trace=5+2 =6+ 1.

= Ot
[\

1

o
QU o
—_
| — |
—
—_
|

. 14 0 3 2 2 2
18 These 3 matrices have A = 4 and 5, trace 9, det 20: {O 5],[_1 6}’[—3 7}.

19 (a) w is a basis for the nullspace, v and w give a basis for the column space
(b) « = (0, é, 5) is a particular solution. Add any cu from the nullspace
(¢) If Ax = u had a solution, u would be in the column space: wrong dimension 3.

22 1ﬂ has trace 11 and determinant 28, so A = 4 and 7.

(b) A= [_/\? A M j_ )\2] has trace A\; + A2 and determinant \; A so its eigenval-

20 (a) A_{

ues must be A\; and Aq. This is a typical companion matrix.

21 (A — M) has the same determinantas (A — )T [1 0 and 1 1| have different
because every square matrix has det M = det MT. |1 0 0 0| eigenvectors.

22 )\ =1 (for Markov), 0 (for singular), —% (so sum of eigenvalues = trace = %)

23 If you know n independent eigenvectors and their eigenvalues, you know the matrix A.
In Section 6.2, the ’s and A’s go into V and A, and the matrix mustbe A = VAV !,
In this section, Problem 23 suggests that Av = Bwv for every vector v (which proves
A = B) because

v=cix1+- --+cpxTy, Av:cl)\lm1+"'+annmn:B’U.

24 The block matrix has A = 1, 2 from B and 5, 7 from D. All entries of C' are multiplied
by zeros in det(A — AI), so C has no effect on the eigenvalues.
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25 A has rank 1 with eigenvalues 0, 0, 0,4 (the 4 comes from the trace of A). C has rank
2 (ensuring two zero eigenvalues) and (1, 1,1, 1) is an eigenvector with A = 2. With
trace 4, the other eigenvalue is also A = 2, and its eigenvectoris (1, —1,1, —1).

26 Bhas A= —1,—1,—1,3and C has A = 1,1, 1, —3. Both have det = —3.

27 Triangular matrix: A\(A) = 1,4,6; A\(B) = 2, V3, —v/3: Rank-1 matrix: ACO) =
0,0,6.

0—2A 1 0 _ _
28det| 0 0—X 1 |[=-XN41=0for\=1,e2m/3 ¢ 27m/3
1 0 0—A
Those complex eigenvalues Az, A3 are cos 120° £ i sin 120° = % + z@
The trace of Pis A1 + Ao + A3 = 0.
0—A 0 1
det| O 1-A 0
1 0 0—2A
141 —1= 1. Three eigenvectors are (1,1,1) and (1,0, 1) and (1,0, —1). Since P is
symmetric we could have chosen orthogonal eigenvectors—change the first to (0, 1, 0).

29 Set A =0indet(A — AI) = (A; — A)...(An — A) to find det A = (A1) (A2) - (An).

30 \y = S(a+d+(a—d)?+4bc)and Ay = L(a+d—V ) add to a + d.
If Ahas \; = 3 and A\ = 4 thendet(A — X\) = (A —3)(A—4) = 2 —7TA + 12,

=-XN4+X+A-1=0forA=1,1,—1. The trace is

Problem Set 6.2, page 345

Questions 1-7 are about the eigenvalue and eigenvector matrices A and V.

5 |

(b) If A = VAV~ then A3 = (V)(A3)(V~1)and A~! = (V)(A~1) (VD).

BN B E R A ER R B ]

2 If A has A\; = 2 with eigenvector &1 = [éﬂ and Ay = 5 with &y = [H,
use VAV~ to find A. No other matrix has the same \’s and «’s.

Put the eigenvectorsin V. | 1 _ |1 1|2 O |1 —=1] |2 3
and eigenvalues in A. A=VAS _[O 1} [0 5] [O 1}_[0 5]'

3 Suppose A = VAV~ What is the eigenvalue matrix for A + 27 ? What is the
eigenvector matrix ? Check that A + 21 = (V)(A + 2I)(V)~ 1.

If A = VAV ™! then the eigenvalue matrix for A + 27 is A + 21 and the eigenvector
matrix is still V. VIA+2)V P =VAV L+ V@RIV = A+ 2].

4 True or false : If the columns of V' (eigenvectors of A) are linearly independent, then

1 (a) Factor these two matrices into A = VAV ~1:

A=l 5] wme oa-

1
0 3 3

—~

= [
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(a) A is invertible (b) A is diagonalizable
(c) V isinvertible (d) V is diagonalizable.

(a) False: don’tknow \’s  (b) True (c) True (d) False: need eigenvectors of V'

5 If the eigenvectors of A are the columns of I, then A is a matrix. If the eigen-
vector matrix V is triangular, then V ! is triangular. Prove that A is also triangular.

With V = I,A = VAV~! = A is a diagonal matrix. If V is triangular, then V! is
triangular, so VAV ~! is also triangular.

6 Describe all matrices V' that diagonalize this matrix A (find all eigenvectors):
4 0
=118

Then describe all matrices that diagonalize A~*.

The columns of V' are nonzero multiples of (2,1) and (0,1): in either order. The same
matrices V' will diagonize A~

7 Write down the most general matrix that has eigenvectors [H and [_} } .

e [T 1] M 1], [htde =X)L
A= VAV = [1 -1 PV B RIS i D VIS VR WS W
a

b
b a for any @ and b.

Questions 8-10 are about Fibonacci and Gibonacci numbers.

8 Diagonalize the Fibonacci matrix by completing V=1 :

11 . A A A1 0
1 0] |1 1 0 A )
Do the multiplication VA*V~=1[%] to find its second component. This is the kth Fi-
bonacci number Fj, = (AY — A5) /(A — A2).
_ ECR DU U R T P SR N N PSR 1 =X P
A=VAV —[1 0l ", |1 tlo xfl-1 a| VAV =

1 Ao [AF0 1 =Xo| [1] | 2nd componentis F,
pvpes vl ST B I N3 [ ISR I 1) Rl IO UV Y W S

9 Suppose G2 is the average of the two previous numbers G41 and G, :
Giy2 = 3Gry1 + 1Gy, s G2 | _ A Gr+1
Grr1 = Grq1 Grt1 Gy |’
(a) Find A and its eigenvalues and eigenvectors.

(b) Find the limit as n — oo of the matrices A™ = VA"V L
(c) If Go = 0 and GG; = 1 show that the Gibonacci numbers approach %
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(a) A= {? (5)] has A1 =1, Ay = —% withxy = (1,1), &2 = (1,-2)
2 1 2 1
n_ |1 11" 0 3 3 ~_|3 3
(b) A" = [1 —2] [o (—.5)4 l; L1 AT = lz 1
3 3 3 3
10 Prove that every third Fibonacci numberin 0,1,1,2,3, ... is even.

The rule Fy4+9 = Fi41 + F};, produces the pattern: even, odd, odd, even, odd, odd, . ..
Questions 11-14 are about diagonalizability.

11 True or false : If the eigenvalues of A are 2,2, 5 then the matrix is certainly
(a) invertible (b) diagonalizable (c) notdiagonalizable.
(a) True (no zero eigenvalues) (b) False (repeated A = 2 may have only one line of

eigenvectors) (c) False (repeated A may have a full set of eigenvectors)

12 True or false : If the only eigenvectors of A are multiples of (1, 4) then A has
(a) noinverse  (b) arepeated eigenvalue  (c) no diagonalization VAV 1,

(a) False: don’t know A (b) True: an eigenvector is missing (¢) True.

13 Complete these matrices so that det A = 25. Then check that A = 5 is repeated—
the trace is 10 so the determinant of A — AI is (A — 5)2. Find an eigenvector with
Ax = bx. These matrices will not be diagonalizable because there is no second line of
eigenvectors.

A_[s } and A_{g ‘11] and A_[lo 5]

2 -5

| 8 3 19 4 |10 5|, only eigenvectors
A= [—3 2] (or other), A = [—4 1]’ A= {—5 o}’ are z = (¢, —c).

14 The matrix A = [8 :ﬂ is not diagonalizable because the rank of A — 31 is
Change one entry to make A diagonalizable. Which entries could you change ?

The rank of A — 37 is r = 1. Changing any entry except ajo = 1 makes A
diagonalizable (A will have unequal eigenvalues, so eigenvectors are independent.)

Questions 15-19 are about powers of matrices.

15 A* = VAFV~! approaches the zero matrix as k& — oo if and only if every A has
absolute value less than . Which of these matrices has A* — 0?

6 9 6 .9
Al:[.zl .1] and A2:[.1 .6]

Ak = VA*V ~1 approaches zero if and only if every |\| < 1; AY — A5, A5 — 0.
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16

17

18

19

20

21

(Recommended) Find A and V' to diagonalize A; in Problem 15. What is the limit
of A¥ as k — oo ? What is the limit of VA*V =1 ? In the columns of this limiting
matrix you see the

1
1 -1
Find A and V to diagonalize A5 in Problem 15. What is (Az)*%u for these ug ?

[1 0
(AR — 0 0 andVAkV1—>[

A= and V =

" state

N[= N[

%] _ steady
1
2

uo_[fls} and wug = _? and Uo—[g]-

9 0 3
0 .3]’ S = {1

AL m — (.9)10 m 4 (.3)10 {_ﬂ because m is the sum of m + [_ﬂ

Diagonalize A and compute VA¥V 1 to prove this formula for A :

k k
A_{ 2 —1} has Ak1{1+3 1-3 }

3] 03 3 3

A aefi] -on[f} ar 1] -0 ]

-1 2 T2 1-3F 143k

2 -1 1|1 —-1]|1 0 11 g L1 =111 0
[—1 2] = 5{1 1] {0 3] {—1 1] and A = 5[1 1} {0 3’6]
1 11438 1-3F
-1 2 (1-3" 1+3F
Diagonalize B and compute VA*V ~! to prove this formula for B* :

501 k| BF Bk —4F
B_|:O4:| has B_[O o .

m_[1 1 5 01°[1 1] _[s" 5F—ak

0 —-1|1]0 4 0 -1 0 4k
Suppose A = VAV ~!. Take determinants to prove det A = det A = Ao --- \,.
This quick proof only works when A can be

det A = (det V)(det A)(det V=) = det A = \; - - - \,,. This proof works when A is
diagonalizable.

Show that trace V'I' = trace TV, by adding the diagonal entries of VT and T'V :

_|la b g r
V—[C d} and T—{St}

ﬂ . Multiply those last three matrices to get A¥ =

Choose T'as AV 1. Then VAV ~! has the same trace as AV 'V = A. The trace of A
equals the trace of A, which is certainly the sum of the eigenvalues.

trace VT = (aq + bs) + (cr + dt) is equal to (ga + rc) + (sb + td) = traceTV.
Diagonalizable trace of VAV ~! = trace of (AV ~1)V = trace of A: sum of the \’s.
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22

23

24

25

26

27

AB — BA = 1T is impossible since the left side has trace = . But find an
elimination matrix so that A = F and B = E7T give
-1 0 .
AB — BA = [ 01 } which has trace zero.

AB — BA = 1 is impossible since trace AB — trace BA = zero # trace I.
AB — BA = C is possible when trace (C') = 0.

|1 0 T T~ _ |—1 0
E—{l 1]hasEE - F E—{ 0 1].

If A = VAV !, diagonalize the block matrix B = [ﬁ 22] Find its eigenvalue and
eigenvector (block) matrices.

—1
IfA:VAV_lthenB:[A 0}:[5 OHA OHV 0:|.SOB

0 24 V]iio 2A 0 Vvt
has the additional eigenvalues 2\, ..., 2\,.
Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigenvector

matrix V. Show that the A’s form a subspace (cA and A; + Ay have this same V).
What is this subspace when V' = I ? What is its dimension ?

The A’s form a subspace since cA and A; + A, all have the same V. When V = T
the A’s with those eigenvectors give the subspace of diagonal matrices. Dimension 4.

Suppose A2 = A. On the left side A multiplies each column of A. Which of our four
subspaces contains eigenvectors with A = 1? Which subspace contains eigenvectors
with A = 0? From the dimensions of those subspaces, A has a full set of independent
eigenvectors. So every matrix with A2 = A can be diagonalized.

If A has columns 1, . .., ,, then column by column, A? = A means every Ax; = x;.
All vectors in the column space (combinations of those columns x;) are eigenvectors
with A = 1. Always the nullspace has A = 0 (A might have dependent columns, so
there could be less than n eigenvectors with A = 1). Dimensions of those spaces add
to n by the Fundamental Theorem, so A is diagonalizable (n independent eigenvectors
altogether).

(Recommended) Suppose Ax = Ax. If A = 0 then « is in the nullspace. If A # 0 then
@ is in the column space. Those spaces have dimensions (n — r) + r = n. So why
doesn’t every square matrix have n linearly independent eigenvectors ?

Two problems: The nullspace and column space can overlap, so  could be in both.
There may not be r independent eigenvectors in the column space.

The eigenvalues of A are 1 and 9, and the eigenvalues of B are —1 and 9

5 4 4 5
A:[45] and 32{54].

Find a matrix square root of A from R = VAV ~!. Why is there no real matrix
square root of B ?
R=VVAV 1= B ﬂ has R2=A. /B needs A = v/9 and /—1, trace is not real.

Note that [_(1) _(1)] can have /—1 = 7 and —j, trace 0, real square root [_(1) (1)} .
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28

29

30

31

32

The powers A approach zero if all [\;|] < 1 and they blow up if any |\;| > 1.
Peter Lax gives these striking examples in his book Linear Algebra :

3 2 3 2 5 7 5 6.9
=[P i) =3 3 e-[3 ] e-[3)
|A1024|| > 10700 pl024 — | Cc1024 — _ o | D1924|| < 1078

Find the eigenvalues A\ = ¢%° of B and C to show B* = [ and C® = —1I.

Bhas A\ =i and —i,s0 B*has A* = 1 and 1 and B* = I. C has A = (1 ++/3i)/2.
This is exp(+7i/3) so A*> = —1 and —1. Then C® = —T and C1%* = —C.

If A and B have the same \’s with the same full set of independent eigenvectors,
their factorizations into are the same. So A = B.

The factorizations of A and B into VAV ! are the same. So A = B. (This is
the same as Problem 6.1.25, expressed in matrix form.)

Suppose the same V' diagonalizes both A and B. They have the same eigenvectors in
A=VAV~land B= VA3V L. Prove that AB = BA.

A = VA V=1 and B = VA,V 1. Diagonal matrices always give AjAs = AsA;.
Then AB = BA from VAV VAV = VAJAgV ™t = VA9A{ VL. This is
VAQV_lVAlV_l = BA.

(a) If A = [3 1] then the determinant of A — Al is (A — a)(\ — d). Check the
“Cayley-Hamilton Theorem” that (A — al)(A — dI) = zero matrix.

(b) Test the Cayley-Hamilton Theorem on Fibonacci’s A = H (ﬂ The theorem
predicts that A2 — A — I = 0, since the polynomial det(A — AI) is A> — X\ — 1.

a b
0 d

= {8 8] (b) A = E (1)] hasAQZ[% ﬂ and A2 — A — T = 0 is true,

matching A2 — X\ — 1 = 0 as the Cayley-Hamilton Theorem predicts.

Substitute A = VAV ~!into the product (A—A;I)(A—\o1) - - - (A— ), 1) and explain
why this produces the zero matrix. We are substituting the matrix A for the number A
in the polynomial p(\) = det(A — A\I). The Cayley-Hamilton Theorem says that this
product is always p(A) = zero matrix, even if A is not diagonalizable.

When A = VAV ~! is diagonalizable, the matrix A— ;I = V(A—X;1)V ! will have
0 in the 7, j diagonal entry of A — A\;I. In the productp(A) = (A—XI)--- (A=A, 1),
each inside V! cancels V. This leaves V times (product of diagonal matrices A—\;I)
times V ~1. That product is the zero matrix because the factors produce a zero in each
diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices
approaching A.)

(@) A= has A = aand A = d: (A—al)(A—dI) = [0 b Ha_d b]

0 d—a 0 0

Comment 1 have also seen the following reasoning but I am not convinced:
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33

34

35

Apply the formula ACT = (det A)I from Section 5.3 to A — AI with variable \. Its
cofactor matrix C' will be a polynomial in A, since cofactors are determinants:

(A=) cof (A= M)T = det(A — \I)T = p(\)I.

“For fixed A, this is an identity between two matrix polynomials.” Set A = A to find
the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

I am not certain about the key step of substituting a matrix for A. If other matrices
B are substituted, does the identity remain true? If AB # BA, even the order of
multiplication seems unclear . . .

Challenge Problems

The nth power of rotation through 6 is rotation through n6 :

An — cosf —sinf |" | cosnfd —sinnd
| sin6 cos 6 | sinnd cosnb |-

Prove that neat formula by diagonalizing A = VAV ~1. The eigenvectors (columns of
V) are (1,4) and (4, 1). You need to know Euler’s formula e?’ = cos 6 + i sin 6.

cosf) —sinf
sin 6 cos

det = 1). Their eigenvectors are (1, —i) and (1, ):

n o oamir—1 | 1 1] [e™® i =11 .
T I R S | L P

— {((eme +e /2 .. ] _ {cosnb’ —sinnb‘] '

e — e=ind) /2 sinné cosnb

The eigenvalues of A = are A\ = ¢ and e~ (trace 2 cosf and

Geometrically, n rotations by € give one rotation by n6.

The transpose of A = VAV ~1is AT = (V"1)TAVT. The eigenvectorsin ATy = \y
are the columns of that matrix (V ~1)T. They are often called left eigenvectors.

How do you multiply three matrices VAV~ to find this formula for A ?

Sum of rank-1 matrices A= VAV ! = Alwlyrf + -+ /\nmnyz.

Columns of V' times rows of AV ~! will give r rank-1 matrices (r = rank of A).

The inverse of A = eye(n) +ones(n) is A~! = eye(n) + C *ones(n). Multiply AA~!
to find that number C' (depending on n).

Note that ones(n) * ones(n) = n * ones(n). This leads to C' = 1/(n + 1).
AA~! = (eye(n) + ones(n)) * (eye(n) + C x ones(n))
=eye(n) + (1 + C + Cn) xones(n) = eye(n).
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Problem Set 6.3, page 357

1 Find all solutions y = cre

ey 4 coeMtxy to Yy = { g é ] y. Which solution
starts from y(0) = c1x1 + cox2 = (2,2)?
The eigenvalues come from det(A — AT) = 0. This is

M-8\ +12=(A—-2)(A—6)=0s0\=2,6

Eigenvectors: (A—2I)@; = 0and (A—61)xy = 0 givex; = (1, —1) and z, = (1,3)
Solutions are y(t) = c;e? [ _i } + coebt [ :1)) }

C1

1 1
Constants ¢, ca come from [ -1 3 ] { ca

}—y(())_ { : }Thencl_c2_1.

2 Find two solutions of the form y = ez to y’ = { g 12 ] Yy

The eigenvalues come from A\> — 7\ — 8 = 0. Factor into (A — 8)(\ + 1) to see
A=28, and —1.

(A=8I)x, = { _g _1(1) }ml—() gives ml_{ %]
4
2

|

3 If a # d, find the eigenvalues and eigenvectors and the complete solution to ¢y’ = Ay.
This equation is stable when a and d are

, _|a b
Y=19 q4|¥
The eigenvalues are A = a and A = d. The eigenvectors come from

0 b 1
(A—aI):vlz[O d—a}wl:o' wl:[o]
d

1?}3@2_0 gives $2—|:

Do Ot

(A+Dzo = {

8

The two solutions are y(t) = e®'x; and e~ xo

(A—dl)mg—{aa 8}%’2—0- mQ_[dfa]

d

Two solutions are y = e**x; and y = e x5. Stability for negative a and d.

4 If ¢ # —b, find the solutions e*’ax; and e ?astoy = Ay:

A= [ Z H Why is y’ = Ay not stable ?

Ais singularso A\; = 0. Traceisa +bso Ao =a+b. (A—0I)x, = 0 gives
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ml_{ b] (A_(a+b)1)m2_{‘b _Hm_()givesmz_“}

—a a

The system is not stable because A = 0 is an eigenvalue. If Ay = a + b is negative, the
system is “neutral” and the solution approaches a steady state (a multiple of x).

5 Find the eigenvalues A1, A2, A3 and the eigenvectors x;, a2, x3 of A. Write
y(0) = (0,1,0) as a combination ¢c1x1 + cax2 + csxs = Ve and solve y' = Ay.
What is the limit of y(¢) as t — oo (the steady state) ? Steady states come from X = 0.

-1 1 0
1 -2 11.

0 1 -1

A:

Calculation gives det(A — AI) = —(X + 1)A(\ + 3) and eigenvalues A = 0, —1, —3.

1 1 1
A=0 has eigenvector &= ll} A=—1 has xy= 0] A=-3 has x3= [—2]
1 -1 1

Notice: Those eigenvectors are orthogonal (because A is symmetric). Then y(0) is

1
(0,1,0) = %(ml —x3)s0y(t) = %eOtwl - %e’?’tmg approaches y(00) = E l 1 1 :

6 The simplest 2 by 2 matrix without two independent eigenvectors has A = 0,0:

’
vi | _ 4|01 (1 - yi | _ ot |1
[yz} —Ay—[o 0}[.@2} has a first solution [yz]—e {O}

Find a second solution to these equations y;” = y» and yo’ = 0. That second solution
starts with ¢ times the first solution to give y; = ¢t. Whatis yo ?

Note A complete discussion of y’ = Ay for all cases of repeated \’s would involve
the Jordan form of A: too technical. Section 6.4 shows that a triangular form is suffi-
cient, as Problems 6 and 8 confirm. We can solve for y- and then y; .

The first solution to yl/ = yo and yQ/ =01is (y1(t),y2(t)) = (1,0) = eigenvector.

A second solution has (y1,y2) = (¢, 1). The factor ¢ appears when there is no xs.

A

7 Find two \’s and 2’s so that y = ez solves

dy |4 3
a [0 1]Y
What combination y = c;e?Mta; 4 coe?2tay starts from y(0) = (5, —2) ?

y, =e*t m Yy, = € {_ﬂ If y(0) = [_g},then y(t) = et H + 2¢t [_ﬂ
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8 Solve Problem 7 for y = (y, z) by back substitution, z before y :
dz dy
Solve pria from z(0) = —2. Then solve pri 4y + 3z from y(0) = 5.
The solution for y will be a combination of e* and e!. \ = 4 and 1. z(t) = —2¢'.

Then dy/dt = 4y — 6e! with y(0) = 5 gives y(t) = 3e* + 2¢! as in Problem 7.
9 (a) If every column of A adds to zero, why is A = 0 an eigenvalue ?

(b) With negative diagonal and positive off-diagonal adding to zero, y’ = Ay
will be a “continuous” Markov equation. Find the eigenvalues and eigenvectors,
and the steady state ast — 0o

dy -2 3 . 4 .
Solve E_{ 9 _3}y with y(0) = {1] What is y(c0) ?

(a) If every column of A adds to zero, this means that the rows add to the zero row. So
the rows are dependent, and A is singular, and A = 0 is an eigenvalue.

(b) The eigenvalues of A = {_3 _

A2 = —5 (to give trace = —5) with &3 = (1, —1). Then the usual 3 steps:
1. Write y(0) = [ﬂ as [3} + {_i] =X + T2

g} are Ay = 0 with eigenvector z; = (3,2) and

2. Follow those eigenvectors by €%z, and e 5z,
3. The solution y(t) = @1 + e !5 has steady state 1 = (3,2).

10 A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people.
The movement between rooms is proportional to the difference v — w:

dv d dw

— =w—v an — =

T dt
Show that the total v + w is constant (40 people). Find the matrix in dy /dt = Ay and
its eigenvalues and eigenvectors. What are v and w att = 1 and £ = 0co?

v —w

1 -1
A1=0 . |1 [ 1], w(1)=20+10e7?  w(co0) =20
Ay = —2 With@r = M’“"Q - {—1}’ w(1) =20 —10e~2  w(co) = 20
11 Reverse the diffusion of people in Problem 10 to dz/dt = —Az:

dv d dw

_— = — an _— = — V.

dt v w dt w v
The total v + w still remains constant. How are the A’s changed now that A is changed
to —A? But show that v(¢) grows to infinity from v(0) = 30.

d(v+w)/dt = (w —v) + (v —w) = 0, so the total v 4w is constant. A = [_1 1]

has

dfv 1 -1
dat M - [_1 1] has A = 0 and +2: v(t) = 20 + 10¢*" — oo as t — oo.
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12 A has real eigenvalues but B has complex eigenvalues:

A:[Cll i] B:H _})] (a and b are real)

Find the stability conditions on a and b so that all solutions of dy/dt = Ay
and dz/dt = Bz approach zero as t — co.

A= {ClL ﬂ has real eigenvalues a 4 1 and a — 1. These are both negativeif a < —1,

and the solutions of 4y’ = Ay approach zero. B = [i) _é] has complex eigenvalues

b+ i and b — 7. These have negative real parts if b < 0, and all solutions of 2’ = Bz
approach zero.

13 Suppose P is the projection matrix onto the 45° line yy = x in R2. Its eigenvalues are 1
and 0 with eigenvectors (1, 1) and (1, —1). If dy/dt = — Py (notice minus sign) can
you find the limit of y(¢) at ¢t = oo starting from y(0) = (3,1)?

A projection matrix has eigenvalues A = 1 and A = 0. Eigenvectors Pz = = fill
the subspace that P projects onto: here « = (1,1). Eigenvectors Px = 0 fill the
perpendicular subspace: here = (1, —1). For the solution to y’ = — Py,

y(0) = [ﬂ = B} + {_ﬂ yt)=e"t B} + e {_ﬂ approaches [_}] .

14 The rabbit population shows fast growth (from 67) but loss to wolves (from —2w).
The wolf population always grows in this model (—w? would control wolves):

dr dw
$—6r—2w and E-%—i—w.

Find the eigenvalues and eigenvectors. If 7(0) = w(0) = 30 what are the populations

at time t? After a long time, what is the ratio of rabbits to wolves?

2
w(t) = 10e5t 4 20e2. The ratio of rabbits to wolves approaches 20/10; e dominates.

15 (a) Write (4,0) as a combination ¢y + cox of these two eigenvectors of A:

0o 17[1] _.[1 o 17[1]_ .[1
-1 0| |i| "] —1 0| |—i| = " —=i|"
(b) The solution to dy/dt = Ay starting from (4,0)is ¢ e a1 +coe~"x,. Substitute
et = cost +isintand e~ = cost — isint to find y(t).

o [ -+l ot e[ i)

[6 _f has \y = 5, 1 = [?], Ao =2, &y = [%];rabbits r(t) = 20e% + 10e?,
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Questions 16-19 reduce second-order equations to first-order systems for (y, y’).

16 Find A to change the scalar equation y” = 5y’ + 4y into a vector equation for y =

(v y'): W Ty ,
£-(4)-[ J[r)-m

What are the eigenvalues of A? Find them also by substituting y = e
5y + 4y.

diy | _ (v | _|0 Lf{y] 4_|0 1 e _
at |:y/:| = |:y//] = [4 5:| [y/ A= 4 5 has det(A—AI) = A* =5 \—4=0.
Directly substituting y = e* into y”” = 5y’ + 4y also gives A?> = 5\ + 4 and the same
two values of A. Those values are A = %(5 + v/41) by the quadratic formula.

M into ! =

17 Substitute y = e into 4’ = 6’ — 9y to show that A\ = 3 is a repeated root. This is
trouble; we need a second solution after 3. The matrix equation is

il =1 6]

Show that this matrix has A = 3, 3 and only one line of eigenvectors. Trouble here too.
Show that the second solution to i/ = 6y’ — 9y is y = te>t.

A= {_8 é] has trace 6, det 9, A = 3 and 3 with one independent eigenvector (1, 3).

18 (a) Write down two familiar functions that solve the equation d?y/dt?> = —9y. Which
one starts with y(0) = 3 and ¢’ (0) = 0?

(b) This second-order equation y” = —9y produces a vector equation y' = Ay:

AEIEREREpINR

Find y(t) by using the eigenvalues and eigenvectors of A: y(0) = (3,0).
(a) y(t) = cos 3t and sin 3t solve y” = —9y. It is 3 cos 3t that starts with y(0) = 3

and 3/(0) = 0. (b) A= _8 (1) has det = 9: A = 3i and —3i with @ = (1, 37)
. 3 3 1 3 _3; 1 3 cos 3t
and (1, —3i). Then y(t) = 5 {32] + e {_32.] = [—9sin3t]'

19 If c is not an eigenvalue of A, substitute y = e““v and find a particular solution to
dy/dt = Ay — e“'b. How does it break down when c is an eigenvalue of A ?
Substituting y = e“v gives cev = Ae“v —e“bor (A —cl)v = borv =
(A—cI)~1b = particular solution. If c is an eigenvalue then A— cI is not invertible.

20 A particular solution to dy/dt = Ay —bisy, = A~1b, if A is invertible. The usual
solutions to dy/dt = Ay give y,,. Find the complete solution y = Yp T Yp!

gl

dy dy 10
(a)E:y—él (b) E—{l 1}?!—
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21

22

23

24

25

y, =4dandy(t) =ce' +4 y,= [3] and y(t) = cre! m + cpe! m " H
Find a matrix A to illustrate each of the unstable regions in the stability picture :

(@ M <0and Ao >0 (b) A&y >0and A2 >0 (c) A=axibwitha > 0.

(a) [(1) _(1)} (b) {(1) (1)] (c) {_1 1] These show the unstable cases

(@ Ay <0and X2 >0 (b) \y >0and A3 >0 (¢c) A=axibwitha >0
Which of these matrices are stable ? Then Re A < 0, trace < 0, and det > 0.

-2 -3 -1 -2 -1 2
Al—[—4 —5] AQ—{—?, —6} A3—[—3 —6]'

Aq is unstable (trace = —7 but determinant = —2; Ay < 0 but Ay > 0).
Aj is unstable (singular so A; = 0).
Aj is stable (trace = —7 and determinant 12; A\; < 0 and Ay < 0).

For an n by n matrix with trace (4) = T and det (A) = D, find the trace and determi-
nant of —A. Why is 2’ = — Az unstable whenever ¢y’ = Ay is stable ?

If trace (A) = T then trace (—A) = —T
If determinant (A) = D then determinant (—A) = (—1)"D
The eigenvalues of — A are —(eigenvalues of A).

(a) For areal 3 by 3 matrix with stable eigenvalues (Re A < 0), show that trace < 0
and det < 0. Either three real negative A or else Ao = A; and A3 is real.

(b) The trace and determinant of a 3 by 3 matrix do not determine all three eigenval-
ues ! Show that A is unstable even with trace < 0 and determinant < 0:

1 2 3
0 1 4].
0 0

-5

A:

(a) If all three real parts are negative (stability), trace = sum of real parts < 0.
Also det = A1 Ao A3 <0 from 3 negative \’s or from (a+ib)(a—ib) A3 = (a*+b*) A3 <0.

If a real matrix has a complex eigenvalue A\ = a -+ ib, then A = a — ib is also an
eigenvalue. The third eigenvalue must be real to make the trace real.

(b) The triangular matrix A has A = 1,1, —5 even with trace = —3 and det = —5.
There must be a third test for 3 by 3 matrices and that test must fail for this matrix.

You might think that ¢’ = — A2y would always be stable because you are squaring the

eigenvalues of A. But why is that equation unstable for A = [ _(1) (1) ] ?

This real matrix A has A\ = i and —i. Then A> = —1 and —1. So y’ = —A2%y has
eigenvalues 1 and 1 (unstable).
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26

27

28

29

Find the three eigenvalues of A and the three roots of 53 — s? + s — 1 = 0 (including
s = 1). The equation vy’ — y” +y’ — y = 0 becomes

’
Y 0 1 0 Y
y’ =0 01 y’ or z/ = Az.
y// 1 -1 1 y//

Each eigenvalue \ has an eigenvector z = (1, \, A?).

53 — 82 4+ 5 — 1 = 0 comes from substituting y = e** intoy”’ —y” +y' —y = 0.
A3 — A2 + X — 1 = 0 comes from computing det(A — \I) for the 3 by 3 matrix.
One rootis s = 1 (and A = 1). The full cubic polynomial is

3 —s?+s—1=(s—1)(s®>+ 1) with roots 1, %, —1.

Eigenvectors (1, A\, A\?) = (1,1,1), (1,4, —1), (1, —i, —1) for this companion matrix.
Find the two eigenvalues of A and the double root of 52 + 65+ 9 = 0:

’
y"” + 6y’ +9y =0 becomes {Z,} —[8 é} {Z,] or z/ = Az.

The repeated eigenvalue gives only one solution z = e*z. Find a second solution z
from the second solution 3y = te .

The matrix has det(4 — A\I) = A% + 6\ + 9. This is (A + 3)2 so eigenvalues

A =roots s = —3,—3. The two solutions are y = ¢ 3! and y = te 3!, Those
_|Y _ -3t 1 _| ¥ _ -3t t

translatetoz—[y,]—e {_3]andz—{y,}—e [1—3t}

Explain why a 3 by 3 companion matrix has eigenvectors * = (1, A2).

First Way: If the first component is z; = 1, the first row of Az = Az gives the
second component o = . Then the second row of Ax = Az gives the third
component x3 = \2.

Second Way: y' = Ay starts with y{ = y2 and y4 = y3. y = ez solves

those equations. At ¢ = 0 the equations become Az; = 2 and

0 1 0 1 1
Ax = 0 0 1 A =X A because rows 1 and 2 are true and
-D -C -B A2 A2

row 3is —D — CA — BA? = 3. Thatis A\* + BA? + C\ + D = 0 corresponding to
y///+By//+Oy/+Dy — O

Find A to change the scalar equation y”” = 5y’ — 4y into a vector equation for z =

(v, y"): ] /
s [4]-[ 3]

What are the eigenvalues of the companion matrix A? Find them also by substituting
y = eMinto y” = 5y — 4y.
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dz [y | _ ¥ | 01 y | _
(5] [2a] [ ][]

The eigenvalues come from A> — 5\ + 4 = 0. Then A = 1 and 4. Unstable because
y" — 5y’ + 4y has negative damping.

30 (a) Write down two familiar functions that solve the equation d?y /dt? = —9y. Which
one starts with y(0) = 3 and y’(0) = 07?

(b) This second-order equation y”” = —9y produces a vector equation 2’ = Az :

_ |y dz _ [y | _[ 0 1]y |_
z_[y’} dt_[y”}_[*)o 7
Find z(t) by using the eigenvalues and eigenvectors of A: z(0) = (3,0).

(a) y1 = cos 3t and yo = sin 3t and their combinations solve " = —9y. The initial
conditions y(0) = 3,y’(0) = 0 are satisfied by y = 3 cos 3t.

A 1

(b) The matrix A has det [ 9 )

(1,34), (1, —34).

} = A2 +9=0and \ = 33, —34. Eigenvectors

z(t) = c1e3 [?i] + cqe~ 30t [_?i} gives ¢; + co = 3 and 3ic; — 3icy = 0 att = 0.
_ 3
2

3. Y 3 | 1 3 s 1| 3 cos 3t
Thency =c3 = 5 gives [ Y } e 3 —i—Ee 3i | = | —9sin3t |
31 (a) Change the third order equation y"" — 2y” — y' + 2y = 0 to a first order system
z' = Az for the unknown z = (y,y’,v”). The companion matrix A is 3 by 3.
(b) Substitute y = e** and also find det (A — AI). Those lead to the same \’s.

(c) One rootis A = 1. Find the other roots and these complete solutions :

Y= creMt 4 cpe?t + 038)‘3t z = CheMtxy + Coetay + Cge“tmg.
Y 01 0 Y
@z'=119y' = 0 0 1 y' | =Az
y// -2 1 2 y//

(b) The characteristic equation is det(4 — A\[) = —(A3 — 2)A2 — X\ +2) = 0.
(c) A = 1is aroot so we can factor out (A — 1):
A =2X2 - A4+2=A-1)(N2=21-2)=(A—1)(A—2)(A\+1) hasroots 1,2, —1.

The complete solution is y = cie? + coe? + cze™.
1 1 1

This vectorizesinto z = Cief | 1 | +Caee?* | 2 | + Cye™t| —1

1 4 1
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32 These companion matrices have A = 2,1 and A = 4, 1. Find their eigenvectors:
A= { 01 } and B = [ 01 ] Notice trace and determinant !

-2 3 —4 5

Ahas A2 —3X+2=0= (A—2)(A—1). A = 2,1 with eigenvectors [ ] d [

o

J
J

—_ —_

1
5 | an
Bhas A2 =5 A+4=0= (A—4)(A—1). A = 4,1 with eigenvectors [ le } an

Problem Set 6.4, page 369

1 If Az = Az, find an eigenvalue and an eigenvector of e and also of —e AL,

If Az = M@ then eAtx = eMx and —e Atz = —e~Ma. Use the infinite series :
eMo = (I+ At + 3(At)* + -z
= ([ + M+ 32+ )z =M.
2 (a) From the infinite series eAt = [ + At + --- show that its derivative is Ae}.

(b) The series for eAl ends quickly if A = [ 8 (1) ] because A% = [ 8 8 }
Find e and take its derivative (which should agree with AeAt).

(a) The time derivative of the matrix e is Ae:

LI+ At+ $(A)? + S(ALP + ) = A+ A%+ JA3 2 + ) = Aet
0 1

0 0

b If A= { 01

] then A2 =0and e =1+ At = { o ]
The derivative of et = [ (1) f } is [ 8 (1) ] which agrees with AeAt.

This derivative also agrees with A itself but that is an accident.

3 For A = [ (1) ; } with eigenvectorsin V = [ (1) } ],compute At = ety -1,

1 1 et 1 -1 et et — ¢t
At _ 17 AEY -1 _
comverv=[ G |[Cw s =] TET

Check et = Tatt = 0.
4 Why is e (4130 equal to eAA? multiplied by €3 ?

If AB = BA then e(A1tB)t = ¢AteBt (This usually fails if AB # BA.)

Here B = 31 always gives AB = BA so e(A+30t — ¢Ate3lt — gAt3t g trye.
5 Why is e not the inverse of e 2 What is the correct inverse of ¢4 ?

The correct inverse of e is e 4. In general eeA” = ¢A(+T) Choose t=1,T = —1.

-1, . - -1 -1
47" is a series of powers of A~! and (e?)(e? ) = eAt4 " : not wanted.

The matrix e =e
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n

6 Compute A" = [ 0 1

¢ ¢
. Add the series to find et = [ et cfe’ —1) }

1
0
. 1 " 1 ne .
Start by assuming 0 = (certainly true for (n = 1).

0 0
n+1
. . 1 ¢ |1 ¢ 1 ne| |1 (n+1)ec
Thenbymductlon[0 O} _{O O]{O 0 ]_{O 0 }

The first equation is true for n = 1. Then the second equation says that every matrix

multiplication adds c to the off-diagonal entry. So the first equation is true for n =
2,3,4,...

Now add up the series for e4? :
T+t+ 32+ O+ct+ 32t + -
0 14040+

7 Find e and e” by using Problem 6 for ¢ = 4 and ¢ = —4. Multiply to show that the
matrices e*e? and eBe? and e+ Bare all different.

a-[3a] -] wee[28]

I+At+1(At)* 4 =

_ [eot c(etl— 1)]

WithtzlinProblem6,A:[(1) é} haseA:[g 4(61_1)]
p_ |1 —4 has e — | ¢ —4(e—1)
1o o] ™C Tlo 1

2 _ _ 2 _ —
ThenedcE — | € (Fetd)le—1) | qepea_ | € (e—dle—1) 1 4

0 1 0 1

2

eATB = 80 (1) } Those three off-diagonal entries are different because AB and

B A have off-diagonals —4 and 4.
8 Multiply the first terms I + A + 5 A% of e by the first terms I + B + $B? of eZ. Do

you get the correct first three terms of e+ 5 2 Conclusion: e *B is not always equal
to (e?)(e?). The exponent rule only applies when AB = BA.

(I+A+3A4%)(I+B+3B%) = I+ A+ B+ 3A*> + AB + $B* + -
The correct three terms of e™? are I + A+ B + 1A* + 1AB + 1BA + 1B2
Then AB agrees with  AB + s BA only if AB = BA.

9 Write A = [§ &] in the form VAV L. Find e4? from VeV —1.
This is Problem 6 using diagonalization A = VAV ~! by the eigenvector matrix V :

a=[a8]=16 A8 8106 1]

NI HI RN R
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10 Starting from y(0) the solution at time ¢ is e”’y(0). Go an additional time ¢
to reach e ¢4ty (0). Conclusion: e times e equals

The conclusion is that e times e? equals e?4?. No problem with AB # B A because
here B is the same as A.

11 Diagonalize A by V' and confirm this formula for eAt by using Velty-1.

2t 3t _ 2t
A_{Q 4] eAt_{e 4(e € )} At t =0 this matrixis_

0 3 0 et
H __H_VAV—1

IR
S B AL e

12 (a) Find A% and A® and A" for A = (1) ] with repeated eigenvalues A = 1, 1.

(b) Add the infinite series to find e}, (The Ve AV~ method won’t work.)

(a)AQ_[(l) %]andA?’_[(l) HandA"_[(l) H (b) eAt =

L4+t+ 312+ ¢+ 2202+ 13t% +
0 T+t+ 22+

el t(l+t+3t2+--)
0 et

Notice the factor ¢ appearing as usual when there are equal roots (or equal eigenvalues).

13 (a) Solve y’ = Ay as a combination of eigenvectors of this matrix A :
0 1 . 3
yl_|:1 0:|y Wlthy(O)—|:5:|

(b) Write the equations as yj = y2 and y5, = y;. Find an equation for y{ with y
eliminated. Solve for y; (¢) and compare with part (a).

(a) A= [(1) é}has/\_lwithml— [ 1 ] and A = —1 with zo = { _1 ]

Then y(0) = 41 — @2 and y(t) = 4e’ [ 1 ] —et { _1 ]

(b) If y{ = y2 and y5 = y1 then y{' = yq = y1.

The second order equation y{' = y; has y; = cie! + coe™.

The initial conditions produce the solution of part (a).
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14

15

16

17

18

19

Similar matrices A and B = VYAV have the same eigenvalues if V is invertible.

Second proof ~ det (V'AV — AI) = (det V1) (det (A — \I)) (det V).

Why is this equation true ? Then both sides are zero when det (A — A\I) = 0.
We use the rule det ABC' = (det A)(det B)(det C).

Here A =V ~!and C = V have (det A)(det C) = 1.

This only leaves det B which is det(A — AI).

Conclusion: V~1 AV has the same eigenvalues as A. Similar matrices!

If B is similar to A, the growth rates for 2’ = Bz are the same as for y' = Ay.
That equation converts to the equation for z when B = V1AV and z =

If y' = Ay justset y = Vzto get Vz/ = AVz whichis 2/ = V1AVz.
Similar matrices come from a change of variable in the differential equation.

If Ax = \x # 0, what is an eigenvalue and eigenvector of (eAt —DA"1?
The same x is an eigenvector, with eigenvalue in
1 eM—1
At -1 At
—-1)A =— — DNz = .

(e VAT @ 3 (e JE2 P
The matrix B = [3 2] has B2 = 0. Find B! from a (short) infinite series.
Check that the derivative of et is BeBt.

Bt _ 1 -4t o 0 —4
e —I—i-Bt—i—O—[O 1 . The derivative is RE

The derivative is always Be®*; here it also equals B.

Starting from y(0) = 0, solve ¥y’ = Ay + ¢ as a combination of the eigenvectors.
Suppose the source is ¢ = q1x1 + - - - + ¢ x,. Solve for one eigenvector at a time,
using the solution y(¢) = (e** — 1)g/a to the scalar equation y’ = ay + q.

Then y(t) = (eAt — I)A~1q is a combination of eigenvectors when all \; # 0.
At

A

q;x; is the solution when ¢ = q1x1 + - - - + ¢ ®n.

For each eigenvector , a solutionto y’ = Ay +x is y(t) =
Ait
et —1

x by Problem 16.

Then by linearity y(¢) = X
This is the same as y,,(t) = (e — I)A™'q.

Solve for y(t) as a combination of the eigenvectors x; = (1,0) and &3 = (1,1):
!/
;o yi | |11 Y1 4 .. y1(0)=0
v=wva [ ]=o ][] [3] i

Write g = [ g ] as a combination 3x; + @2 of the eigenvectors of A. By Problem 18,

et —1 et — 1
yp(t) = 1 3x1 + 5

ro.
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20

21

! —
Solve y' = Ay = [ 2 1

23 } y in three steps. First find the A’s and x’s.

(1) Write y(0) = (3,1) as a combination ¢; &1 + ca®2
(2) Multiply ¢; and ¢y by e*? and 2t
(3) Add the solutions c;e*txy + coe?tas.

Th eigenvalues come from det [ 2 ; A 1 E/\ } =A2-3\—-4=(A-4)(A\+1)=0.

Then A = 4 and —1.
1
] and 3 = [ 1 }

(4]

4
Step (2) Two solutions ge‘” [ 3 } and 56 [ _1 ]

The eigenvectors are found to be ; = [
3 3
sy v [3] -2 3] +3

2 1

4,037,381
Step (3) y(t)—ge _2]4—56 [_1 ]

Write five terms of the infinite series for eAf. Take the  derivative of each term. Show
that you have four terms of Ae“?, Conclusion: ety (0) solves dy/dt =

=TI+ At+ < (At) %(At)3 + 2—14(At)4 +

d At _ 2 342 1 443 _ At
E(e _A+At+§At + AN = Al

Problems 22-25 are about time-varying systems y’ = A(t)y. Success then failure.

22

23

Suppose the constant matrix C' has Cx = Az, and p(¢) is the integral of a(t).
Substitute y = ez to show that dy/dt = a(t)Cy. Eigenvectors still solve
this special time-varying system: constant matrix C' multiplied by the scalar a(t).

Here the time-varying coefficient matrix has the special form a(¢)C, with the matrix C
constant in time. Its eigenvalues and eigenvectors are a(¢)A and & (main point: A and
x are constant). Then we can solve y’ = a(t)C'y starting with an eigenvector :

d
y(t) = el A dtg solves d—"': =a(t) \y = a(t)Cy.
A combination of these solutions is also a solution—and can match y(0).

Continuing Problem 22, show from the series for M (t) = eP()C that dM/dt = a(t)C'M.
Then M is the fundamental matrix for the special system y’ = a(t)Cy. If a(t) = 1
then its integral is p(¢) = t and we recover M = ¢,

This question puts together the “fundamental matrix” M (¢) from Problem 22. Write
p(t) = /a(t) dt.

1 d
M =e?NC =T 4 p(t)C + =p>(t)C? + - -- and L = q(t) give
IM 2 dt

— = a(t)C + a(t)C?p(t) +--- = a(t)C M.
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24

25

. 1 2t . t 2 . ,
The integral of A = 0 o |1 P = 0o o | The exponential of P is
P et tlet —1) . . o
e =1 1 . From the chain rule we might hope that the derivative of

eP®) is P1eP®) = AeP®) . Compute the derivative of e”'(*) and compare with the
wrong answer Ae”(Y). (One reason this feels wrong: Writing the chain rule as
(d/dt)er = ePdP/dt would give e A instead of A e”. That is wrong too.)

Now the matrix A(t) does not have the special form A = a(¢)C of problems 22-23.
The problem shows that the simple formula doesn’t solve y’ = A(t)y. We can’t just
integrate A(t) and use the matrix e/ A4,

B B t t2 2 t2 t3 n tn tn+1
P—/A(t)dt—{oo] has P—{O 0 and P"=1| 0

ThenE: 0 0

But the derivative of ¢ is not ¢’ %. This matrix e

dP 1 2t
0

t t
:|=AandeP:I+p+%P2+“.:[8 tel t}

P(t) is not solving y' = A(t)y.
Find the solution to y’ = A(t)y in Problem 24 by solving for 3 and then y; :

Solve {ggzﬁi] - Ll) %t] [gj starting from [gzgg%]

Certainly yo(t) stays at y2(0). Find y;(¢) by “undetermined coefficients” A, B, C':
Y1 = y1 + 2ty2(0) issolved by y1 =y, + yn = At + B + Ce'.
Choose A, B, C to satisfy the equation and match the initial condition y; (0).
The wrong answer in Problem 24 included the incorrect factor tet in e”’(*),
To solve y’ = A(t)y in Problem 24 we can start with its second equation :
dy, /dt = y1 + 2ty;
dys/dt =0
Then y2(t) = y2(0) = constant and the first equation becomes dy; /dt = y1 + 2ty2(0).
A particular solution has the form y; = At + B. Substitute this y; to find A and B:

d
% = y1 + 2ty2(0) gives A = At + B + 2ty»(0) and then A = —2y,(0) = B.

Now add a null solution Ce! to start from y; (0) :

yi(t) = (y1(0) + 2y2(0))e" — 2y2(0)t — 2y2(0).

This correct solution has no factor te?.
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Problem Set 6.5, page 379

Problems 1-14 are about eigenvalues. Then come differential equations.

1 Which of A, B, C have two real A’s ? Which have two independent eigenvectors ?
7 —11 7 —11 7T —11
A:{—n 7] B:[n 7] C:[o 7}
A is symmetric: Real \’s with a full set of two eigenvectors.
B = 71+ antisymmetric: Complex A = 7 &£ 114, full set of (complex) eigenvectors.
01 ] : Eigenvalues 7, 7 but only one eigenvector.

0 0

2 Show that A has real eigenvalues if b6 > 0 and nonreal eigenvalues if b < 0

A[08] waas]l )

C—?I—ll[

1 0
. O b 2 .
The eigenvalues of 10 have A2 —b=0. Then A\ = b if b > 0.

[} f}has)\zlﬂ:\/g.

3 Find the eigenvalues and the unit eigenvectors of the symmetric matrices

2 2 2 1 0 2
(a)S—[QOO] and (b) S—[O -1 —2].
2 0 0 2 =2 0
2—A 2 2
(a)det[ 2 =\ O]:(2—)\))\2+4)\+4)\:—)\3+2)\2+8)\
2 0 —A
=-2AA—-4)(A+2). A=0,4,—2
1 [V 1 [ 2 1 1
Unit (orthonormal!) eigenvectors — 1|1, —|(1]|, — | —-1].
! et ﬁl—l] ﬁ[l] ﬁl—l]
1-A 0 2
(b)detl 0 —1-A —2]_)\(1—)\2)+4(1+)\)—4(1—/\)—9)\—)\3
2 —2 -

=-2AA=3)(A+3). )
A = 0, 3, —3 with orthonormal eigenvectors % l 2 1 ,
-1
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4 Find an orthogonal matrix () that diagonalizes S = [ _z g ] . What is A?

The eigenvalues from A2 — 5\ — 50 = 0 = (A — 10)(A + 5) are A\; = 10 and )\ = 5.
The unit eigenvectors are in @ :

-V 78] a[5 2]

5 Show that this A (symmetric but complex) has only one line of eigenvectors:

A= { 1Z _i } is not even diagonalizable. Its eigenvalues are 0 and 0.

AT = Ais not so special for complex matrices. The good property is A=A

det(A — A\I) = A\? gives A = 0, 0. But A — A\] = A has rank 1: Only one line of
eigenvectors in its nullspace.

9 12]

6 Find all orthogonal matrices from all x1, x5 to diagonalize S = [12 16

A2 — 25X\ = 0 gives eigenvalues 0 and 25. The (real) eigenvectors in Q can be

Q7143 1[ -4 3 1[ 4 -3 1[ -4 -3
=5l -3 4| 5| 34| 5| -3 -4 5| 3 -4/
1 b
b1

(b) How do you know that S must have a negative pivot?

7 (a) Find a symmetric matrix S = [ ] that has a negative eigenvalue.

(c) How do you know that .S can’t have two negative eigenvalues?

The determinant of S is negative if b2 > 1. This determinant is (pivot 1)(pivot 2).
Also det S = \; times \z. So exactly one eigenvalue is negative if b > 1.

8 If A% = 0 then the eigenvalues of Amustbe ___ . Give an example with A # 0. But
if A is symmetric, diagonalize it to prove that the matrix is A = 0.
If Az = Az then A%z = \2x. Here A% = 0 so A must be zero.

Nonsymmetric example: A = [ 8 (1) } is not diagonalizable.

The only symmetric exampleis A = { 8 8 ] because A = QAQT and A = [ 8 8 } .

9 If A = a + ib is an eigenvalue of a real matrix A, then its conjugate X = a — ibis also
an eigenvalue. (If Az = Az then also AT = AT.) Prove that every real 3 by 3 matrix
has at least one real eigenvalue.

A real 3 by 3 matrix has det(A — M) = =A% + c2A? + c; A + c2 = 0. If )\; satisfies
this equation so does Ao = \; (take the conjugate of every term). But the sum \; +
Ao + A3 = trace of A = real number. So A3 must be real.
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10

11

12

13

14

Here is a quick “proof™ that the eigenvalues of all real matrices are real:
T
. x Az
False proof Ax = )\x gives z Az =Xx'xz so A= —5—— isreal.
zTx

Find the flaw in this reasoning—a hidden assumption that is not justified. You could
test those steps on the 90° rotation matrix [0 —1; 1 0] with A =dand x = (i,1).

The flaw is to expect that T Az and ™« are real and 7« > 0. When complex
numbers are involved, it is Z ' « that is real and positive for every vector  # 0.

Write A and B in the form \jz @] + Aoxoxa of the spectral theorem QAQT :
3 1 9 12
A= [ 1 3 } B = [ 12 16 ] (keep [|z1]| = [|z2|| = 1).

A has A = 4, 2 with unit eigenvectors in (). Multiply columns times rows :

]G]0
41[_%@][1/\/5 —1/\/§}+2“§£}[1/\/§ 1/v2 ]

B has A = 0, 25 with these unit eigenvectors in @ :

9 12| 4/5 3/5( 10 4/5 -=3/5| _ 3/5
[12 16} = [—3/5 4/5] [ 25] [3/5 4/5| =0+25 | 5| [3/4 4/5].
What number b in [ §] makes A = QAQT possible? What number makes A =

VAV ~! impossible? What number makes A~! impossible?

b = 1 makes A symmetric and then A = QAQT. b = —1 makes A = 1, 1 with only
one eigenvector. b = 0 makes the matrix singular.

This A is nearly symmetric. But its eigenvectors are far from orthogonal:

—15
A= { (1) 1i010_15 ] has eigenvectors [ (1) } and [ 7]

What is the dot product of the two unit eigenvectors ? A small angle !

The unit eigenvector for A = 1 4+ 10715 is S [ 1 ] )
N

The two eigenvectors are at a 45 © angle, far from orthogonal (even if A is nearly sym-

metric).

(Recommended) This matrix M is skew-symmetric and also orthogonal. Then all its

eigenvalues are pure imaginary and they also have |A| = 1. They can only be i or —i.

Find all four eigenvalues from the trace of M:

0 1 1 1

It -1 0 -1 1 : , ,
M = Bl-1 1 0 -1 can only have eigenvalues i or — ¢.
-1 -1 1 0

The four eigenvalues must be A\ = 2,4, —%, —¢ to produce trace = zero.
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15 The complete solution to equation (8) for two oscillating springs (Figure 6.3) is

16

17

18

y(t) = (Aycost + By sint) { } ] + (Ag cos v/3t + By sinv/3t) { _11 ] .
Find the numbers A, Az, By, By if y(0) = (3,5) and y'(0) = (2,0).

The numbers Ay, A2 come from y(0) = (3,5) since cos0 = 1:

A1—|:}:|+A2[_}]—|:g:| gives A =4 and Ay = —1.

The numbers By, By come from y’(0) = (2,0) since (sint)’ = 1 att = 0 and

(sinv/3t)! =+/3att=0:

Blz{Hm@Bz{_”:{ﬂ gives 31:32:%.

If the springs in Figure 6.3 have different constants k1, ks, k3 then y”’ + Sy = 0 is

Upper mass 4y + kiy1 — ka2(y2 —y1) =0 g_ | Btk ke
Lower mass  y5 + ka(y2 —y1) + ksy2 =0 o —ko ko + ks

For k1 = 1,ky = 4,ks = 1 find the eigenvalues A = w? of S and the complete
sine/cosine solution y(¢) in equation (7).

1+4 —4 )

The matrix S = [ 4 441 ] has eigenvalues \; = 1 = wf and A\ = 9 = w3.

The complete solution to y” + Sy = 0 is

y(t) = (Aq cost + By sint) [ } } + (Ag cos 3t + By sin 3t) [ _} ] .
Suppose the third spring is removed (k3 = 0 and nothing is below mass 2). With k; =
3, ke = 2 in Problem 16, find S and its real eigenvalues and orthogonal eigenvectors.
What is the sine/cosine solution y(¢) if y(0) = (1,2) gives the cosines and y'(0) =
(2, —1) gives the sines ?

When ky = 3,ke = 2,k3 = 0, the matrix S becomes S = [ _g _g } with
A2 —TA+6=(AN—-1)(A—6)=0.

The eigenvector for \; = w? = 1is &; = (1,2). The orthogonal eigenvector for

A2 = w5 = 6is @y = (2,—1). Then Ay = 1and Ay = 0,B; = 0 and By =
1/4/6 come from y(0) = x; and y’(0) = x,. The solution to y” + Sy = 0 is
y(t) = (cost)xy + (sinv/6t)x2 /6.

Suppose the top spring is also removed (k; = 0 and also k3 S is singular!
= (

- 0).
Find its eigenvalues and eigenvectors. If y(0) = (1,—1) and ¥’ = (0,0) find y(¢). If
y(0) changes from (1, —1) to (1, 1) what is y(t)

S = { _Zz _Zz } has Ay = 0 with &1 = (1,1) and Ao = 2ko with 2 = (1, —1).
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19

20

21

22

y(0) = (1,—1) and y'(0) = (0,0) give y(t) = (cos v2ka t) x2.
y(0) = (1, 1)and y’(0) = (0,0) give y(t) =x1 = (1,1) : no movement!
There is no force from springs 1 and 3 and no initial velocity y’(0).

The matrix in this question is skew-symmetric (AT = —A). Energy is conserved.
d 0 ¢ —b Yyl = cyz — bys
vy _ | 0 I _
il aly or yQ/ =ays — cy1
b —a 0 y3 = by1 — aye.
The derivative of [ly(t)|? = v + 93 + v3 is 2u1yl + 29205 + 2y3v5.

Substitute ¥/}, /}, ¥/} to get zero. The energy ||y (t)]|? I|%.

Y1y1 + Y293 + yay3 = yi(cy2 — bys) + y2(ays — cy1) + ys(byr — ayz) = 0.
Then ||y(t)||? stays constant, equal to ||y (0)]|2.

stays equal to ||y (0)

When A = —AT is skew-symmetric, et is orthogonal. Prove (eA")T = =4t
from the series e4? = I + At + 1 A%2 ...
A= _8 (1) has det = 9: A\ = 3¢ and —3¢ with & = (1, 37) and (1, —37). Then

_3.3a| 1 3 _3it 1 | 3cos3t
y(t) = 3¢ {32] +a¢ {—31'] = [—9sin3t :
The mass matrix M can have masses m; = 1 and mo = 2. Show that the eigenvalues
for K& = \Mx are A = 2 + /2, starting from det(K — AM) =0:

M = {(1) (2)] and K = {_3 _Z] are positive definite.

Find the two eigenvectors z; and 3. Show that ] 2 # 0 but £ Maxy = 0.
Kz =AMz is (K — AM )x = 0 and we need the determinant of X' — A\M to be 0:

2-X -2

4++/16 -8
—2 42\ =g —2EV2

det[ ]_2(/\2—4)\+2)_0 A

The eigenvectors 1 = (v/2, —1) and x5 = (1/2, 1) come from

(K—/\lM)mlz[_\_/g _2\_/;]:21:Oand(K—)\2M)w2=[\_/g 2\7;} —

Notice that x; is not orthogonal to xo—it is “M -orthogonal”:

T . 1 0 V2 .
wlMccg—[\/i —1}[0 9 1 =0.
What difference equation would you use to solve y” = —Sy ?
"

y" = —Sy is well approximated by ¥, 11 — 2yn + Yn—1 = —(At)2Sy,,. The initial
conditions come in as yo = y(0) and y1 = y(0) + Aty’(0) (but that is only a first order
accurate approximation to the true y(At)).
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23

24

The second order equation y”' + Sy = 0 reduces to a first order system y; ' = y, and
y2' = —Sy,. If Sz = w2z show that the companion matrix A = [0 I ; —S 0] has
eigenvalues iw and —iw with eigenvectors (x, iwz) and (x, —iwx).

The first-order equation with block companion matrix for y” = —Sy is

BEHUEENIHEEIA

For the eigenvalues : If Sz = w?x then

0 I T | fiwz | L T
-5 0 tiwe | T | —wlz | T Y| tiwe |
So the block companion matrix A has eigenvalues iw and —iw. Then we can compute
and use the exponential eAt (if we want to).

Find the eigenvalues A and eigenfunctions y(x) for the differential equation
y" = Ay with y(0) = y(r) = 0. There are infinitely many !

This is an important problem in function space—instead of eigenvectors in R we look
for functions of x between x = 0 and x = 7:

d2

Wg = A\y(z) with boundary conditions y(0) = y(7) = 0.
This equation is satisfied by y(x) = a cos (\/X :c) + bsin (\/X )
The boundary condition (0) = 0 makes a = 0.
The condition y(7) = sin (\/X w) =0 makes VX=1or2or3or... Then

A =12 or 22 orany n? y(z) = sin(vVAx).
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Problem Set 7.1, page 393

1 Suppose your pulse is measured at by = 70 beats per minute, then by = 120, then
bs = 80. The least squares solution to three equations v = b;,v = by, v = bs with
AT =11 1]isv = (ATA)" 14T = . Use calculus and projections:

(a) Minimize £ = (v — 70)% + (v — 120)? + (v — 80)? by solving dE /dv = 0.
Solution (a) 4E = 2(v — 70) + 2(v — 120) + 2(v — 80) = 0 at the minimizing .
Cancel the 2’s: 3v = 70 + 120 4+ 80 = 270s0 U = Vaverage = 90

(b) Project b = (70,120,80) ontoa = (1,1,1) to find v = a*b/aT a.

Solution (b) The projection of b onto the line through a is p = av:

70 1 T
b=| 120 a=|1 5= b _210_g
80 1 a a 3

2 Suppose Av = b has m equations a;v = b; in one unknown v. For the sum of squares
E = (ayv —b1)? + -+ + (av — by,)?, find the minimizing ¥ by calculus. Then form
AT A = AT b with one column in A, and reach the same 7.

Solution To minimize E we solve dE/dv = 0. For m = 3 equations a,v = b;,
dE
d_ = 2&1 (alv - bl) + 2&2(&2’0 — b2) + 20,3(&31) — bg) = 0 is zero when
v
albl + CLQbQ + a3b3 - aTb
a?+ai+a2  aTa’
When A has one column, AT A7 = ATb is the same as (aTa)v = (aTh).
3 With b = (4, 1,0, 1) at the points = (0, 1, 2, 3) set up and solve the normal equation

for the coefficients v = (C, D) in the nearest line C'+ Dzx. Start with the four equations
Awv = b that would be solvable if the points fell on a line.

V=70 =

Solution The unsolvable equation has m = 4 points on a line : only n = 2 unknowns.

1
Av=1> is } % [ g } = (1) leading to AT Av = ATb :
1 3 1

4 6 @76ivesaii14—6 6] 17 60]_[ 3
6 14| |p|~ |4] & Dl T20]-6 4| |4] 24 |-20 -1
The closest line to the four pointsis b = 3 — .

4 In Problem 3, find the projection p = Awv. Check that those four values lie on the line
C + Dz. Compute the error e = b — p and verify that ATe = 0.

Solution The projection p = A is
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10 3 .
P i ; {_?}: % witherror e=b—p = :1
1 3 0 !

The best line C + Dz = 3 — x does produce p = (3,2,1,0) at the four points
x=0,1,2,3.

Multiply this e by AT to get ATe = [ 8 ] as expected.

5 (Problem 3 by calculus) Write down E = ||b— Av||? as a sum of four squares : the last
one is (1 — C — 3D)?2. Find the derivative equations 9E/90C = OE /0D = 0. Divide
by 2 to obtain AT Av = ATb.

Solution Minimize E = (4—C)2+ (1 —C — D)? +(—~C —2D)2+ (1— C — 3D)2.
The partial derivatives are OE/0C = 0 and OE /0D = 0 at the minimum :
—24-C)-21-C-D)—-2(-C-2D)—-2(1-C-3D) =0
—2(1-C—-D)—4(-C—-2D)—-6(1-C—-3D) =

Factoring out —2 and collecting terms this is the same equation AT Av = ATb!
6—4C — 6D =0 4 6][C 6
4-6C—-14D=0 [6 14“3]—{4}

6 For the closest parabola C'+ Dt + Et? to the same four points, write down 4 unsolvable
equations Av = b for v = (C, D, E). Set up the normal equations for v. If you fit the

best cubic C' + Dt + Et? + F't3 to those four points (thought experiment), what is the
error vector e ?

Solution The parabola C' + Dt + Et? fits the 4 points exactly if Av = b:
t=20 C+0D+0F =4 1 00
t=1 C+1D+1E =1 A— 1 11
t=2 C+2D+4E =0 1 2 4
t=3 C+3D+9F =1 1 39
4 6 14 44+1+0+1
ATA=| 6 14 36 GATb=| 0+14+0+3 _l 4].
14 36 98 0+1+0+9 10

The cubic C + Dt + Et? + Ft3 can fit 4 points exactly, with error = zero vector.
7 Write down three equations for the line b = C + Dt to go through b = 7 at

t = —1,b="Tatt = 1,and b = 21 att = 2. Find the least squares solution
v = (C, D) and draw the closest line.
1 -1 7
. c| oo~ |9 3 2|1C| |35
Solution h % [D}_ 2{] . The solution & —[4] comes from [2 6} [D}_[AQ} .

8 Find the projection p = A in Problem 7. This gives the three heights of the closest
line. Show that the error vector is e = (2, —6,4).

Solution p = Az = (5,13,17) gives the heights of the closest line. The error is
b—p=(2,—6,4). This error e has Pe = Pb— Pp=p—p = 0.
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9 Suppose the measurements at ¢ = —1, 1, 2 are the errors 2, —6,4 in Problem 8. Com-
pute v and the closest line to these new measurements. Explain the answer: b =
(2, —6,4) is perpendicular to so the projection is p = 0.

Solution If b = previous error e then b is perpendicular to the column space of A.
Projection of bis p = 0.

10 Suppose the measurements at t = —1,1,2 are b = (5,13,17). Compute v and the
closest line e. The error is e = 0 because this b is

Solution Ifb = Az = (5,13,17) then Z = (9,4) and e = O since b is in the column
space of A.

11 Find the best line C' + Dt tofitb =4,2,—1,0,0 at times t = —2,—1,0,1, 2.

0 10| |D —10
Solution: C' =1, D = —1. Line 1 — t. Symmetric ¢’s = diagonal AT A

12 Find the plane that gives the best fit to the 4 values b = (0,1, 3,4) at the corners
(1,0) and (0,1) and (—1,0) and (0, —1) of a square. At those 4 points, the equations
C + Dz + Ey = b are Av = b with 3 unknowns v = (C, D, E).

Solution The least squares equation is {5 0] {O} = [ 5}.

R e | ‘o0 :
Solution D| = has ATA= |0 2 0| and ATb=|-2].
1 -1 0 3
1 0 -1 E 1 0 0 2 -3

The solution (C, D, E) = (2, —1, 3) gives the best plane 2 — z — 3.

13 With b = 0,8,8,20 at ¢t = 0,1, 3,4 set up and solve the normal equations AT Av =
ATb. For the best straight line C' + Dt, find its four heights p; and four errors e;. What
is the minimum value £ = €2 + €3 + €3 + €3 ?

10 I
Solution A = 1 zl)) and b = g give ATA = [é 286] and ATb = {13162].

1 4 20
) 1 —1
AT Az = ATb gives . |1 dp— A7 — 5 3
E=|e|?=44 *7 [4|MPTAT= 13| ande=b-p= |5
i 17 3

14 (By calculus) Write down E = ||b — Av||? as a sum of four squares—the last one is

(C + 4D — 20)2. Find the derivative equations 0E/0C = 0 and E /9D = 0. Divide
by 2 to obtain the normal equations AT Av = A"b.

Solution E = (C +0D)*+ (C +1D —8)? + (C + 3D —8)? + (C + 4D — 20)2.
Then 0E/0C = 2C + 2(C' + D — 8) + 2(C + 3D — 8) + 2(C + 4D — 20) = 0
and 9E/OD = 1-2(C+ D —8) +3-2(C + 3D — 8) +4-2(C + 4D — 20) = 0.

. .4 8| |C 36
These normal equations 0F /0C = 0 and F /0D = 0 are again [8 26] {D} = [112].

15 Which of the four subspaces contains the error vector e ? Which contains p ? Which
contains v ?
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16

17

18

19

20

Solution The error e is contained in the nullspace N (AT), since ATe = 0. The
projection p is contained in the column space C(A). The vector v of coefficients can
be any vector in R™.

Find the height C' of the best horizontal line to fit b = (0,8,8,20). An exact fit
would solve the four unsolvable equations C' = 0,C = 8,C = 8,C = 20. Find
the 4 by 1 matrix A in these equations and solve AT Az = ATb.

Solution E = (C —0)2+(C—8)2+(C—-8)2+(C—20)2and AT=[1 1 1 1].

ATA = [4]. ATb=[36]and (ATA)"'ATb =9 =bestC. e = (-9, —1,—1,11).

Write down three equations for the line b = C + Dt to go through b = 7 at
t = —1,b="Tatt = 1,and b = 21 at ¢t = 2. Find the least squares solution
v = (C, D) and draw the closest line.
1 -1 7
. C .o~ |9 3 2(|C 35
Solution h ; {D}_ 2{] . The solution —[4] comes from [2 6} {D}_[AQ} .

Find the projection p = Av in Problem 17. This gives the three heights of the closest
line. Show that the error vector is e = (2, —6,4). Why is Pe = 0 ?

Solution p = Az = (5,13,17) gives the heights of the closest line. The error is
b—p=(2,—6,4). This error e has Pe = Pb— Pp=p—p = 0.

Suppose the measurements at t = —1, 1, 2 are the errors 2, —6, 4 in Problem 18. Com-
pute ¥ and the closest line to these new measurements. Explain the answer: b =
(2, —6,4) is perpendicular to so the projection is p = 0.

Solution 1f b = error e then b is perpendicular to the column space of A. Projection
p=0.

Suppose the measurements at t = —1,1,2 are b = (5,13,17). Compute v and the
closest line and e. The error is e = 0 because this b is ?

Solution Ifb = Az = (5,13,17) then Z = (9,4) and e = 0 since b is in the column
space of A.

Questions 21-26 ask for projections onto lines. Also errorse = b — p and matrices P.

21

Project the vector b onto the line through a. Check that e is perpendicular to a :
1 1 1 -1

(a) b:l2]and a= 11 (b) b:[31and azl—B].
3 1 1 -1

Solution (a) The projection p is

Tb 1 2
p_aaT—l1‘|§—[2] e=b-p=
2

-1 1
0 ] perpendicular to l 1 ] .
1 1

Solution (b) 1In this case the projection is

Tb -1 —11 1 0
p:a“Tzl—?,]ﬁ:l?) and e=b—p=10 |.
ata | 1 0
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22

23

24

25

26

27

28

Draw the projection of b onto a and also compute it from p = va :

(a)b—{gionsg]anda_ [(1)} b)b= [ 1]anda_ { _1 ]

Solution (a) The projection of b = (cos 6, sin ) onto @ = (1,0) is p = (cos b, 0)
Solution (b) The projectionof b= (1,1)ontoa = (1,—1)isp = (0,0) sincea™ = 0.

In Problem 22 find the projection matrix P = aa™/a™a onto each vector a. Verify
in both cases that P? = P. Multiply Pb in each case to find the projection p.

1 _
Solution P, = [(1) 8] and p = P,b= |:C059:|. P2:§ [_} }] and p = P,b = |:8]

Construct the projection matrices P; and P onto the lines through the a’s in Problem
22. Is it true that (P + P2)? = P + P, ? This would be true if P; P, = 0.

Solution The projection matrices P, and P (note correction P, not P — 2) are

T T
p =22 _{1 O] p, =29 _1[ 1 _1],

aTa 0 0 aTa 2| -1 1

It is not true that (Py + P;)? = Py + P». The sum of projection matrices is not usually
a projection matrix.

Compute the projection matrices aa™ /a™a onto the lines through a; = (—1,2,2)
and ay = (2,2, —1). Multiply those two matrices P; P, and explain the answer.

L1 -2 =2 L4 42
Solution P; = — [—2 4 41, Py = — l 4 4 —2].
912 4 4 912 —2 1

P, P, = zero matrix because a1 is perpendicular to as.

Continuing Problem 25, find the projection matrix Ps onto ag = (2, —1, 2). Verify that
P, + P> + P; = I. The basis a1, as, as is orthogonal !

L1 -2 -2 4 4 -2 4 —2 4
Solution Pi+Py+P3=—- (-2 4 4|+=-| 4 4 -2|+=-|-2 1 -2(=1.
912 4 4 2 —2 1 4 —2 4

We can add projections onto orthogonal vectors. This is important.

Project the vector b = (1, 1) onto the lines through a; = (1,0) and as = (1,2). Draw
the projections p; and p, and add p; + p,. The projections do not add to b because
the a’s are not orthogonal.

Solution The projections of (1, 1) onto the lines through (1,0) and (1,2) are p; =
(1,0) and p, = (3/5,6/5) = (0.6, 1.2). Then p; + p, # b.

(Quick and recommended) Suppose A is the 4 by 4 identity matrix with its last column
removed. A is 4 by 3. Project b = (1,2, 3,4) onto the column space of A. What shape
is the projection matrix P and what is P?

Solution A=

0
0 .
11 P =square matrix=
0

OO O
[Nl )
o= OO
OO OO
i
I
~J
[ENNGVIN Gl
Il
O W=

1 0
0 1
0 0
0 0
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29 If A is doubled, then P = 2A(4ATA)~12AT. This is the same as A(ATA)"1AT.
The column space of 24 is the same as . Is ¥ the same for A and 2A?

Solution 2A has the same column space as A. Same p. But Z for 2 A is half of Z for A.

30 What linear combination of (1,2, —1) and (1,0,1) is closest to b = (2,1,1)?
Solution  1(1,2,—1) + 2(1,0,1) = (2,1,1). So b is in the plane: no error e.
Projection shows Pb = b.

31 (Important) If P? = P show that (I — P)?> = I — P. When P projects onto the column
space of A, I — P projects onto which fundamental subspace ?
Solution 1f P? = Pthen (I — P)?2 = (I-P)(I-P)=I1-PI-IP+P?>=1— P.
When P projects onto the column space, I — P projects onto the left nullspace.

32 If P is the 3 by 3 projection matrix onto the line through (1,1, 1), then I — P is the
projection matrix onto

Solution I — P is the projection onto the plane x1 + z2 + x3 = 0, perpendicular to

the direction (1,1,1):
11 1 2 -1 -1
1 1 |==-|-1 2 -1].
1 1] 31 -1 2

33 Multiply the matrix P = A(ATA)~'AT by itself. Cancel to prove that P? = P.
Explain why P(Pb) always equals Pb: The vector Pb is in the column space so its
projection is
Solution (A(ATA)_lAT)2 = A(ATA)"1(ATA)(ATA)7LAT = A(ATA)~1AT,
So P? = P. Geometric reason: Pb is in the column space (where P projects).
Then its projection P(Pb) is Pb for every b. So P? = P.

34 If A is square and invertible, the warning against splitting (AT A)~! does not apply.
Then AA=Y(AT)=1 AT = [ is true. When A is invertible, why is P = [ and e = 0 ?
Solution If A is invertible then its column space is all of R™. So P = I and e = 0.

35 An important fact about A" A is this: If ATAx = 0 then Ax = 0. New proof :

The vector Az is in the nullspace of . Ax is always in the column space of
. To be in both of those perpendicular spaces, Az must be zero.

Solution 1f AT Az = 0 then Az is in the nullspace of AT. But Az is always in the
column space of A. To be in both of those perpendicular spaces, Az must be zero. So
A and A" A have the same nullspace.

1

1 00 1
I-P=]01 0|—--|1
0 0 1

Notes on mean and variance and test grades
If all grades on a test are 90, the mean is m = 90 and the variance is 0> = 0. Suppose
the expected grades are g1, . .., gn. Then o2 comes from squaring distances to the mean :

_ 2 ... _ 2
g1+ +gnN Variance 02:(91 m)° +---+ (gy —m)

N N

Mean m =

After every test my class wants to know m and 0. My expectations are usually way off.
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36 Show that o also equals (g7 + - - - + g%/) — m*.

Solution Each term (g; — m)? equals g2 — 2g;m + m?, so

5 (sumof g?) — 2m(sumof g;) + Nm? _ (sumof g7) — 2mNm + Nm?
o = =
N

_ (sumof g7) 2

N

37 If you flip a fair coin /V times (1 for heads, O for tails) what is the expected number m
of heads ? What is the variance o2 ?

Solution For a fair coin you expect N/2 heads in N flips. The variance o2 turns out
to be N/4.

Problem Set 7.2, page 402

1 For a 2 by 2 matrix, suppose the 1 by 1 and 2 by 2 determinants a and ac — b? are
positive. Then ¢ > b?/a is also positive.
(i) A1 and A2 have the same sign because their product A\; Ay equals
(i) That sign is positive because A; + A2 equals

Conclusion: The tests a > 0, ac — b? > 0 guarantee positive eigenvalues A1, \a.
Solution Suppose a > 0 and ac > b? so that also ¢ > b2 /a > 0.

(i) The eigenvalues have the same sign because \; Ay = det = ac — b? > 0.

(i) That sign is positive because A\; + Ay > 0 (it equals the trace a + ¢ > 0).

2 Which of 51, S5, S3, S4 has two positive eigenvalues? Use a and ac—b2, don’t compute
the \’s. Find an x with TS < 0, confirming that A, fails the test.

5 6 -1 -2 1 10 1 10
81_{6 7] 32—{—2 —5] 53—[10 100} 54—[10 101}

1 10

Solution Only Sy = [ 10 101

] has two positive eigenvalues since 101 > 102

TSz = Sx% + 12z129 + 71:% is negative for example when 1 = 4 and zo = —3:
Aj is not positive definite as its determinant confirms; So has trace cg; S5 has det = 0.



198 Chapter 7. Applied Mathematics and AT A

3 For which numbers b and c are these matrices positive definite ?

sl sB sy

Solution
Positive definite 1 01 b | (1 0f]|1 0 1 b ILDLT
for-3<b<3 b 11|10 9-v*| |[b 1||0 9-b*||0 1|
Positive definite 1 02 4 | |1 0|2 0 1 2] LDLT
forc > 8 2 1[0 c—=8| |2 1||0 ¢=8||0 1|
Positive definite . 1 1 | e 0 - T
forc>b L_[—b/c O} D_{O c—b/c} §=LDL".

4 What is the energy ¢ = ax? + 2bzy + cy? = xT Sz for each of these matrices ?
Complete the square to write g as a sum of squares d1( )2 +da( )2

1 2 1 3
S:[Q 9] and 52[3 9]

Solution  f(x,y) = 2® +4xy+9y* = (v+2y)? +5y?; 2% +62y+9y? = (x+3y)%

5 T Sx = 22,1, certainly has a saddle point and not a minimum at (0,0). What sym-
metric matrix S produces this energy ? What are its eigenvalues ?

0 1

10 ] which has eigenvalues 1 and

Solution xTSx = 2x1x2 comes from S = [

—1: S is indefinite.

6 Test to see if AT A is positive definite in each case :

11
| 2] wa a=[t 1]
2 1

A_[(l) zﬂ and A=

Solution The first and second matrices have independent columns in A, so AT A is
positive definite. The third matrix has dependent columns so AT A is only positive
semidefinite.

7 Which 3 by 3 symmetric matrices S and 7" produce these quadratic energies ?
T Sx = 2(a1 + 23 + 23 — z12w2 — 22w3).  Why is S positive definite?

T Tx = 2(2% + 23 + 2% — x122 — 2123 — 22w3). Why is T semidefinite ?

Solution
g _% _; _(1) is positive definite—its
o 0 —1 9 determinants are D1 =2, Dy =3,D3 =4 °
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10

11

12

= :} _% _é determinants D1 =2, Dy =3,D3 =0 "

The energy x Tz = 0 when = = (1,1, 1).

2 -1 -1 1 is positive semidefinite with

Compute the three upper left determinants of S' to establish positive definiteness. (The
first is 2.) Verify that their ratios give the second and third pivots.

2 2 0
Pivots = ratios of determinants S = [2 5 3] .
0 3 8

Solution The upper left determinants of .S are 2, 6, 30. The pivots are 2, 3, 5 (ratios of
determinants). Notice that the product of pivots is 30.

For what numbers ¢ and d are S and T’ positive definite? Test the 3 determinants:
c 1 1 1 2 3
S=1|1 ¢ 1 and T=12 d 4].
1 1 ¢ 3 4 5

Solution For ¢ = 1, the matrix S has eigenvalues 3,0, 0. For any c, the eigenvalues
all add ¢ — 1. So S is positive definite for ¢ > 1. (Same answer using determinants.)
For T the determinants are 1,d — 4, —4d + 12. If d > 4 then —4d + 12 is negative !
So T is never positive definite for any d.

If S is positive definite then S™! is positive definite. Best proof: The eigenvalues
of S~ are positive because . Second proof (only for 2 by 2):
. —1 1 c —b .
The entries of 7" = —— pass the determinant tests
ac—b2 |=b a

Solution Positive definite = all eigenvalues A > 0 = all eigenvalues 1/ of S~! are
positive. Also for 2 x 2: the determinant tests are passed.

If S and T are positive definite, their sum S + T is positive definite. Pivots and
eigenvalues are not convenient for S + 7. Better to prove (S + T)z > 0.

Solution Energy (S +T)xz = TSz +x™Txz >0+0

A positive definite matrix cannot have a zero (or even worse, a negative number)
on its diagonal. Show that this matrix fails to have TSz > 0:
4 1 1 X
[21 @2 23] |1 O 2| || isnotpositive when (21,z2,23)=( , , ).
1 2 5 T3

Solution zT Sz is zero when z = (0,1,0).
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13

14

15

16

A diagonal entry a;; of a symmetric matrix cannot be smaller than all the X’s. If it
were, then A — a;;/ would have eigenvalues and would be positive definite.
But A —a;;l hasa on the main diagonal.

Solution If a;; is smaller than all eigenvalues, then A — a;;I would have positive
eigenvalues. But this matrix has a zero on the diagonal. But Problem 13, it can’t be
positive definite. So A;; can’t be smaller than all eigenvalues !

Show that if all X > 0 then z¥Sx > 0. We must do this for every nonzero x,

not just the eigenvectors. So write o as a combination of the eigenvectors and

explain why all “cross terms” are w;fa}j = 0. Then TSz is

(c1xy+-- -+cnwn)T(c1)\1m1 + ot e Any,) = cf)\lmrlf:cl + - ~+ci/\nmzmn > 0.

Solution The “cross terms” have the form (c;z;)T(cj\jx;). This is zero because
symmetric matrices S have orthogonal eigenvectors.

Give a quick reason why each of these statements is true:

(a) Every positive definite matrix is invertible.

(b) The only positive definite projection matrix is P = .

(c) A diagonal matrix with positive diagonal entries is positive definite.

(d) A symmetric matrix with a positive determinant might not be positive definite !

Solution

(a) All A\; > 0 so zero is not an eigenvalue and S is invertible
(b) All projection matrices except P = [ are singular

(c) The energy for a positive diagonal matrix is ¥ Dx = dy2? + -+ + d, 22 > 0
when ¢ # 0

@ S= { _(1) _(1) ] has det S = 1 but S is negative definite

With positive pivots in D, the factorization S = LDL™ becomes Lv/D+/DL™. (Square

roots of the pivots give D = +/DvD.) Then A = +/DLT yields the
Cholesky factorization S = AT A which is “symmetrized L U™ :

From A= [g ;] find S. From S = [g 2?} find A = chol(S5).
. 31 . 9 3 ) .
Solution If A= 0 2 then A" A = 3 5 | = Ppositive definite S.

s[4 8 ]-w-[3 V][

== V[ o Lo
soAz\/ﬁLT:{2O (2)

1
0 3 0

']
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17

18

19

20

21

22

. L cosf —sinf||2 0|| cosf sinf
Without multiplying S = {Sin 9 cos 9} [0 5] [_ sinf  cos 9} , find
(a) the determinant of S (b) the eigenvalues of S
(c) the eigenvectors of S (d) a reason why S is symmetric positive definite.

Solution det S = 10, A(S) = 2 and 5, eigenvectors (cos 6, sin #) and (— sin 0, cos §),
S has positive eigenvalues.

For Fy(z,y) = 1a* + 2%y +y? and F3(,y) = 2 + xy — x find the second derivative
matrices H; and Hs :

0’F /02 0*F/0xdy

is positive definite
O’F/0ydox  0°F/0y? ]

Test for minimum H = [

H, is positive definite so F7 is concave up (= convex). Find the minimum point of Fy
and the saddle point of F5 (look only where first derivatives are zero).

Solution F, = %:c4 + 22y + y? has OF /dx = 23 + 2xy and OF; /dy = 2% + 2y.
Then the 2nd derivatives are

2z 2

2
H1:{3x+2y 2x o

]. F2:x3+:vy—:v has Hs = [ 6z 1 ]

The graph of z = x? + y? is a bowl opening upward. The graph of z = 22 — 3% is a
saddle. The graph of z = —22 — 32 is a bowl opening downward. What is a test on
a,b, cfor z = ax? + 2bxy + cy? to have a saddle point at (0, 0) ?

Solution ax® + 2bxy + cy? has a saddle point (0,0) if 0z/0x = 0z/dy = 0 (which

is true) and if H = 2 { ch 3 } is positive definite.

Which values of ¢ give a bowl and which ¢ give a saddle point for the graph of z =
422 4+ 122y + cy? ? Describe this graph at the borderline value of c.

Solution The matrix for this problemis S = [ é i } and this has a saddle for c < 9.

Then Ay > 0 > )Xo because the determinants are 4 > 0 and 4¢ — 3b < 0.

When S and T are symmetric positive definite, ST might not even be symmetric. But
its eigenvalues are still positive. Start from ST = Ax and take dot products with T'x.
Then prove A > 0.

Solution 1If STx = Az then (Tx)TSTx = \(Tz)Tx. Left side > 0 because S is
positive definite, right side has Tz > 0 because T is positive definite. Therefore
A>0.

Suppose C is positive definite (so yTCy > 0 whenever y # 0) and A has indepen-
dent columns (so Ax # 0 whenever = # 0). Apply the energy test to zT ATC Az
to show that ATC A is positive definite : the crucial matrix in engineering.

Solution xTATCAx = yTCy > 0 because y = Ax is only zero when x is zero
(A has independent columns).
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23 Find the eigenvalues and unit eigenvectors vy, vz of ATA. Then find u; = Av; /0y :

10 20

20 40

12 -
A—[?) 6] andAA—[ 15 45

} andAAT:[5 15]

Verify that ; is a unit eigenvector of AAT. Complete the matrices U, %, V.

SVD [ég]:[ul ug][(’lOle vgr.

Solution ATA = ;8 4218 ] has eigenvalues 50 and 0. Its eigenvectors are

v = (1,2)/v/5 and vy = (—2,1)/v/5. Then u; = Av;/v/50 = (50,100)/v/250.
TheSVDis[l ‘3H\/% OH 1 2}:[1 2}

3 1 0 o0 -2 1 3 6
V10 V5
24 Write down orthonormal bases for the four fundamental subspaces of this A.

Solution A = [ é (25 ] has bases [ é } /+/10 for C(A), [ ; } //5 for row space

C(AT), { 2 }/\/5 for N(A), [ > } /v/T0 for N(AT).

25 (a) Why is the trace of AT A equal to the sum of all a; ?
(b) For every rank-one matrix, why is 07 = sum of all a; ?

Solution The diagonal entries of AT A are ||column 1||2 to ||column n||?. The sum of
those is the sum of all a3;. The trace of AT A is always the sum of all 7 and for a rank

one matrix that sum is only o7.

26 Find the eigenvalues and unit eigenvectors of AT A and AAT. Keep each Av = ou:

Fibonacci matrix A= [ i (1) }

Construct the singular value decomposition and verify that A equals ULV T,

Solution A is symmetric with ATA = A? = % } ] with eigenvalues = from

2?—3z+1=0andz =1 (3+V5). Theno =z =1 (V5 +1).

27 Compute AT A and AAT and their eigenvalues and unit eigenvectors for V and U.

1 10
0 1 1

Rectangular matrix A= [

Check AV = UX (this will decide £ signs in U). X has the same shape as A.
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28

29

30

31

32

Solution ATA = { ? ; ] has eigenvalues 3 and 1, so A has singular values /3

1 1 0
and 1. The unit eigenvectors are (1,1)/v/2 and (1, —1)/v/2. AAT = l 1 21 1
01 1

1 1
has eigenvalues 3 and 1 and O and eigenvectors l 2 1 [ 0

1] -1
V6,v2,V/3.

Construct the matrix with rank one that has Av = 12u for v =
u = £(2,2,1). Its only singular value is oy =

1
[ ~1 ] divided by
1

(1,1,1,1) and

1
2

Solution A = 12uv™ has Av = 12u for that unit vector v. The only singular value
is o1 = 12. (Other A are also possible.)

Suppose A is invertible (with oy > o2 > 0). Change A by as small a matrix as
possible to produce a singular matrix Ag. Hint: U and V' do not change.

T
From A= { u; Us } [ o1 - ] { V1 Vs } find the nearest Ay.

Solution The nearest singular matrix is A9 = U [ 001 8 ] VT, Since U and V are

orthogonal matrices, the size of A — Ay is only o3. In other words, ulcrlv;f is the
closest rank 1 matrix to A.

The SVD for A + I doesn’tuse ¥ + I. Why is o(A + I) not just o0(A) + 17

Solution The SVD of A + I uses the eigenvectors of (A + I)T(A + I). Those are not
the eigenvectors of AT A (or ATA + 1.

Multiply AT Av = o?v by A. Put in parentheses to show that Av is an eigenvector of
AAT. We divide by its length || Av|| = o to get the unit eigenvector wu.

Solution A times AT Av = o?v is (AAT)Av = 02(Av). So Aw is an eigenvector of
AAT,

My favorite example of the SVD is when Av(x) = dv/dz, with the endpoint conditions
v(0) = 0 and v(1) = 0. We are looking for orthogonal functions v(z) so that their
derivatives Av = dv/dx are also orthogonal. The perfect choice is v1 = sin7x and
vy = sin 27x and v, = sin kwx. Then each uy is a cosine.

The derivative of vy is Avy = wcosmx = wu;. The singular values are 04 = 7 and
o = k. Orthogonality of the sines (and orthogonality of the cosines) is the foundation
for Fourier series.

You may object to AV = UX. The derivative A = d/dx is not a matrix ! The orthogo-
nal factor V' has functions sin k7rz in its columns, not vectors. The matrix U has cosine
functions cos kmx. Since when is this allowed ? One answer is to refer you to the cheb-
fun package on the web. This extends linear algebra to matrices whose columns are
functions—not vectors.
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k%

Another answer is to replace d/dz by a first difference matrix A. Its shape will be N +1
by N. A has 1’s down the diagonal and —1’s on the diagonal below. Then AV = UX
has discrete sines in V' and discrete cosines in U. For N = 2 those will be sines and
cosines of 30° and 60° in v and u;.

Can you construct the difference matrix A (3 by 2) and AT A (2 by 2)? The discrete
sines are v1 = (v/3/2,/3/2) and vy = (v/3/2, —/3/2). Test that Av; is orthogonal
to Avo. What are the singular values o7 and o3 in X ?

Solution The sines and cosines are perfect examples of the v’s and w’s for the oper-
ator (infinite-dimensional matrix) A = derivative d/dz. The sines v, = sinwkx are
orthogonal, the cosines u; = cos mkx are orthogonal, and Avy, = opu. (The deriva-
tive of a sine is a cosine with o, = wk.) For differences instead of derivatives, we can
1 0
try the matrix A = | —1 1 ] .
0 -1

Problem Set 7.3, page 413

1

Transpose the derivative with integration by parts: (dy/dz,g) = —(y,dg/dz).
Ay is dy/dz with boundary conditions y(0) = 0 and y(1) = 0. Why is [y'gdx
equal to — ['yg'dz ? Then AT (which is normally written as A*) is ATg = —dg/dz
with no boundary conditions on g. AT Ay is —y” with y(0) = 0 and y(1) = 0.

Solution Integration by parts for 0 < x < 1 produces boundary terms at x = 0 and 1:

1 1
dy dg
- dr = — —=d
| Fawrar == [ u@) Fdo+y@ra@) |
The boundary terms are zero if y(0) = y(1) = 0. Then the adjoint (or transpose) of
d/dx is —d/dx, with no boundary condition on g when there are 2 boundary conditions
on y (fixed-fixed).

Problems 2-6 have boundary conditions at x = 0 and x = 1 : no initial conditions.

2

Solve this boundary value problem in two steps. Find the complete solution y;,, + y,,
with two constants in ¥,,, and find those constants from the boundary conditions :

Solve —y” = 1222 with y(0) = 0 and y(1) = O and y, = —a*.

Solution y, = —x* solves —y,’ = 12z, It has y,(0) = 0 and y,, = —1. We need to
add the solution to —Y” = 0 with Y/(0) = 0 and Y(1) = 1. Then Y = A + Bz has

A =0and B = 1. The complete solution is y = —x* + z.
Solve the same equation —y "’ = 1222 with y(0) = 0 and y’(1) = 0 (zero slope).

Solution Changing y(1) = 0to y’(1) = 0 will change the solution to y = —x* + Bx
with y’ = —423 + B. Fory’(1) = 0 weneed B = 4 .
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4 Solve the same equation —y " = 1222 with y/(0) = 0 and y(1) = 0. Then try for both
slopes y/(0) = 0 and y'(1) = 0: this has no solution y = —z* + Ax + B.

Solution With y’(0) = 0 the solution we want is y = —x* + A. The constant A
is determined by y(1) = —1+ A = 0. We cannot have y’(1) = 0 because y' = —423.
5 Solve —y” = 6 with y(0) = 2 and y(1) = 4. Boundary values need not be zero.
Solution —y" = 6x leads to y = —2° + A + Bz. The boundary conditions are
y(0)=A=2andy(1)=—-1+2+B=4.ThenB=3andy = —a° + 2 + 3.
6 Solve —y” = e* with y(0) = 5 and y(1) = 0, starting from y = y,, + Yn.
Solution —y"” = e® leads to y = —e® + A + Bux. The first boundary condition is
y(0)=—-14+A=>5sothat A=6.Theny(l) = —e+6+ B =0and B=ec—6.

Problems 7-11 are about the LU factors and the inverses of second difference matrices.

7 The matrix T with T}; = 1 factors perfectly into LU = AT A (all its pivots are 1).

1 -1 1 1 -1
12 -1 1 1 -1
T= 12 1= 11 1 -1 | =LU
12 11 1

Each elimination step adds the pivot row to the next row (and L subtracts to recover T’
from U). The inverses of those difference matrices L and U are sum matrices. Then
the inverseof T = LU is U~ 'L~ :

111 1711

. 1111 1 o

r—= 11 111 =U"L.
11111

Compute 7~ for N = 4 (as shown) and for any N.

T is fixed-free second difference matrix.
For any IV, T~! has the same

pattern with first row

N N-1---21

Solution T~ =

N W o
— N W W
NN N
— = =

8 The matrix equation TY = (0,1,0,0) = delta vector is like the differential equation
—y” = 6(z — a) with @ = 2Ax = 2. The boundary conditions are 3'(0) = 0 and
y(1) = 0. Solve for y(z) and graph it from 0 to 1. Also graph Y = second column of

23

T—! at the points z = %, £ % %. The two graphs are ramp functions.

Solution Two integrations of the delta function é(x) will produce the unit ramp
R(z) = 0forz < 0,R(z) = x for x > 0. Shifting 6(z) to & (z — 2) will shift
the solutionto y = —R (z — %) + A+ Bx. Then y’(0) = —1 + B gives B = 1, and

— 0o 3 = __2
y(1) =0gives —x + A+1=0and A = —:.
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9

10

11

12

13

The matrix B has B1; = 1 (like T7; = 1) and also Byy = 1 (where Tyny = 2). Why
does B have the same pivots 1, 1, ... as T', except for zero in the last pivot position ?
The early pivots don’t know By = 1.

Then B is not invertible: —y” = d(xz — a) has no solution with y'(0) = 3/(1) = 0.

Solution B starts with the pivots 1,1, 1, ... (as T did) but reducing the N, N entry by
1 will reduce the last pivot by 1. So we have last pivot = zero and B is not invertible.
The analog for differential equations is ' = 0 at both endpoints: No ramp function
except y = 0 can meet those boundary conditions.

When you compute K !, multiply by det K = N + 1 to get nice numbers :

Column 2 of 5K ~* solves the equation Kv = 58 when the delta vector is § =
We know from K K—1 = I that K times each column of K~ is a delta vector.

5K = o graph of
—_— Icolumn2

0 1

— N W
N R OW
(oI N

WD =N

Solution Column 2 of 5K~ is like the solution to —y” = 56 (x — 2). The column
of 5K ~! has a max in row 2 and the solution y(z) has a max at x = %

K comes with two boundary conditions. T only has y(1) = 0. B has no boundary
conditions on y. Verify that K = AT A. Then remove the first row of A to get T =

AT A;. Then remove the last row to get dependent rows: B = AT Aj.

1
The backward first difference A = -1 _1 1 gives K = AT A.
-1

Solution A is the matrix in Problem 7 with 1’s on the main diagonal and —1’s on the
diagonal above. AT A is the symmetric second difference matrix with three nonzero
diagonals. Those diagonals contain —1’s and 2’s and —1’s. Then removing the top
row of A gives a rectangular A; with AT A; = T as in Problem 7 (T}; = 1 not 2).
Removing the last row gives A, with AEAQ = Band Byy = 1 not 2.

Multiply K3 by its eigenvector y,, = (sin nwh, sin 2nmh, sin 3nwh) to verify that the
eigenvalues \1, Ao, A3 are A\, = 2 — 2cos % in Ky, = Ay, This uses the
trigonometric identity sin(A + B) + sin(A — B) = 2sin A cos B.

Solution The eigenvectors of K are “sine vectors” just as the eigenfunctions of —y” =

Ay with y(0) = 0 = y(1) are sine functions.

Those eigenvalues of K3 are 2 — V2 and 2 and 2 4+ v/2. Those add to 6, which is
the trace of K'3. Multiply those eigenvalues to get the determinant of K.

Solution Multiplying 2 — /2 times 2 4 /2 gives 4 — 2 = 2. Then multiplying by 2
gives 4. This is the determinant (and 2 — /2,2 + /2, 2 are the eigenvalues) of 3 by 3
matrix K3.
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14 The slope of a ramp function is a step function. The slope of a step function is a delta
function. Suppose the ramp function is r(z) = —z forz < 0 and r(x) = z forx > 0
(so 7(x) = |x|). Find dr/dx and d*r/dx.

Solution For the down-up ramp function r(x) = |x| = absolute value of z, the deriva-
tives are dr/dz = —1 then +1 and d*r/dz?® = 25(x) because dr/dx jumps by 2 at
z=0.

15 Find the second differences y,,+1 — 2y, + yn—1 of these infinitely long vectors y :
Constant (...,1,1,1,1,1,...)

Linear (...,-1,0,1,2,3,..)
Quadratic  (...,1,0,1,4,9,...)
Cubic (...,—1,0,1,8,27,..)
Ramp (...,0,0,0,1,2,...)

Exponential (..., e ™ 0 ¢ e ).

It is amazing how closely those second differences follow second derivatives for y(z) =
1,2z, 22,23 max(x,0), and e¢“*. From e™“? we also get coswzr and sinwa.

Solution The six second differences are : zero vector, zero vector, constant vector of
2’s, 6 times the linear vector, (for ramp: delta vector with o = 1), e’ — 2 + e~ =

2 cosw — 2 times the exponential vector. Like 2nd derivatives of 1, z, 2, 23, ramp,
ezwm .

Problem Set 7.4, page 422

1 What solution to Laplace’s equation completes “degree 3” in the table of pairs of solu-
tions ? We have one solution u = 2> — 3:cy2, and we need another solution.

Solution Start with s = —y3. Then s,, = —6y, and therefore we need s,, = 6y.
Integrating twice with respect to = gives 3y?z. Therefore the second function is
s(z,y) = —y* + 3%y

2 What are the two solutions of degree 4, the real and imaginary parts of (z + iy)*?
Check g + uyy = 0 for both solutions.

Solution Expanding (z + iy)* gives
(z +iy)? = 2t — 622y + y* + (4a3y — dxy®)i
Therefore the two solutions would be :
u(r,y) = x* — 62%y? + y* and s(z,y) = 423y — 4xy?
Checking the first solution :
0?(x* — 622%y% + y*) +82(:c4 — 622y + y*)

ox? Oy?
Checking the second solution :

0?(4x3y — day®) 02 (4ady — day?)
0x? oy?

= (122°—12y%)+(-122°+12y%) = 0

= (242y — 0) + (0 —242y) =0
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3 What is the second z-derivative of (z + iy)™ ? What is the second y-derivative ? Those

cancel in Uy, + Uy, because i* = —1.
Solution The second z-derivative of (z + iy)™ is:
62 i\
TEEW (= 1) (o + i)
The second y-derivative of (x + ¢y)™ cancels that because
82 10\
FLIW i i )+ )" = —nln — D + )"
)

4 For the solved 2 x 2 example inside a 4 x 4 square grid, write the four equations (9)
at the four interior nodes. Move the known boundary values 0 and 4 to the right hand
sides of the equations. You should see K2D on the left side multiplying the correct
solution U = (U117 Uiz,Us1, Ugg) = (1, 2,2, 3)

Solution The equations at the interior node would be :
4U11 — U1 —Up1 —Uip—Uip =0
AUy o — Uz —Upo—Ui3—Ui1 =0
4Uz1 — U311 — U1 — Uz — Uz =0
4Ug o —Us o — Ui —Us3—Usq =0

Substituting the known boundary values leaves :
AUy — Uz —Upp =4

AUy — Uz —Ur1 =8
AUz 1 — Ui — Uz =0
4Uz0 — Ui —Uzq =4

Writing this in matrix form gives :

4 -1 0 177 U, 4 U 2
14 1 o | U] |8 U | |3
0 -1 4 1 |||~ ]o|®™ |y, |71
10 -1 4] | Uss 4 Us 2 2

5 Suppose the boundary values on the 4 x 4 grid change to U = 0 on three sides and
U = 8 on the fourth side. Find the four inside values so that each one is the average of
its neighbors.

Solution The values at the 16 nodes will be

0 0 0 0
0 3 3 0
3 3
o 2 32 0

0/4 4 4 0/4

Notice that the corner boundary values do not enter the 5-point equations around
interior points. Every interior value must be the average of its four neighbors. By
symmetry the two middle columns must be the same.
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6

10

(MATLAB) Find the inverse (K 2D)~! of the 4 by 4 matrix displayed for the square grid.
Solution The circulant matrix K 2D on page 422 has a circulant inverse :
2 1 2

(K2D)™! = —

Solve this Poisson finite difference equation (right side # 0) for the inside values
Ui1,U12,Usz1,Uz2. All boundary values like Ujg and U3 are zero. The boundary
has ¢ or j equal to 0 or 3, the interior has ¢ and j equalto 1 or 2:

4Uij —Ui—1,7 = Uit1,5 —Uij—1— Ui,jJrl = 1 at four inside pOil’ltS.

Solution The interior solution to the Poisson equation (on this small grid) is

00 0 0
0 3 30
1 1
0+ 10
00 0 0

On a larger grid U;; will not be constant in the interior.

A 5 x 5 grid has a 3 by 3 interior grid : 9 unknown values U; to Uss. Create the 9 x 9
difference matrix K2D.

Solution Order the points by rows to get Ui1,Uq2,U13,Usz1,Uss, Uss, Usy, Uss, Uss.
Then K2D is symmetric with 3 by 3 blocks:

A —I 0 4 -1 0
K2D=| -1 A -1 A= -1 4 -1 ]
0 -I A 0 —1 4

Use eig(/K2D) to find the nine eigenvalues of K 2D in Problem 8. Those eigenvalues
will be positive ! The matrix K 2D is symmetric positive definite.

Solution eig(K2D) in Problem 8 produces 9 eigenvalues between 0 and 4 :

The eigenvalues come from eig( /K 2D) and explicitly from equation (11). Notice that

pairs of eigenvalues add to 8. The eigenvalue distribution is symmetric around A = 4:
1.1716 2.5828 2.5828 4.0 4.0 4.0 5.4142 5.4142 6.8284

If u(z) solves u,,; = 0 and v(y) solves vy, = 0, verify that u(z)v(y) solves Laplace’s
equation. Why is this only a 4-dimensional space of solutions ? Separation of variables
does not give all solutions—only the sglutions with sggarable boundary conditions.

v

. u . —
Solution If ke 0 and —8y2 0 then
Pu(x)u(y) | Pulz)v(y)  *u(z) &v(y)
0x? + Oy? = v(y) 0x? +u(z) oy?

=v-0+u-0=0
Therefore u(x)v(y) solves Laplace’s equation. But the only solutions found this way

are u(z)v(y) = (A + Bz)(C + Dy).
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Problem Set 7.5, page 428

Problems 1 — 5 are about complete graphs. Every pair of nodes has an edge.

1 With n = 5 nodes and all edges, find the diagonal entries of AT A (the degrees of
the nodes). All the off-diagonal entries of AT A are —1. Show the reduced matrix R
without row 5 and column 5. Node 5 is “grounded” and v5 = 0.

Solution The complete graph (all edges included) has no zeros in AT A
4 -1 -1 -1 -1
-1 4 -1 -1 -1
ATA=|-1 -1 4 -1 -1 Singular!
-1 -1 -1 4 -1
-1 -1 -1 -1 4
The grounded matrix would be
4 -1 -1 -1
(ATA)rcduccd - :1 _11 _i :1 Invetible!
-1 -1 -1 4

2 Show that the trace of ATA (sum down the diagonal = sum of eigenvalues)
is n?2 — n. What is the trace of the reduced (and invertible) matrix R of size n — 1?
Solution AT A is n by n and each diagonal entry is n — 1. Therefore the trace is
n(n—1) = n? — n. The reduced matrix R has n — 1 diagonal entries, each still equal
to n — 1. Therefore the trace is (n — 1)(n — 1) = n? — 2n + 1.

3 For n = 4, write the 3 by 3 matrix B = (Areduced)” (Areduced)- Show that
RR~! = I when R™! has all entries % off the diagonal and % on the diagonal.

Solution 3 -1 -1
Reduced matrix R = | —1 3 -1
-1 -1 3
R by its proposed inverse gives
3 -1 -1
-1 3 -1
-1 -1 3

4 For every n, the reduced matrix R of size n — 1 is invertible. Show that RR ' =1
when R~ has all entries 1/n off the diagonal and 2/n on the diagonal.

Solution
2 1 1
lll 2 1];3
4111 2 4

5 Write the 6 by 3 matrix M = Agequceq When n = 4. The equation Mv = b is to be
solved by least squares. The vector b is like scores in 6 games between 4 teams (team
4 always scores zero; it is grounded). Knowing the inverse of R = M ™M, what is the
least squares ranking v, for team 1 from solving M Mo = MTb?

6-1—-1 3-2-1 3-1-2
—2+43-1 —1+46-1 —1+3-2
—2-143 —1-2+43 —1-1+6

=1.

Solution Remove column 4 of A when node 4 is grounded (x4 = 0).
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-1 1 0
-1 0 1
0 -1 1 .
M = 1 0 0 has independent columns
0 -1 0
0 0 -1

The least squares solution o to Mv = b comes from MTM% = MTb. This ¥ gives
the predicted point spreads when all teams play all other teams. The first component 03
would come from the first row of (M T M)~ multiplying by M *b. Note that

3 -1 -1 2 1 1
MTM_[—l 3 —1 | and (MTM)l_—[l 2 1].
-1 -1 3 4111 2

6 For the tree graph with 4 nodes, AT A is in equation (1). What is the 3 by 3 matrix
R = (A" A) educed? How do we know it is positive definite?

Solution The reduced form of AT A removes row 4 and column 4 :

1 -1 0 0

1 2 -1 0 b-1 0
Singular ATA = 0 —1 9 _1 reduces to invertible -1 2 -1
0 0 -1 1 0 -1 2

The first is positive semidefinite (A has dependent columns). the second is positive
definite (the reduced A has 3 independent columns).

7 (a) If you are given the matrix A, how could you reconstruct the graph?
Solution Each row of A tells you an edge in the graph.
(b) If you are given L = A" A, how could you reconstruct the graph (no arrows) ?
Solution Each nonzero off the main diagonal of AT A tells you an edge.
(c) If you are given K = ATC A, how could you reconstruct the weighted graph?
Solution Each nonzero off the main diagonal tells you the weight of that edge.

8 Find K = ATC A for a line of 3 resistors with conductances ¢; = 1, ¢co = 4, ¢c5 = 9.
Write K educed and show that this matrix is positive definite.

Solution A circle of three resistors has 3 edges and 3 nodes :

r—1 1 0 1 -1 0 1
ATCA = 0 -1 1][ 4 ][ 1 -1 0]
L 1 0 0 1 -1
5 —4
=| -4 13 ] is only semidefinite
| -1 -9
0 1

(ATCA)seduced = - (1’ ] [ : ] [ 1 ] _ [ 5 ]
)

The determinant tests 5 > 0 and (5)(13) > 42 are passed.



212 Chapter 7. Applied Mathematics and AT A

9

10

11

A 3 by 3 square grid has n = 9 nodes and m = 12 edges. Number nodes by rows.
(a) How many nonzeros among the 81 entries of L = AT A?

Solution The 9 nodes ordered by rows have 2, 3,2, 3,4, 3,2, 3,2 neighbors around
them. Those add to 24 nonzeros off the diagonal. The 9 diagonal entries make 33
nonzeros out of 9% = 81 entries in L = AT A.

(b) Write down the 9 diagonal entries in the degree matrix D : they are not all 4.
Solution Those 9 numbers are the degrees of the 9 nodes (= diagonal entries in AT A).
(c) Why does the middle row of L = D — W have four —1’s ? Notice L = K2D'!
Solution The middle node in the grid has 4 neighbors.

Suppose all conductances in equation (5) are equal to c. Solve equation (6) for the
voltages v and vs and find the current / flowing out of node 1 (and into the ground at
node 4). What is the “system conductance” I /V from node 1 to node 4 ?

This overall conductance I /V should be larger than the individual conductances c.

Solution The reduced equation (6) with conductances = c is

3c —c va | | cV and | 2 | = 0.6V

—c 2 vy | | ¢V vy | | 0.8V |~
Then the flows on the five edges in Figure 7.6 use A in equation (2). Remember the
minus sign :

-1 1 00 v 0.4

-1 0 1 0 0.6V 0.2

—cAv = —c 0 -1 1 0 O'8V =cV | =02
-1 0 0 1 ) 0 1.0

0 -1 0 1 0.6

The total flow (on edges 14244 out of node 1, or on edges 3+4 into the grounded node
4,1is I = 1.6¢V. The overall system conductance is 1.6¢, greater than the individual
conductance c on each edge.

The multiplication AT A can be columns of AT times rows of A. For the tree with
m = 3 edges and n = 4 nodes, each (column times row) is (4 x 1)(1 x 4) = 4 x 4.
Write down those three column-times-row matrices and add to get L = AT A.

Solution Suppose the 3 tree edges go out of node 1 to nodes 2, 3,4. (The problem
allows to choose other trees, including a line of 4 nodes.) Then

110 0 _i’_}_é_é
A= -1 01 0 ATA =
10 0 1 T
1 0 0 1
1 1 1
1 0 0
= olt=t 1o oj+| V=1 0 1 ol | gl-1 0 0 1],
0 0 1

= sum of (columns of AT)( rows of A)
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12

13

14

A graph with two separate 3-node trees is not connected. Write its 6 by 4 incidence
matrix A. Find two solutions to Av = 0, not just one solution v = (1,1,1,1,1,1). To
reduce AT A we must ground rwo nodes and remove two rows and columns.

Solution The incidence matrix for two 3-node trees is

A ree 0 . 1 1 O
A= [ t() Ao } with Aiee = [ 10 1 ] (for example)

The columns of Ayc. add to zero so we have 2 independent solutions to Av = 0
0

and come from Airee

OO O ==
— -0 O

“Element matrices” from column times row appear in the finite element method.
Include the numbers ¢y, co, c3 in the element matrices K1, K1, K3.

K; = (rowiof A)T (¢;) (rowiof A) K =ATCA=K,; + K, + Ks.

Write the element matrices that add to AT A in (1) for the 4-node line graph.

assembly of the nonzero
= entries of K1 + Ky + K3

[ 1 ]
ATA = [Kg
from edges 1,2, and 3

o

Solution The three “element matrices” for the three edges come from multiplying the
three columns of A" by the three rows of A. Then AT A equals

-1 0 0
1 -1 0
=| ofl=1 1t 0 0]+ | [0 =1 1 0]+ | j[[0 0 -1 1].

0 0 1

When the diagonal matrix C is included, those are multiplied by ¢, c2, and c3. Those
products produce 2 by 2 blocks of nonzeros in 4 x 4 matrices :

1 -1

-1 1 1 -1

Ki=c¢ Ky =co Kz =c3

1 -1
-1 1
Then ATCA = K; + K5 + Ks. This ‘assembly” of the element stiffness matrices
just requires placing the nonzeros correctly into the final matrix ATCA.

An n by n grid has n? nodes. How many edges in this graph? How many interior
nodes ? How many nonzeros in A and in L = AT A ? There are no zeros in L' !

Solution Ann by n grid has n horizontal rows (n—1 edges on each row) and n vertical
columns (n — 1 edges down each column). Altogether 2n(n — 1) edges. There are
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15

16

(n — 2)? interior nodes—a square grid with the boundary nodes removed to reduce n
ton — 2.

Every edge produces 2 nonzeros (—1 and +1) in A. Then A has 4n(n — 1) nonzeros.
The matrix AT A has size n? with n? diagonal nonzeros—and off the diagonal of AT A
there are two —1’s for each edge : altogether n? + 4n(n — 1) = 5n? — 4n nonzeros
out of n? entries. For n = 2, this means 12 nonzeros in a 4 by 4 matrix.

When only e = C~!w is eliminated from the 3-step framework, equation (??) shows

Saddle-point matrix ct A w]| [b
Not positive definite AT 0 v || f |-

Multiply the first block row by ATC and subtract from the second block row :

e e e c! A w | b
After block elimination [ 0 _ATCA } [ v ] = [ f —_ATCh ] .

After m positive pivots from C~!, why does this matrix have negative pivots?
The two-field problem for w and v is finding a saddle point, not a minimum.

Solution The three equations ¢ = b — Av and w = Ce and ATw = f reduce to two
equations when e is replaced by C~ 1w :

C~lw=b- Av b c-t A v | _|b
ATw — f ecome AT o wl|=|f|

Multiply the first equation by ATC to get ATw = ATCb — ATC Av. Subtract from
the second equation ATw = f, to eliminate w :

ATCo - ATCAv = §.
This gives the second row of the block matrix after elimination :

c! A v | | b
0 -ATcA w | | f-ATCOb |-

The pivots of that matrix on the left side start with 1/c1,1/¢a, ..., 1/¢pm. Then we get
the n pivots of —ATC A which are negative, because this matrix is negative definite.

Altogether we are finding a saddle point (v, w) of the energy (quadratic function).
The derivative of that quadratic gives our linear equations. The block matrix in those
equations has m positive eigenvalues and n negative eigenvalues.

The least squares equation ATAv = ATb comes from the projection equation
ATe = 0 for the error e = b — Av. Write those two equations in the symmetric
saddle point form of Problem 7 (with f = 0).

In this case w = e because the weighting matrix is C' = I.

Solution Ordinary least squares for Av = b separates the data vector b in two perpen-
dicular parts:

b = (Av) + (b — Av) = (projection of b) 4 (error in b).

The error e = b— Aw satisfies ATe = ATb— AT Av = 0 (which means that AT Av =
A"'b, the key equation). That equation d* e = 0 is Kirchhoff’s Current Law for flows in
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anetwork. It is a candidate for the “most important equation in applied mathematics”—
the conservation equation or continuity equation “flow in = flow out.”

In the form of Problem 15 (with C' = I) the equations are

I A e|_|b e+ Av=>

AT 0 | |wv |70 ] aTe =o0.
Find the three eigenvalues and three pivots and the determinant of this saddle point
matrix with C' = I. One eigenvalue is negative because A has one column:

-1 1 0 -1
m=2n=1 {CAT jg]—l 0 1 1].
-1 1 0

Solution The eigenvalues come from det(M — A\I) = 0:

I-x 0 -1
l 0 1-2) 1]:—/\(1—/\)2—2(1—/\):0.
—1 1 =

Then (1 —A)(A2 =X —2) =0and (1 — X)(A —2)(A+ 1) = 0 and the eigenvalues are
A =1,2 —1. Check the sum 1 + 2 — 1 = 2 equal to the trace (sum down the main
diagonal 1 + 140 = 2).

The determinant is the product A\; AaA3 = (1)(2)(—1) = —2. Notice m = 2 positive
A’s and n = 1 negative eigenvalue.

Elimination finds the three pivots (which also multiply to give det M = —2):
(1) o -1 D o -1 1 o -1
01 1|=o (1) 1|—=|0 1) 1
-1 1 0 0 1 -1 0 0 @
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Problem Set 8.1, page 443

1 (a) To prove that cos nz is orthogonal to cos kx when k # n, use (cosnz) (coskx) =
1 cos (n+k)z+ 3 cos (n—k)x. Integrate fromz = 0to z = 7. What is [ cos? kz dz ?
(b) Correction From 0 to 7, cos « is not orthogonal to sin 2z (the book wrongly
proposed foﬂ cos x sin z dx, but this is zero). For orthogonality of all sines and cosines,

the period has to be 2.

Solution (a)

™ ™ ™

1 1
/(cosnx)(cos kx)dx = 3 /cos(n + k)axde + 3 /cos(n —k)rdx
0 0 0
_ [sin(n+k)z  sin(n—k)z]"
- { 2t k) T 2=k J, T
. [ . f | 2 41"
Solution (b) [ (cosz)(sin2z)dx = [ (cosz)(2sinzcosz)dr = —gcos’e
0 0 0
_ 4 £0
=370

™
Non-orthogonality comes from / cosmz sinnx dr when m — n is an odd number.
0

2 Suppose F(z) = x for 0 < z < 7. Draw graphs for —27 < z < 27 to show
three extensions of F': a 2m-periodic even function and a 27-periodic odd function and
a m-periodic function.

Solution
—2r (.) 2.7r —27 VE) T =27 0 o

3 Find the Fourier series on —7 < x < 7 for

(@ f1(z) = sin® z, an odd function (sine series, only two terms)

Solution (a) The fast way is to know the identity sin® 2 = 2 sinz — 1 sin3z. This

must be the Fourier sine series! It has only two terms.

More slowly, use Euler’s great formula to produce complex exponentials :

iz —iz\ 3 iz iz —ix —3ix
- -3 3 - 3
(sinz)® = (L> = . —;ige ‘ =71 sin3x + 1 sin .

Or slowly compute the usual formulas f sin® 2 sin z dz and f sin® z sin 3z dzr.
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(b) fo(x) = |sinz|, an even function (cosine series)
Solution (b)

r 2

1
aoz—/|sin:c|dx:—
™ 7r

0

17 1 k=1 kt De]™™"
ap = %/|sinx| cos kxdx = “ir {Cosl(ﬂ_l L COS/(C ++1 )I]
0

i =0

(even k)

1 —2 n -2 ] k
dm k=1 k+1] =(k2—1)
(©) f3(x) = z for —m < x < 7 (sine series with jump at 2 = )

=0 (odd k) or

1/ 1 ™
Solution (c) by = — /:1: sin kx dr = | — sin kx — -z cos kx
T k2 mk o

= —%(cos km + cos(—km)) = —%(—1)’“.

4 Find the complex Fourier series e* = che“” on the interval — 7 < 2z < 7.
The even part of a functionis 1 (f () + f(—x)), so that feen() = feven(—). Find the
cosine series for feven and the sine series for foqq. Notice the jump at x = .

Solution ) ™ X .
=— [e"e iy = — [ (17K
k=g | €€ dx o /e de
= ;61(17%) " _ em(1=ik) _ o—m(1—ik)
27 (1 — ik) B} S (L= ik)

1
The even part of the function is : 3 (e® + e~*). The cosine coefficients are

1 / z —x 1 i -
ao—ﬂ/(e +e )dx—%(e —e M)

2k cosh[r] sin[kn] + 2 cos[kn] sinh[n]
7w+ k27

1/ .
ak:%/(ex—i—e ) coskx dx =

1
The odd part of the function is: B (e® — e~7). The sine series is:

s

2 cosh[r] sin[kn] — 2k cos[kn] sinh[n]
T+ k27

1

T o

5 From the energy formula (21), the square wave sine coefficients satisfy

W+ = [ sw@Pds = [ 1d-on

—T —T

b (e —e ") sinkzdr =
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Substitute the numbers by, from equation (8) to find that 72 = 8(1 + % + % +--).

Solution The sine coefficients for the odd square wave are
4 (1—(=1)F 4 (1 1 1

bpy=—|—7""-)=-(+,0,5,0,-,0,...

k 71'( 2% T \1 737 757 )
(1= ()R 11

Energy identity gives w2 = 8 <#> =8 (1 tytagte )
k=1

6 If a square pulse is centered at x = 0 to give

s s
-, —

f@)=1 for |z|< 5 f(z) =0 for 5 <|z| <m,
draw its graph and find its Fourier coefficients ay and by.
Solution
/2
1 1
apg = % / dr = 5
—m/2
/2
ar = l / coskxdxr = isink—7T =sin ¢ k_w
S km 2 2
—m/2
/2
1 .
b, = — / sinkxdxr =0
T
—7/2

7 Plot the first three partial sums and the function (7 — ) :

( ) 8 (sinx sindx sindzx
z(m—x)= —
1 27 125

o) 0<asn
s

Why is 1/k3 the decay rate for this function? What is its second derivative?

Solution The parabola y = z(7m — x) = am — 2% starts at y(0) = 0 with slope
y'(0) = 7 and second derivative y”/(0) = —2. Its sine series makes it an odd function
a7 + 22 from —7 to 0. This odd extension has second derivative = +2. That jump
in y” means that the Fourier coefficients by, will decay like 1/k®. (Remember 1/k for
jumps in y(z) and 1/k? for jumps in y’(x)—no jumps in y, y’ for this example.)

8 Sketch the 2-periodic half wave with f(x) = sinx for 0 < x < 7 and f(z) = 0 for
—m < z < 0. Find its Fourier series.

Solution 'The function is not odd or even, so integrals must go from —x to m. The
function is zero from —m to 0 leaving only these integrals for ag, ax, by :
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1 L1
ao = o s1na:da::—w[—cosx]02;
17 1 1—k 1+k)z]"
ar = —/sinxcosk:z:d:z::—— cos( )z, cos(1 +k)z =
™ 2m 1-k 1+k 0
0
1 1 1 2
k — = d 0 fork odd
[ even]w<1_k+1+k> (1 k2) [an or k odd]

1 1

b = — /sin:z:sin kx dx gives by = 3 and other by, = 0.

T
0

9 Suppose G(z) has period 2L instead of 2w. Then G(z + 2L) = G(x). Integrals
go from — L to L or from 0 to 2L. The Fourier formulas change by a factor 7/ L :

L
The coefficients in G(z) = . Cre* /L are C} = 5T /G(x)eﬂkm/de_
= J

Derive this formula for Cy: Multiply the first equation for G(z) by and
integrate both sides. Why is the integral on the right side equal to 2LC}, ?
Solution Multiply G(z) = > Cpre /L by e~*7=/L Integrate.
. - .
/G(x)e—ikﬂ'w/l/ dr = /e—ikﬂw/L cheikﬂ'w/L dx
—L —L T
L L
/ G(z)e 7=/l . = ¢, / dz = 2LC}, (orthogonality)
L —L
) L
Cr = Y3 / G(z)e *me/L gy
—L

10 For Geven, use Problem 9 to find the cosine coefficient Ay, from (Cy, + C_;)/2:

L
0 k 1 L
Geven(x) = 3 Ay cos —— has Ay, = —/Geven(w) cos 2L .
0 L L L
0
Geven is 3(G(z) + G(—x)). Exception for Ag = Cj : Divide by 2L instead of L.

Solution The result comes directly from 3 (Cj, + C_y).

1
11 Problem 10 tells us that ax, = —(cg + c—g) on the usual interval from 0 to 7.

Find a similar formula for b; from ¢y, and c_g. In the reverse direction, find the
complex coefficient ¢ in F(x) = 3" c,e?*® from the real coefficients ay, and by.
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Solution Solution and correction We are comparing two ways to write a Fourier

series :
oo

o0 o0
Z cpe™® = ag + Z ag coskx + Z by sin kx
1 1

Pick out the terms for k and —k :

Ckezkm + kaeilk

¥ = aycoskx + by sinkx

Use Euler’s formula to reach cosines/sines on both sides :
(ck + c—g) coskx +i(ck — c—p) sinkx = ay, cos kx + b sin kx
This shows that ap, = ¢ + c— (correction from text) and by, = i(cx — c—g).

Reverse Euler’s formula to reach complex exponentials on both sides :

1 ) )
%bk (ezkm _ e—zkm)
1 1

1 1
This shows that ¢, = —a —b and c_p = —ap — —bg.
k=g k+ 27 O k= 50k = obe

Real functions with real a’s and b’s lead to c_j, = ¢ (complex conjugates)

. . 1 . .
ckellm—i—c,ke ikx _ §ak(€lkm+8 zkm)+

12 Find the solution to Laplace’s equation with ug = 6 on the boundary. Why is this the
imaginary part of 2(z — 22/2 4+ 23/3--+) = 2log(1 4 2)? Confirm that on the unit
circle z = €', the imaginary part of 21log(1 + z) agrees with 6.

Solution The sine series of the odd function f(6) = 6 has coefficients b,, =

-, — ,— R

0 n 1

)

2 [ 21 o T 1 11 1
—/HsinanH——{—zsinnﬂ——coan] =BT s
T TN n 23 4
The solution to Laplace’s equation inside the circle has factors r™ :
2 2
u(r,0) = > bpr™sin nf = 2rsinf — 51"2 sin 26 + §r3 sin 36. ..

2 2

=1Im [22 - 522 + 523 . } = Im[2log(1 + 2)].

13 If the boundary condition for Laplace’s equation is ug = 1 for 0 < § < 7 and ug = 0
for —m < 6 < 0, find the Fourier series solution u(r, ) inside the unit circle. What is
u at the originr =07

Solution This 0-1 step function ug(6) equals % + % (square wave). Equation (8) of the
text gives the Fourier sine series for the square wave :
1 2 {sin@ sin 360 sin 50 n }

0-1 Step Function ug(6) = 5 + — | + 2 + .

Then the solution to Laplace’s equation includes factors ™ :

u(r,0) ==+ =

1
R L

2 [rsinf® r3sin30 rd sin 50 N ] 1
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14

15

16

17

With boundary values uo(f) = 1+ 1€ + 1 + ..., what is the Fourier series
solution to Laplace’s equation in the circle? Sum this geometric series.
Solution Inside the circle we see factors 7™ (and 1 + x + 22 +--- = 1/(1 — x)):
u(r,0) =1+ lrei(’ + lrzem’ +.---=1/ (1 - 17“ew>.
2 4 2
(a) Verify that the fraction in Poisson’s formula (30) satisfies Laplace’s equation.

Solution (a) We could verify Laplace’s equation in 7, f coordinates or recognize that
every term in the sum (29) solves that equation :

P 10w 10
or2  ror 1?2 002

(b) Find the response u(r, #) to an impulse at z = 0,y = 1 (where 6 = J).

=0.

Solution (b) When the source is at the point § = 7, this replaces r cosf by —r cos 6
in equation (30). Then the response to a point source is infinite at r = 1,60 = 7:

1 1—r2
u(r,9)22— 3
w 14+ 724+ 2rcosf

With complex exponentials in F'(z) = 3 cxe’*®, the energy identity (21) changes to
[ |F(z)*dz = 27" |ex|?. Derive this by integrating (3 ce*®) (3 e ).

Solution All products e?**e = integrate to zero except when n = k :

/(cke“”)(@e_””) dx = 2mecg = 2nlex |
The total energy is the sum over all k.
A centered square wave has F'(x) = 1 for |z| < 7/2.

(a) Find its energy [ |F(x)|? dz by direct integration

/2
Solution (a) / |F(x)* dz = / dx = .
—7/2
(b) Compute its Fourier coefficients cj, as specific numbers
/2 ) .
Solution (b 1 / e gy [ L e
Cr, = — e xr = |—
olution (b) ¢k = 5- 2n —ik |
—7/2
_ 1 (eikﬂ'/Q _ eﬂ'kw/z) _ 1 sin k_ﬂ'
2m ik wk 2

(c) Find the sum in the energy identity (Problem 8).

k 2/1 1 1
Solution (¢) sin%:l,o,—1,O(repeated)so27rz|ck|2:; <1+§+%+-~-)—1.
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18 F(z) =14 (cosz)/2 + -+ (cosnz)/2™ + - - - is analytic : infinitely smooth.

(a) If you take 10 derivatives, what is the Fourier series of d'°F/dz19?

(b) Does that series still converge quickly ? Compare n'? with 2" for n = 210,

Solution (a) 10 derivatives of cos nz gives —n'? cos nz:
JOF 1 910 310 1o
—— = ——COST — —5COS 2 — —COS 3L --+— —— COS NT — - -
dx10 2 22 23 n

Solution (b) Yes, 2" gets large much faster than n'° so the series easily converges.

At n =219 =1024 we have 2" = 2192 much larger than n'? = 2190,

19 If f(z) = 1for|z| < m/2and f(x) = 0form/2 < |z| < =, find its cosine coefficients.
Can you graph and compute the Gibbs overshoot at the jumps ?

. 1
Solution 4 — average value = 3
L 1 /2 2 km
ar = — / cos kx dx = [— sin kx] = ——sin —
™ p mk —npp Tk 2

20 Find all the coefficients ay, and by for F), I, and D on the interval -7 < z < 7:

v * ™ d T
F(x)—d(:c—i) I(x)—/od(:z:—§)d:c D(a:)—@(;(:c—i).
Solution (a) Integrate cos kx and sin kx against §(z — ) to get
1 1 kn 1 | krm

ar = — cos — and b, = — sin —
k 2 F 2

apg = —
27 T T

uy us

Solution (b) The integral I () is the unit step function H (x — %) with jump at 2 = 7 :

1 f 1

ag =

/2

1] 1 /. ok 1k
ak—;/coskxd:v—ﬁ(51nk7r—sm7>——ﬁmn?

/2
bk:l/sin]gggdgc:—L coskw—COSk—F

T Tk 2

/2

Solution (c) D(x) is the “doublet” = derivative of the delta function § (z — 5). You
must integrate by parts (and D(—7) = D(w) = 0 fortunately).

17 1 [ ™,
;/D(:v)cos /mdx—;/é(x—i) (ksin kx) dx

—T

So ay, for D(x) is kby, in part (b), and by, for D(x) is —kay in part (b).
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21

22

23

For the one-sided tall box function in Example 4, with F' = 1/h for 0 < & < h, what
is its odd part (F(z) — F(—x))? I am surprised that the Fourier coefficients of this
odd part disappear as h approaches zero and F'(x) approaches 6(z).

Solution Every function has an even part and an odd part:

FCVCH(I) = %(F(.I) + F(—.I)) FOdd(I) = %(F(.I) - F(—.’,E)) F= chcn + Fodd

For the one-sided box function, those even and odd parts are

1 1 1
Foven(z) = o for |z] <h Foaqa(x) = -7 for —h <z < O,—i—ﬁ for 0 <z < h.

The Fourier coefficients of F,,qq don’t really “disappear” as b — 0, because the energy
f | Foaa|? dz is growing. But it is growing in the high frequencies and any particular
coefficient ¢y, (at a fixed frequency k) approaches zero as h — 0.

Find the series F'(r) = Y cke®® for F(z) = €® on —7 < x < m. That function e®

looks smooth, but there must be a hidden jump to get coefficients c; proportional to
1/k. Where is the jump ?

Solution When e® is made into a periodic function there is a jump (or a drop) at z = 7.
The drop from e™ to e~ ™ starts the next 27-interval. That drop shows up as a factor
multiplying the 1/k decay that all jump functions show in their Fourier expansion :

1 " 1 e(lfik)x ™
—- T —IRT d — _
BT A {mr T
_ 1 e —e™ ™
21—k

(a) (Old particular solution) Solve Ay” 4+ By’ + Cy = e**=.
(b) (New particular solution) Solve Ay” + By’ + Cy = Y cpe’*™.

Solution This problem shows directly the power of linearity to deal with complicated
forcing functions as combinations of simple forcing functions e*** :

1
(ik)2A+ikB+C ©
Ay" + By + Cy =Y cre’*® has y, = > ¢ YVie'h®.

Ay// + By/ + Cy — eikz has Yp = ik _ Ykeikx

Problem Set 8.2, page 453

1

2

Multiply the three matrices in equation (11) and compare with F'. In which six entries
do you need to know that i = —1? This is (w4)? = we. If M = N/2, why is
(’LUN)]w = —1?

Solution
Why is row i of F the same as row N — i of F (numbered from 0 to N — 1)?

Solution
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From Problem 8, find the 4 by 4 permutation matrix P so that [ = PF. Check that
P2 = [ sothat P = P!, Then from F'F = 41 show that F? = 4P.

It is amazing that F'* = 16P? = 161. Four transforms of any c bring back 16 c.
For all N, F2/N is a permutation matrix P and F* = N2TI.

Solution

4 Invert the three factors in equation (11) to find a fast factorization of F~!.

5 F'is symmetric. Transpose equation (11) to find a new Fast Fourier Transform.

10

Solution
All entries in the factorization of F involve powers of w = sixth root of 1:
| I D Fs
reld B 1" w]l ]

Write down these factors with 1, w, w? in D and powers of w? in F3. Multiply!

Solution

Put the vector ¢ = (1,0, 1,0) through the three steps of the FFT to find y = Fe. Do
the same for ¢ = (0, 1,0, 1).

Solution

Compute y = Fgc by the three FFT steps for ¢ = (1,0,1,0,1,0,1,0). Repeat the
computation for ¢ = (0,1,0,1,0,1,0,1).

Solution

If w = e2™/%4 then w? and \/w are among the _____ and roots of 1.

Solution

F is a symmetric matrix. Its eigenvalues aren’t real. How is this possible ?

Solution

The three great symmetric tridiagonal matrices of applied mathematics are K, B, C.
The eigenvectors of K, B, and C are discrete sines, cosines, and exponentials. The eigen-
vector matrices give the DST, DCT, and DFT — discrete transforms for signal processing.
Notice that diagonals of the circulant matrix C' loop around to the far corners.

2 -1 1 -1
Kk |1 2 -1 g |1 2 -1
I -1 2 -1 1
2 -1 -1 Ky =Kyny =2
c =| 1 2 _1. _ By =Byn=1
! -1 2 Ciy=Cpny =—1
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11 The eigenvectors of K and By are the discrete sines si, ..., sy and the discrete
cosines ¢y, ..., cy—1. Notice the eigenvector g = (1,1,...,1). Here are s and
c,—these vectors are samples of sin kx and cos kz from 0 to 7.

. k. 27k . Ntk and [ co wk o 3k o (2N -1)7k
s1nN+1,s1nN+1,...,smN+1 S2N’ s2N,..., S 5N

For 2 by 2 matrices K5 and Bsy, verify that s1, s2 and ¢g, ¢; are eigenvectors.
Solution

12 Show that C3 has eigenvalues A = 0,3,3 with eigenvectors e¢g = (1,1,1),
e;r = (L,w,w?), es = (1,w?, w*). You may prefer the real eigenvectors (1,1,1)
and (1,0,—1) and (1, -2,1).

Solution

13 Multiply to see the eigenvectors e; and eigenvalues A\, of Cy. Simplify to A\, =
2 — 2 cos(27k/N). Explain why C'y is only semidefinite. It is not positive definite.

2 -1 -1 1 i 1 .
-1 2 -1 w _ w
Cer = -1 2 1| |w =@-wt —wT)
-1 -1 2 wN—DEk wN=1k
Solution

14 The eigenvectors e, of C' are automatically perpendicular because C' is a
matrix. (To tell the truth, C' has repeated eigenvalues as in Problem 12. There was
a plane of eigenvectors for A = 3 and we chose orthogonal e; and e in that plane.)

Solution

15 Write the 2 eigenvalues for K and the 3 eigenvalues for Bs. Always K and By
have the same IV eigenvalues, with the extra eigenvalue for Bny1. (This is
because K = ATAand B = AAT)
Solution

Problem Set 8.5, page 477

1 When the driving function is f(¢t) = &(t), the solution starting from rest is the im-
pulse response. The impulse is §(t), the response is y(t). Transform this equation
to find the transfer function Y (s). Invert to find the impulse response y(t).

y" +y = §(t) with y(0) = 0 and y'(0) =0
Solution Take the Laplace Transform of ¥ 4+ y = §(¢) with y(0) = y'(0) = 0:
7Y (s) = sy(0) —y(0) + Y (s) = 1
Y(s)(s?+1)=1

1 . .
Y(s) = s the transform of y(¢) = sint.
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2 (Important) Find the first derivative and second derivative of f(t) = sint for ¢t > 0.
Watch for a jump at ¢ = 0 which produces a spike (delta function) in the derivative.

Solution The first derivative of sin(¢) is cos(¢), and the second derivative is — sin(t) + d(¢).

3 Find the Laplace transform of the unit box function b(¢t) = {1 for 0 < ¢t < 1} =
H(t) — H(t — 1). The unit step function is H (¢) in honor of Oliver Heaviside.

Solution  The unit box functionis f(t) = H(t) — H(t — 1)

1 -1
The transformis F(s) = — — c - —(1—e79)
S S S
00 1

The same result comes from F'(s) = / ft)e stdt = /e*St dt.
0 0

4 If the Fourier transform of f(¢) is defined by f(k) = [ f(t)e~***dt and f(t) = 0 for
t < 0, what is the connection between f (k) and the Laplace transform F(s) ?

Solution The Fourier Transform is the Laplace Transform with s = ik : f (k) = F(ik).

5 What is the Laplace transform R(s) of the standard ramp function r(¢t) = t?
For t < 0 all functions are zero. The derivative of r(t) is the unit step H ().
Then multiplying R(s) by s gives .

Solution The Laplace Transform R(s) of the Ramp Function r(t) = ¢ is

R(S):/tefﬂdt: e st _/_6 Stdt: O—e;t :%
] S 0 ; S S 0 S
Multiplying R(s) by s gives the Laplace transform 1/s of the step function.

6 Find the Laplace transform F'(s) of each f(t), and the poles of F'(s):

@ f=1+t (b) f=tcoswt (¢) f = cos(wt—0)
(d) f=cos?t (e f=e2cost (f) f=te 'sinwt
Solution (a) The transform of f(¢f) = 1 + ¢ has a double pole at s = 0
_ —st _ —st —st _ _
F(S)—/(1+t)€ dt—/e dt-i-/te dt_g+8_2_s—2
0 0 0
Solution (b . . ) .
( ) ezwt + efzwt tezwt tefu.ot
f(t) =tcos(wt) =t = + transforms to
2 2 2
Oote(iwfs)t x tef(iwfs)t
F(s)= | ———dt ——dt
() = [ s [
0 ) 0 0o . oo
o —em ) (st —jtw + 1) n —e ) (st 4 jtw 4 1)
B 2(s — iw)? 0 2(s + iw)? 0
1 1 (s —iw)? + (s +iw)?  s* —w?

- 2(s —iw)? + 2(s +iw)?2  2(s —iw)2(s +iw)? (52 +w?)?

Poles occur at s = iw and s = —iw, the two exponents of f(t).
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Solution (c) [f(t) = cos(wt —0) = coswtcosf + sinwtsing transforms to
F(s) = ——
(s) 52 4+ w?

Poles occur at s = Fiw.

Solution (d) 1 1
F(t) = cos?(t) = Z(eit e it)? = Z(emt 242t

w .
cosf + msm@

0
7 Lt 1 2 +1752+2
4(s—2i)  4(s+2i) 2s 4(s2+4) 25 s(s2+4)
1 2t
Poles occur at s = 0 and s = 4-2i. Another way is to write cos? t = H%

Solution (e)

L G 1
f(t) - 6_2t cost = —6(1_2)t + _6_(7’+2)t
2 2
L eli-Dte—st L o—(it2y, st
Pls) = [ geTedt+ [ ge et dt
0 0
= ! + 1 _ s+2
C2(—i+24s)  20i+2+s) (s+2)2+1
Poles occur at the exponents s = —2 4 ¢ in f(¢).
Solution (f) , t
f(t) = ffo_t sinwt = Ze(iw—l)t _ Ze_(i“”rl)t
F(s) :/ ie(iw—l)t _ ie—(iw-i-l)t R~
2 2
0

t t ;
Y (iw—1—s)t dt — v —(iw+1+s)t dt
/ 2% / 2 ¢

0 0
et (s —iw 4 1)) e Tt 4t (s +iw 4 1))

2(s —iw + 1)2 2(s+iw+ 1)2
Poles of F(s) occur at s = —1 = 4w, the exponents of f(¢).
7 Find the Laplace transform s of f(¢) = next integer above ¢ and f(t) = ¢t d(t).
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o0

A staircase f(t) = [t] = H(t) + H(t — 1) + H(t — 2) + - -- = next integer above ¢

is a sum of step functions. The transform is
1 e e 2 1 —s . _og 1 1
~ 4+ + +...:_(1+e +e _|_...):_

S S S

S s\1l—e"*
The differentiation rule £(tf(t)) = —F(s) with f(t) = 6(¢) and

d
L(t6(t)) = _E(l) = 0 (this is correct because ¢4(t) is the zero function).

(s) = 1 gives
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8 Inverse Laplace Transform: Find the function f(¢) from its transform F'(s):

s+1 1
P ® 53 © GG

(d) 1/(s*>+2s+10) (e) e */(s—a) (P 2s
Solution (a) F(s) =

is the transform of f(t) = €27,

s — 2mi
Solution (b) F(s) = ﬁ + 251 is the transform of f(¢) = cost + sint.
Solution (¢) F(s) = : S — is the transform of f(t) =
T G-DE-2)  s-2 s-1' =
et — et
Solution (d)
1 1
F - =
(s) 52425410  (s+1+3i)(s+1—3i)
- i B i
T 6(s+ (1+3i)  6(s+(1-30)
ft) = Ee—(1+31)t _ 66—(1—31)15
e *sin(3t)
a 3
Solution (e) F(s) = e’
s—a
ft) =e*"DH(# —1)= shift of e
Solution (f) F(s) = 2s

2
£(t) = 2ds/dt

9 Solve y”"+y = 0 from y(0) and 3’ (0) by expressing Y (s) as a combination of s/(s2+1)
and 1/(s® + 1). Find the inverse transform y(¢) from the table.

Solution y" +y=0
s?Y (s) = sy(0) —y'(0) +Y(s) = 0

Y (s)(s* +1) = sy(0) +y'(0)
Y(s) = y(0) '(0)

The inverse transform is y(¢) = y(0) cos(t) + y’(0) sin(t).

10 Solve y” + 3y’ + 2y = J starting from y(0) = 0 and y’(0) = 1 by Laplace transform.
Find the poles and partial fractions for Y'(s) and invert to find y(¢).

82—|—1+y s2+1

&2 d
Solution The transform of ﬁg +3 d—'Z + 2y = §(t) with y(0) = 0 and y(0) = 11s
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s2Y (s) — sy(0) — y'(0) + 3sY (s) — 3y(0) + 2Y (s) =
Y(s)(s>+3s+2)—1=1

2
Sl P § TP
Y(s) = 2 — 2

s+1 s+42

y(t) = 2e~t — 22t
11 Solve these initial-value problems by Laplace transform :

@ y' +y=ety(0)=8 (b) y" —y=e’, y(0)=0, y'(0)=0
© y' +y=et y(0)=2 (d) y" 4+ y=6t, y(0)=0, y'(0)=0
() y' —iwy=46(t),y(0)=0 (&) my"+cy’+ky=0,y(0)=1,4'(0)=0
Solution (a)

y' +y=e“ with y(0) =8

SY(s) =8+ Y (s) = ——
Y(s)(s+1) = Py +8
Y(s) = 1 8

(s+1)(s—iw)+s+1
1 1 1 8
Y(s) = —
(5) 1+iw<s—iw s—|—1>+s+1

(eiwt _ e—t) + 8e—t

Particular + null y(t) =

1+ iw
Solution (b) y” —y = et with y( ) =0 and y/(O) =0
1
2 — =
Y (s) =Y (s) ] 1
Y p—
&) = DG r e =D
I SR S
C4(s+1) 4(s—1)  2(s—1)2
(t) = et ¢t 4 tet
W= 74T
Solution (c) y' +y =€t with y(0) =2
1
SY(S) -2 + Y(S) = S—l-—l
Y(S) _ 1 2

(s 1)2 + s+1
y(t) =tet + 2e¢

Solution (d)

229
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y" +y =6t with y(0) =y'(0) =0

6
Y (s)+Y(s) = 2
Y 241) = 0
(1) = 5
6 3 3
Y(s) = — —
() s2 s+i s—1

y(t) = 6t — 3ie™ " + 3ie" = 6t — 6sint

Solution (e) y' —iwy = §(t) with y(0) =0
sY(s) —iwY(s) =1
1
Yis) = 5 — 1w
y(t) = ™!

Solution (f) my” + ¢y’ + ky = 0 with y(0) = 1 and y/(0) = 0
ms?Y (s) — msy(0) + csY (s) — cy(0) + kY (s) =0
Y(s)(ms®+cs+k)=ms+c

ms+ ¢ a b

Y (s) = ————— has the form +
ms2 +cs+ k §—8 S— 89

We used this Mathematica command to find y(t)
Simplify[InverseLaplaceTransform [(m x s + ¢)/(m*s"2 + cx s + k), s, t]]

et/ 2 —akm )t Vo prym— V2 —akmt
_( m ) (c (—1—|—e2m4k>—|—(1—|—e2m4k) \/c2—4km>

2v/c2 — 4km
12 The transform of e4* is (sI — A)~'. Compute that matrix (the transfer function)
when A =[1 1; 1 1]. Compare the poles of the transform to the eigenvalues of A.

Solution When A =[1 1;1 1] we have:

-1
-1 _|s—=1 -1 . 1 s—1 1
(sT—4) —[ -1 s—l} _32—23[ 1 s—1]'

The poles of the system are s = 2 and s = 0, the eigenvalues of A.

y(t) =

13 If dy/dt decays exponentially, show that sY (s) — y(0) as s — co.

Solution oo
sY(s) = /sefSty(t) dt (integrate by parts)

0
r —s dy —s ©

= /6 ta dt— [8 ty(t)]o
0

—st dy
=le Edt+y(0)—>y(0) as s — 00

1
s+a

—0 as s > ©

d
Example : pri et has sY(s) —y(0) =
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14 Transform Bessel’s time-varying equation ty "/ +y’+ty = O using Z[ty] = —dY/dsto
find a first-order equation for Y. By separating variables or by substituting
Y (s) = C/v/1 + s?, find the Laplace transform of the Bessel function y = Jp.
Solution  The transforny of ty " applies the £ (t, ) rule to y" instead of y :
ZL(ty") = —d—(transform ofy”) = —d—(SQY(S) — sy(0) —y'(0)).
d*y dy
Apply this to the transform of 12y +—+ty=0

dt?  dt
dy dy
—2sY(s) — SQE +y(0) + sY(s) —y(0) — o= 0
ay dy
_sY 2l T
sY(s) = ds ds
ay
Y(s)=—(s2+1)—
SY(s) = (> + 1)
dy  sds
Y(s)  s2+1
1
logY(s) =log | ——=
gY(s) g( = 1)
1
The transform of the Bessel solution y = Jy is Y(8)=————=
y=Jois Y(s) JE 1
15 Find the Laplace transform of a single arch of f(¢) = sint.
Solution A single arch of sin 7t extends from¢ =0tot = 1:
00 1 1 1 .
_ td _ tdt ezﬂ't—st @t e—zﬂ't—st i@t
F = S = s -
() /f /Sm / 2i / 2i
0 0 0 0
e

imt—st e imt—st t=1
+
2i(im —s)  2i(im+5)],_,

eims 1 e~ T8 _ 1

2i(im — s) + 2i(im + s)

B —e % -1 1 1 B e 41 S
o 2 it—s ir+s/) i w2 + 82

A faster and more direct approach: One arch of the sine curve agrees with sin 7t +
unit shift of sin 7¢, because those cancel after one arch.

sinwt + sin7(t — 1) = sinnt + sinwt cos ™ = sinwt — sin7wt = 0.

16 Your acceleration v/ = ¢(v* — v) depends on the velocity v* of the car ahead :
(a) Find the ratio of Laplace transforms V*(s)/V (s).
(b) If that car has v* = ¢ find your velocity v(t) starting from v(0) = 0.

d
Solution (a) Take the Laplace Transform of d_ltj = ¢(v* — v) assuming v(0) = 0;
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1
Solution (b) 1f v*(t) = t then V*(s) = —;. Therefore
S

c
Vis)(s+¢) =
c
V =
() s3 4 ¢s?
o .
Cc(s+c) cs o s2
—ct 1
o) =S — 24y
c c

17 A line of cars has v/ = c[vp,—1(t = T) — v, (t — T')] with vo(t) = coswt in front.
(a) Find the growth factor A = 1/(1 + iwe™? /c) in oscillation v,, = A™e™".
(b) Show that |A| < 1 and the amplitudes are safely decreasing if ¢T" < %
) If T > % show that | A| > 1 (dangerous) for small w. (Use sinf < 6.)
Human reaction time is 7' > 1 sec and human aggressiveness is ¢ = 0.4/sec.
Danger is pretty close. Probably drivers adjust to be barely safe.

dvy, . .
Solution (a) % = c(Vp_1(t = T) — v, (t — T)) with v,, = A"e'?

iwAnewt — cAn—leiw(t—T) _ CAneiw(t—T)

Aiwe“T 14
c
- iwT
A (1 4 e > -1
c

Solution (b)
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For |A| <1 we need ‘1 4 Weiwr| 5
c

’1 _ sin(wT') + s cos(wT)‘ >1
c c

2 2
(1 e sin(wT)) + w_2 cos?(wT) > 1
c c

2 2

2w . w4 w 9
1-— - sin(wT) + — sin (WwT) + 3 cos (wTQ) >1
2w w
1— —sin(wl) +—= >1
. sin(wT) + =
w2

2w,
= sin(wT)

. . oW 2w L. 1
Since sinwT < wT, we are safe if =z > 7wT whichis T < 3
Solution (c¢) sinwT =~ wT when this number is small. Then the same steps show
|A| > 1 when ¢T > 1.
18 For f(t) = 4(t), the transform F'(s) = 1 is the limit of transforms of tall thin box
functions b(¢). The boxes have width € — 0 and height 1/€ and area 1.

L. 1/e for0<t<e
Inside integrals, b(t) = { 0/ otherwise }approaehes 5(t).
Find the transform B(s), depending on €. Compute the limit of B(s) as € — 0.
Solution 'We begin by finding the transform of the box :

1 T L
B(s) = /—e_St dt = —Ze=st| =2 "¢
€

S€ 0 S€
0
We take the limit as e — 0—the box approaches a delta function !
N
B.(s) = lim ———
o8 1.2.2
1—(1—-se+355%€ —---
= lim ( 2 ) _ 1.

19 The transform 1/s of the unit step function H (f)E comes from the limit of the transforms

of short steep ramp functions r¢(¢). These ramps have slope 1/e:

Te = 1 €
t
Tef Compute Re(s) = / ~ e Stdt + /e*Stdt. Let e — 0.
€
t > 1 0 €

0 €
est(—st—1)]"° e—st]t=
——.- =]

t=e¢

t
Solution R.(s) :/—e*St dt—l—/e*“ dt = {
€ t=0
0

€
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20

21

22

In Problems 18 and 19, show that the derivative of the ramp function r¢(t)
is the box function b(t). The “generalized derivative” of a step is the function.

Solution The generalized derivative of the short ramp r.(t) is the thin box b(t)/e. We
say “generalized” because this is not a true derivative at ¢ = 0 : the ramp has zero slope
left of ¢ = 0 and nonzero slope right of ¢ = 0. But the transforms of r. and b, follow
the rule for derivatives.

The generalized derivative of a step function is a delta function.

What is the Laplace transform of y’/(t) when you are given Y(s) and
y(0),57(0),y"(0)?

Solution The Laplace Transform of y””(t) is s3Y (s) — s%y(0) — sy’(0) — y"(0)
The Pontryagin maximum principle says that the optimal control is “bang-bang”—
it only takes on the extreme values permitted by the constraints. To go from rest at
xz = 0 torest at + = 1 in minimum time, use maximum acceleration A and
deceleration —B. At what time ¢ do you change from the accelerator to the brake ?
(This is the fastest driving between two red lights.)

Solution The maximum principle requires full acceleration A to an unknown time ¢
and then full deceleration — B to reach z = 1 with zero velocity. The velocities are

v = At for t <ty
v = Atg — B(t —to) for t > tg
Integrating the velocity v = dx/dt gives the distance x(t) :
z = At? for t <tg
x = At at t =t
@ = LA+ Ato(t — to) — LB(t — t9)? for t > to

At the final time T" we reach x = 1 with velocity v = 0. This gives two equations for

toand T :
’UZAto—B(T—to)ZO

x = AtgT — At — 1B(T —t9)* =1

Substitute 7' = %tO(A + B) from the first equation into the second equation. This
leaves an ordinary quadratic equation to solve for .

Problem Set 8.6, page 453

1

Find the convolution v * w and also the cyclic convolution v ® w :
@v=(1,2)and w = (2,1)
Solution (a)

Convolution: (1,2) x (2,1) [

N O N =
— N N = O
—_ _ 1
L— —
N
| I
| — |
[\ i\
[

Cyclic Convolution : [
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(b) v = (1,2,3) and w = (4,5,6).

Solution (b) (1 3 07 4
210 4 13
(1,2,3) % (4,5,6) 3 21 [ 5 ] =1 28
0 3 2 6 27
L0 0 3 | 18
1 3 27174 31
Cyclic Convolution : 21 3 5 | = [ 31 1
3 2 1 6 28

2 Compute the convolution (1,3,1) * (2, 2_7 3) = (a,b,c,d,e). To check your answer,
add a + b+ ¢+ d + e. That total should be 35 since 1 +3+1=5and 2+2+3=7
and 5 x 7= 35.

Solution 1 0 0 2
310 2 8
1 3 1 2 ‘| = 11
01 3 3 11
0 0 1 3

1+3+1times2+2+3is2+8+114+114+3 : (5)(7) = (35).
3 Multiply 1 + 3z + 22 times 2 + 2x + 322 to find a + bz + cz? + dz® + ex*. Your
multiplication was the same as the convolution (1, 3,1) (2,2, 3) in Problem 8. When
2 = 1, your multiplication shows why 1+3+1 =5 times 2+ 2+ 3 = 7 agrees with
a+b+c+d+e=35
Solution
(1+ 32+ 22) x (2+ 22 + 322) = 2+ 22 + 322 + 62 + 622 + 923 + 222 + 22 + 3*
=2+ 8z + 11z + 1123 + 3z*
Atz = 1 thisis again (5) x (7) = (35).

4 (Deconvolution) Which vector v would you convolve with w = (1,2,3) to get
vxw = (0,1,2,3,0)? Which v givesv ® w = (3,1,2)?
Solution vg 0 O 0
V1 Vo 0 1 1
V2 V1 o [ 2 ‘| = 2
0 Vo V1 3 3
0 0 0

The first and last equation give vo = vy = 0. Substituting into the second, third, fourth
equation gives v; = 1. Therefore v = (0, 1, 0).

Vo Vo V2 V1
[HREER
V2 V2 U1 Vo
0
1
0

1 3
For cyclic convolution [ 2 1
3 2
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5 (a) For the periodic functions f(x) = 4 and g(x) = 2 cos x, show that f * g is zero (the
zero function) !

Solution (a) From equation (4) we have

27 27
(f*g)(:c):/g(y)f(x—y)dy:4/2605ydy:4~0:0 forall x.
0 0

(b) In frequency space (k-space) you are multiplying the Fourier coefficients of
4 and 2coswx. Those coefficients are ¢¢ = 4 and di = d_; = 1.
Therefore every product cdy, is

Solution (b) In frequency space (k-space) you are multiplying the Fourier coefficients
of 4 and 2 cos z. Those coefficients are ¢o = 4 and d; = d_; = 1. Therefore every
product cidy is zero. These are the coefficients of the zero function.

6 For periodic functions f = > cxe™® and g = > dye’*®, the Fourier coefficients of
f * g are 27 ey dy. Test this factor 2 when f(2) = 1 and g(z) = 1 by computing f * g
from its definition (6.4).

Solution From equation (4):

(f*x9)(x)= [ fly)glx —y)dy= [ 1-1dy=2r.
/ /

The same convolution in k-space has ¢yp = 1 and dy = 1 (all other ¢, = di, = 0). Then
2megdy, gives the correct coefficients (27 and 0) of the convolution f * g (which equals
27).
27
7 Show by integration that the periodic convolution | cosx cos(t — x)dx is 7 cost. In k-
0

space you are squaring Fourier coefficients ¢; = c_1 = % to get ; and 1;
these are the coefficients of % cost. The 27 in Problem 8 makes 7 cost correct.

Solution
27 27

/cosxcos(t—:z:) dx = /cosx(costcosx—i—sintsinx} dx = mcost + 0.
0 0

8 Explain why f g is the same as g * f (periodic or infinite convolution).

Solution In Fourier space convolution f % g or f ® g leads to multiplication cydy,
which is certainly the same as dici. So f ® g = g ® f in z-space.

9 What 3 by 3 circulant matrix C produces cyclic convolution with the vector
c = (1,2,3)? Then Cd equals ¢ ® d for every vector d. Compute ¢ ® d for
d=(0,1,0).

Solution The circulant matrix C' =

1 3 2
21 3 ] gives cyclic convolution with (1, 2, 3).
3 2 1

1 3 2 0 3
213H1]:M.
3 21 0 2

Whend = (0,1,0) wehavec® d = Cd =
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10 What 2 by 2 circulant matrix C' produces cyclic convolution with ¢ = (1,1)?
Show in four ways that this C' is not invertible. Deconvolution is impossible.

(1) Find the determinant of C. (2) Find the eigenvalues of C.
(3) Finddsothat Cd = c® dis zero. (4) F'chas azero component.

Solution The 2 by 2 circulant matrix C' = [ } } ] gives (1,1) ® d = Cd.

(1) The determinant of this matrix is zero.

1
1-A
Then (1 — A\)? = 1 and A = 0,2. That zero eigenvalue means that the matrix C' is
singular.

(2) The eigenvalues of C' come from det [ 1 I A ] =(1-XN?-1=0.

3) Cd= { } 1 ] { _} ] = { 8 } so C'is not invertible : { _} ] in nullspace.

(4) The Fourier matrix F' gives F'c = [ 1 _1 } [ } } = [ (2) ] This again shows
A=2and0.
11 (a) Change b(z) * §(x — 1) to a multiplication E(k:) A(k) :

~ I
The box b(z) = {1 for 0 < z < 1} transforms to b(k) = [ e~ ***dz.
0
The shifted delta transforms to d = [6(x — 1)e~*dx.

(b) Show that your result b d is the transform of a shifted box function. This shows how
convolution with §(z — 1) shifts the box.

Solution This question shows that continuous convolution with §(z — 1) produces a
shift in the box function b(x), just like discrete convolution with the shifted delta vector
(...,0,0,1,...) produces a one-step shift.

We compute §(z — 1) * b(x) in 2-space to find b(a — 1), or in k-space to see the effect

on the coefficients :
! etk z=1 —1
/ ZkIdI _ k 1 — € §
—ik ik
0
1—

2
etk —ikz 7 T=2

Shifted box ¢~ < T ) agrees with /e’““da: = {e } .
1

—ik
12 Take the Laplace transform of these equations to find the transfer function G(s) :
@ Ay”" +By' +Cy=4(t) By’ —5y=48(t) () 2y(t) —y(t—1) =0(t)
1

Solution (a) As?Y (s)+BsY (s)+CY (s) = 1 gives the transfer function A2 T Bs i O

1

Solution (b) sY (s) —5Y(s) = 1 gives the transfer function Y (s) = g
5 —
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1
Solution (¢) 2Y (s) — Y (s)e™® = 1 gives the transfer function Y (s) = Sy
— €

13 Take the Laplace transform of y"””/ = 4(¢) to find Y (s). From the Transform Table
in Section 8.5 find y(¢). You will see ¥/ = 1 and "/ = 0. But y(t) = 0 for
negative ¢, so your y'” is actually a unit step function and your y"” is actually §(¢).

Solution y"" = § transforms to sY (s) — s3y(0) — s%y’(0) — sy”(0) —y""(0) =1
1
Assume zero initial values to get s'Y (s) = 1 and Y (s) = — and y* = 5
S
This is also the solution to 4" = 0 with initial values y,y’,y"”,y" = 0,0,0, 1.
14 Solve these equations by Laplace transform to find Y'(s). Invert that transform
with the Table in Section 8.5 to recognize y(t).
@y’ —6y=e" y(0)=2 () y" + 9y =1,y(0) = y'(0) = 0.
Solution (a) The transform of y’ — 6y = e~ with y(0) = 2 is
Y(s) —2—-6Y(s) = ——
() =2 6Y () =
2 n 1
s—6  (s+1)(s—6)
2 1 1
+ —
s—6 7(s—6) 7(s+1)
15 _ 1
7(s—6) T7(s+1)

15 1
The inverse transformis y(t) = —eb% — —e~?t

7
Solution (b) The transform of 4" + 9y = 1 with y(0) = y/(0) = 0 is

s?Y (s) + 9Y (s) = é

"

Y(s) =

1
Y(s) = ——
() s(s?2+9)
o1 1 B 1
95 18(—3i+s) 18(3i+s)
1

1 , 1 )
The inverse transform is y(t) = i 1—863” — 1—86_3” =Yp + Yn-

15 Find the Laplace transform of the shifted step H (¢ — 3) that jumps from O to 1 at ¢ = 3.
Solve y’ — ay = H(t — 3) with y(0) = 0 by finding the Laplace transform Y (s) and
then its inverse transform y(¢) : one part for ¢ < 3, second part for ¢ > 3.

Solution The transform of H (¢ — 3) multiplies =3 by the transform L of H (t).
y' —ay=H(t-3) y(0)=0

6—35

sY(s) —aY(s) =

Yis) = 5(2—353) - ejx <s i 3 %) '

The inverse transform y(t) is the shift of 1 (e73* — 1) : zero until ¢t = 3.
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16 Solve y’ = 1 with y(0) = 4—a trivial question. Then solve this problem the slow way
by finding Y (s) and inverting that transform.

Solution The trivial solution is : y = t 4 4. The transform method gives

1
sY(s)—4=-
s
1 4
Y(s) = = + =
(5) ==+
y(t) =t+4

17 The solution y(¢) is the convolution of the input f(¢) with what function g(t) ?
@ y" —ay = f(t) withy(0) = 3

Solution (a) y, —ay = f(¢) with y(0) =3
sY(s) =3 —aY(s) = F(s)
v(s) = 2211 ((LS)

y(t) = 3e~t 4 f(t) x e~
(b) y’ — (integral of y) = f(t).

Y
Solution (b) The transform of y'— (integral of y) = f(¢) is sY(s) — () = F(s),
s
if y(0) = 0.

) 1 C .
The inverse transform of T= 2118 cos(it).
s_ 1 _

F
Then Y (s) = () is the transform of the convolution f () * cos(it).

_ 1
18 Fory’ — ay = f(t) with y(0) = 3, we could replace that initial value by adding 34 (¢)
to the forcing function f(¢). Explain that sentence.

Solution For a first order equation, an initial condition y(0) is equivalent to adding
y(0)4(t) to the equation and starting that new equation at zero.

19 Whatis 6(¢) * 6(¢) ? Whatis §(¢t — 1) x 6(t — 2) ? Whatis 6(t — 1) times §(t — 2)?
Solution 6(t) x 6(t) = &(t)
St—1)*d6(t—2)=46(t—3)
d(t — 1) times 6(t — 2) equals the zero function.
20 By Laplace transform, solve 3’ = y with y(0) = 1 to find a very familiar y(¢).
Solution y =y y(0) =1
sY(s)—1=Y(s)
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21

22

23

By Fourier transform as in (9), solve —y" 4y = box function bx)on0 <z <1.
Solution The Fourier transform of —y” + y = b(z) is

1
1— —ik
(K*+1)y /e_””dx -
0

N 1)(ik)

This transform must be inverted to find y(x). In reality I would solve separately on
z < 0and 0 < 2z < 1and z > 1. Then matching at the breakpoints x = 0 and x = 1
determines the free constants in the separate solutions.

There is a big difference in the solutions to y” + By’ + Cy = f(z), between the
cases B2 < 4C and B? > 4C. Solve y” +y = 6 and y” — y = 6 with y(+o00) = 0.

Solution (a) The delta function produces a unit jump iny’ atz = 0:

y" +y = 0Ohasy = cicosz + casinz forx < 0, y = Cysinz for z > 0.

The jump in y’ gives Cy — c2 = 1. The condition on y(+ oo) does not apply to this
first equation.

y”" —y =0hasy = ce® forx < 0andy = Ce ® for z > 0; then y(4+ oo) = 0.
Matching y at x = 0 gives ¢ = C.

Jumpiny’atz =0gives —C —c=1s0c=C=—1
Solution y(z) = —1e® forz < 0 and y(z) = —3e * forz >0
(Review) Why do the constant f(¢) = 1 and the unit step H(¢) have the same

Laplace transform 1/s? Answer : Because the transform does not notice
Solution The Laplace Transform does not notice any values of f(t) for t < 0.



