
Chapter 3

Graphical and Numerical Methods

The world of differential equations is large (very large). This page aims to see what is
already done and what remains to do.

Chapters 1 and 2 concentrated onequations we can solve. Compared to digging for
coal or drilling for oil, this was the equivalent of picking up gold. Solutions were wait-
ing for us. Looking back honestly, we just wrote them down (not so easy in Chapter 2).

Above all I am thinking ofeat in Chapter 1 andest in Chapter 2 ande�tx coming
in Chapter 6 (with eigenvalues and eigenvectors). When the equation is linear, and
its coefficients are constant, then its solutions are exponentials.

Chapter 1 First order equations (linear or separable or exact or special)

Chapter 2 Second order equationsAy 00 C By 0 C Cy D f .t/

Chapter 6 First order systemsy 0 D Ay C f .t/ with matricesA and vectorsy .

Chapter 3 will be different. Instead off .t/ we havef .t; y/. Most nonlinear problems
don’t allow a formula fory.t/. “A solution exists but it has no formula.” This is the
hard reality of differential equationsy 0 D f .t; y/. The equations are important but they
don’t have exponential answers. This chapterpictures the solution,computesthe solution,
and decides if the solution isstable.

Section 3.1 Pictures for nonlinear equationsy 0 D f .t; y/ : Stability decided by@f =@y.

Section 3.2 Pictures for linear second order equations and2 by 2 systems : Stable or not.

Section 3.3 Test for stability at critical points by linearizing systems of equations.

Section 3.4 Euler methods (safe but slow) for computing approximationsto y.

Section 3.5 Fast and accurate computations, by methods more efficient than Euler.

Science and engineering and finance constantly use Runge-Kutta.

After this chapter, the book will move into high dimensions :the world of linear algebra.
One particle and one resistor and one spring and one of anything : that was only a start.
The reality is a network of connections : a brain, a living body, a modern machine, a web
of processors. Every network leads to a matrix.You will learn how to read a matrix.

In my opinion, linear algebra is pure gold.
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154 Chapter 3. Graphical and Numerical Methods

3.1 Nonlinear Equations y 0 D f .t; y/

This section aims to get a picture ofy.t/, not a formula. The pictures will be graphs in
the t � y plane (t across andy.t/ up). The differential equation isdy=dt D f .t; y/

and everything depends on that functionf . I can start with a linear equationy 0 D 2y.

The solutions toy 0 D 2y are y.t/ D Ce2t . For every numberC this gives a
solution curve fromt D �1 to t D1. Those curves cover every point in thet �y

plane. This is the “solution picture” we want for nonlinear equationsy 0 D f .t; y/.

That solutiony D Ce2t has a graph. The plane is filled with those graphs. Every point
t , y has one of those curves going through it (choose the rightC ). A different equation
y 0 D sinty won’t have a formula. Its picture starts with just this one fact :

dy=dt D sin ty The solution curve through the point t; y has the slope sinty :

From thatpoint picture we have to build acurvepicture. This section tries to connect
small arrows at points into solution curves through those points. The arrow at the pointt; y

has the right slopef .t; y/. Connecting with other arrows is the hard part.
I will separate this section into facts abouty.t/ and pictures ofy.t/.

Facts About y.t/

The facts will be answers to these questions, and the Chapter3 Notes add more :

1. Starting fromy.0/ at t D 0, doesdy=dt D f .t; y/ have a solution?

2. Could there be two or more solutionsthat start from the samey.0/ ?

Question1 is aboutexistenceof y.t/. Is there a solution curve throughtD0, yDy.0/ ?

Question2 is aboutuniquenessof y.t/. Could two solution curves go through one point ?

When f .t; y/ is reasonable, we expect exactly one curve through every point t; y :
existence and also uniqueness. Which functions are reasonable? Here are answers :

1. A solution exists iff .t; y/ is a continuous function fort near0 andy neary.0/.

2. There can’t be two solutions with the samey.0/ when@f =@y is also continuous.

The word “continuous” has a precise technical meaning. Let me be imprecise and
nontechnical. Continuity at a point rules out jumps and infinities in a small neighborhood
of that point. The particular functionf D y=t is certainly ruled out at points wheret D 0 :

dy

dt
D y

t
with y.0/ D 0 has infinitely many solutionsy D Ct:

The particular functionf D t=y is also ruled out wheny.0/ D 0 (no division by0) :

dy

dt
D t

y
with y.0/ D 0 has two solutionsy.t/ D t and y.t/ D �t:
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In those examples,y=t and t=y are starting from0=0. Solutions do exist (that fact
wasn’t guaranteed). Solutions are not unique (no surprise). We ask more fromf .t; y/.

There is one important point that we emphasize here, becauseit could easily be missed.

Continuity of f and
@f

@y
at all points does not guarantee that solutions reacht D1.

Yes, there will be a solution starting fromy.0/. That solution will be unique. Buty.t/

could blow up at some finite timet . The first nonlinear equation in the book (Section 1.1)
was an example of early explosion :

Blow-up at t D 1 The solution to
dy

dt
D y2 with y.0/ D 1 is y.t/ D 1

1 � t
:

That functionf D y2 is certainly continuous. Its derivative@f =@y D 2y is also continu-
ous. But the derivative2y grows when the solution grows. To be sure there is no explosion
at a finite timet , we ask for an upper boundL on the continuous function@f =@y :

If

ˇ̌
ˇ̌@f

@y

ˇ̌
ˇ̌ � L for all t and y there is a unique solution throughy.0/ reaching all t:

For a linear differential equationy 0 D a.t/yCq.t/, the derivative@f =@y of the right hand
side is justa.t/. Then if ja.t/j � L andq.t/ is continuous for all time, solution curves go
from t D �1 to t D1. Chapter 1 found a formula fory.t/ in this linear case.

I will end with one final nonlinear fact. The conditionj@f =@yj � L is pushed to its
limit when @f =@y D L exactly. Theny 0 D Ly C q.t/. A comparison with this linear
equation gives information about the nonlinear equation, whenj@f =@yj � L :

If y 0 D f .t; y/ and z 0 D f .t; z/; then jy.t/ � z.t/j � eLt jy.0/ � z.0/j: (1)

If y.t/ andz.t/ start very close, they stay close. This is the opposite of what you see on
the cover of this book. The cover shows a famous example ofchaos: solutions go wild.
A slight change iny.0/ will send the solution on a completely different (and distant) path.
We now know that Pluto’s orbit is chaotic : very very unpredictable. The equations allow
it, because they don’t havej@f =@yj � L. Pluto is not a planet.

Pictures of the Solution

Example 1 dy=dt D 2 � y Solution y.t/ D 2CCe�t y.1/ D 2

The perfect picture ofy 0 D 2 � y would show a small arrow at every pointt; y. The
arrow would have slopes D 2 � y. Along the all-important “steady state line”y D 2,
this slope would bezero. The arrows are flat.s D 0/ along that line : a constant solution.

Above that steady line, the slope2 � y is negative. The vectors have componentsdt

across anddy D .2 � y/dt down. We don’t have space for an arrow at every point,
but Figure 3.1 gives the idea.MATLAB calls the field of arrows a “quiver”.
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Figure 3.1: (a) Arrows with slopesf .t; y/ show the direction of the solution curvesy.t/.
(b) Along an isoclinef .t; y/ D s, all arrows have the same slopes. Heres D 2 � y.

Notice that all arrows pointtoward the liney D 2. That steady state solution isstable.
The formulay.t/ D 2C Ce�t confirms that the solutions approachy D 2.

First key idea: The solution curvesy.t/ D 2C Ce�t are tangent to the arrows.
Tangent means : The curves have the same slopes D 2 � y as the arrows ! The curves
solve the equation, the equation specifies the slopes, the arrows have correct slopes.

Second key idea: Put your arrows along isoclines. An isocline (meaning “same slope”)
is a curvef .t; y/ D constant. This idea makes the arrows much easier to draw. Allthe
isoclines2�y D s are horizontal lines for this equationy 0 D 2�y. When the differential
equation isdy=dt D f .t; y/, each choice of slopes produces an isoclinef .t; y/ D s.

In our example, those isoclines2 � y D s are flat becausef .t; y/ D 2 � y does
not depend ont (autonomous equation). I start the picture by drawing a few isoclines.
I always draw the isoclinef .t; y/ D 0 (here2 � y D 0 is the steady state liney D 2).
For this equation, that “nullcline” or “zerocline” withs D 0 is also a solution curve.
The arrows have slope zero wheny D 2, so they point along the flat line.

How to understand these pictures ?The arrows are pointing along the solution curves.
The curves cross over isoclines. But they don’t cross over the zero isocliney D 2.

All arrows are pointing toward the liney D 2. Those arrows will eventually take us
across every other isocline. The pictures say that the solution curvesy.t/ are asymptotic to
that liney D 2. For this equationdy=dt D 2 � y we know the solutionsy D 2C Ce�t .

Figure 3.2: Solution curves (tangent to arrows) go through isoclines :y 0 D 2 � y.
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Example 2
dy

dt
D y � y2 Solutionsy.t/ D 1

1CCe�t
y.t/! 1 or�1

The slope of every small arrow isy � y2. In the range0 < y < 1, y will be larger
thany2. The arrows have positive slopey � y2 in this range (small slope neary D 0,
small slope neary D 1, all up and to the right). The other two ranges are abovey D 1

and belowy D 0. There the slopesy � y2 are negative—arrows go down and right.
The solution curves are steep wheny is large, becausey2 >> y.

Figure 3.3 shows the isoclinesf .t; y/ D y � y2 D s D constant. Againf does
not depend ont ! The equation is autonomous, the isoclines are flat lines. There aretwo
zeroclinesy D 1 and y D 0 (wheredy=dt D 0 andy is constant). Those arrows have
zero slope and the graph ofy.t/ runs along each zerocline : a steady state.

The question is about all the other solution curves : What do they do ? We happen to
have a formula fory.t/, but the point is thatwe don’t need it. Figure 3.3 shows the three
possibilities for the solution curves to thelogistic equationy 0 D y � y2 :

1. Curves abovey D 1 go fromC1 down toward the liney D 1 (dropin curves)

2. Curves betweeny D 0 andy D 1 go up toward that liney D 1 (S -curves)

3. Curves belowy D 0 go down (fast) towardy D �1 (dropoff curves).

The solution curves go across all isoclines except the two zeroclines wherey � y2 D 0.

Figure 3.3: The arrows form a “direction field”. Isoclinesy � y2 D s attract or repel.

You see theS -curves between0 and1. The arrows are flat as they leavey D 0, steepest
at y D 1

2
, flat again as they approachy D 1. The dropoff curves are belowy D 0.

Those arrows get very steep and the curves never reacht D 1 : y D 1=.1 � e�t / gives
1=0 D minus infinitywhent D 0. That dropoff curve never gets out of the third quadrant.
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Important Solution curves have a special feature for autonomous equationsy 0 D f .y/.
Suppose the curvey.t/ is shifted right or left to the curveY.t/ D y.t C C /. ThenY.t/

solves the same equationY 0 D f .Y /—both sides are just shifted in the same way.
Conclusion : The solution curves for autonomous equationsy 0 D f .y/ just shift along

with no change in shape. You can also see this by integratingdy=f .y/ D dt (separa-
ble equation). The right side integrates tot C C . We get all solutions by allowing allC .

In the logistic example, allS -curves and dropin curves and dropoff curves come from
shiftingoneS -curve andonedropin curve andonedropoff curve.

Solution Curves Don’t Meet

Is there a solution curve through every point (t , y) ? Could two solution curves meet at
that point ? Could a solution curve suddenly end at a point ? These “picture questions”
are already answered by the facts.

At the start of this section, the functionsf and@f =@y were required to be continuous
neart D 0, y D y.0/. Then there is a unique solution toy 0 D f .t; y/ with that start.
In the picture this means :There is exactly one solution curve going through the point.
The curve doesn’t stop. By requiringf and@f =@y to be continuous at and nearall points,
we guarantee one non-stopping solution curve through everypoint.

Example 3 will fail ! The solution curves fordy=dt D �t=y are half-circles and not
whole circles.They start and stop and meet on the liney D 0 (wheref D �t=y is not
continuous). Exactly one semicircular curve passes through every point with y ¤ 0.

Example 3 dy=dt D �t=y is separable. Theny dy D �t dt leads toy2 C t2 D C .

Start again with pictures. The isoclinef .t; y/ D �t=y D s is the liney D .�1=s/t .
All those isoclines go through.0; 0/ which is a very singular point. In this example the
direction arrows with slopes are perpendicular to the isoclines with slopedy=dt D �1=s.

The isoclines are rays out from.0; 0/. The arrow directions are perpendicular to
those rays and tangent to the solution curves.The curves are half-circlesy2 C t2 D C .
(There is another half-circle on the opposite side of the axis. So two solutions start from
y D 0 at time�T and go forward toy D 0 at timeT .) The solution curves stop aty D 0,
where the functionf D �t=y loses its continuity and the solution loses its life.

Figure 3.4: Fory 0 D �t=y the isoclines are rays. The solution curves are half-circles.



3.1. Nonlinear Equationsy 0 D f .t; y/ 159

Example 4 y 0 D 1C t � y is linear but not separable. The isoclines trap the solution.

Trapping between isoclines is a neat part of the picture. It is based on the arrows.
All arrows go one way across an isocline, so all solution curves go that way. Solutions
that cross the isocline can’t cross back. The zero isoclinef .t; y/ D 1 C t � y D 0 in
Figure 3.5 is the liney D t C 1. Along that isocline the arrows have slope0. The solution
curves must cross from above to below.

The central isocline1 C t � y D 1 in Figure 3.5 is the45ı line y D t . This solves
the differential equation ! The arrow directions are exactly along the line : slopes D 1.
Other solution curves could never touch this one.

The picture shows solution curves in a “lobster trap” between the lines : the curves
can’t escape. They are trapped between the liney D t and every isocline1C t � y D s

above or below it. The trap gets tighter and tighter ass increases from0 to 1, and the
isocline gets closer toy D t . Conclusion from the picture: The solution y.t/ must
approach t.

This is a linear equationy 0 C y D 1C t . The null solutions toy 0 C y D 0 areCe�t .
The forcing term1 C t is a polynomial. A particular solution comes by substituting
yp.t/ D at C b into the equation and solving for those undetermined coefficientsa andb :

.at C b/ 0 D 1C t � .at C b/ a D 1 and b D 0 y D yn C yp D Ce�t C t (2)

The solution curvesy D Ce�t C t do approach the liney D t asymptotically ast !1.

Figure 3.5: The solution curves fory 0 D 1C t � y get trapped between the45ı isoclines.

REVIEW OF THE KEY IDEAS

1. The direction field fory 0 D f .t; y/ has an arrow with slopef at each pointt; y.

2. Along the isoclinef .t; y/ D s, all arrows have the same slopes.

3. The solution curvesy.t/ are tangent to the arrows. One way through isoclines !

4. Fact : Whenf and@f =@y are continuous, the curves cover the plane and don’t meet.

5. The solution curves for autonomousy 0 D f .y/ shift left - right toY.t/ D y.t � T /.
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Problem Set 3.1

1 (a) Why do two isoclinesf .t; y/ D s1 andf .t; y/ D s2 never meet ?

(b) Along the isoclinef .t; y/ D s, what is the slope of all the arrows ?

(c) Then all solution curves go only one way across an .

2 (a) Are isoclinesf .t; y/ D s1 andf .t; y/ D s2 always parallel ? Always straight ?

(b) An isoclinef .t; y/ D s is a solution curve when its slope equals .

(c) The zeroclinef .t; y/ D 0 is a solution curve only wheny is : slope0.

3 If y1.0/ < y2.0/, what continuity off .t; y/ assures thaty1.t/ < y2.t/ for all t ?

4 The equationdy=dt D t=y is completely safe ify.0/ ¤ 0. Write the equation as
y dy D t dt and find its unique solution starting fromy.0/ D �1. The solution
curves are hyperbolas—can you draw two on the same graph ?

5 The equationdy=dt D y=t has many solutionsy D C t in casey.0/ D 0. It has
no solution ify.0/ ¤ 0. When you look at all solution curvesy D C t , which points
in thet , y plane have no curve passing through ?

6 For y 0 D ty draw the isoclinesty D 1 and ty D 2 (those will be hyperbolas).
On each isocline draw four arrows (they have slopes1 and 2). Sketch pieces of
solution curves that fit your picture between the isoclines.

7 The solutions toy 0 D y arey D Cet . ChangingC gives a higher or lower curve.
But y 0 D y is autonomous, its solution curves should be shifting rightand left !

Drawy D 2et andy D �2et to show that they really areright-left shiftsof y D et

andy D � et . The shifted solutions toy 0 D y areetCC and� etCC .

8 For y 0 D 1 � y2 the flat linesy D constant are isoclines1 � y2 D s. Draw the
linesy D 0 andy D 1 andy D �1. On each line draw arrows with slope1 � y2.
The picture says thaty D andy D are steady state solutions. From
the arrows ony D 0, guess a shape for the solution curvey D .et �e�t /=.etCe�t /.

9 The parabolay D t2=4 and the liney D 0 are both solution curves fory 0 D
p
jyj.

Those curves meet at the pointt D 0, y D 0. What continuity requirement is failed
by f .y/ D

p
jyj, to allow more than one solution through that point ?

10 Supposey D 0 up to timeT is followed by the curvey D .t � T /2=4. Does
this solvey 0 D

p
jyj? Draw thisy.t/ going through flat isoclines

p
jyj D 1 and2.

11 The equationy 0 D y2 � t is often a favorite in MIT’s course 18.03 : not too easy.
Why do solutionsy.t/ rise to their maximum ony2 D t and then descend ?

12 Constructf .t; y/ with two isoclines so solution curves goup through the higher
isocline and other solution curves godownthrough the lower isocline.True or false:
Some solution curve will stay between those isoclines :A continental divide.


