Chapter 3

Graphical and Numerical Methods

The world of differential equations is large (very large)hi§ page aims to see what is
already done and what remains to do.

Chapters 1 and 2 concentrated eguations we can solveCompared to digging for
coal or drilling for oil, this was the equivalent of pickingwold. Solutions were wait-
ing for us. Looking back honestly, we just wrote them downt(sm easy in Chapter 2).

Above all | am thinking ofe?! in Chapter 1 an@** in Chapter 2 an@**x coming
in Chapter 6 (with eigenvalues and eigenvectors). When that®on is linear, and
its coefficients are constant, then its solutions are expiiails.

Chapter 1  First order equations (linear or separable or exact or afjeci
Chapter2 Second order equationtyy” + By’ + Cy = f(1)
Chapter 6 First order systemg’ = Ay + f (¢) with matricesA and vectory.
Chapter 3 will be different. Instead ¢f(r) we havef(z, y). Most nonlinear problems
don’t allow a formula fory(¢). “A solution exists but it has no formula.” This is the
hard reality of differential equations’ = £(z, y). The equations are important but they
don’t have exponential answers. This chajpietures the solutioncomputesthe solution,
and decides if the solution &able
Section 3.1 Pictures for nonlinear equations = £(z, y) : Stability decided byf /dy.
Section 3.2 Pictures for linear second order equations 2ty 2 systems : Stable or not.
Section 3.3 Test for stability at critical points by linearizing systsmf equations.
Section 3.4 Euler methods (safe but slow) for computing approximations
Section 3.5 Fast and accurate computations, by methods more efficiantEhler.
Science and engineering and finance constantly use Runtje-Ku
After this chapter, the book will move into high dimensiorise world of linear algebra.
One particle and one resistor and one spring and one of aigythihat was only a start.
The reality is a network of connections: a brain, a living syaamodern machine, a web

of processors. Every network leads to a mat¥iau will learn how to read a matrix
In my opinion, linear algebra is pure gold.
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3.1 Nonlinear Equations y’' = f(t,y)

This section aims to get a picture ofz), not a formula. The pictures will be graphs in
thet — y plane ¢ across and/(t) up). The differential equation igy/dt = f(t,y)
and everything depends on that functién | can start with a linear equation’ = 2y.

The solutions toy’ = 2y arey(t) = Ce?. For every numbec this gives a
solution curve fromt = —coto¢t = co. Those curves cover every pointin the y
plane. This is the “solution picture” we want for nonlineguationsy’ = f(z, y).

That solutiony = Ce?" has a graph. The plane is filled with those graphs. Every point
t, y has one of those curves going through it (choose the GghtA different equation
y’ = sinry won't have a formula. Its picture starts with just this onetfa

dy/dt = sinty The solution curve through the pointz, y has the slope siny.

From thatpoint picture we have to build aurve picture. This section tries to connect
small arrows at points into solution curves through thosatpoThe arrow at the point y
has the right slopég(z, y). Connecting with other arrows is the hard part.

| will separate this section into facts about) and pictures of (¢).

Facts About y (1)

The facts will be answers to these questions, and the Chadtetes add more:

1. Starting fromy(0) att = 0, doesdy/dt = f(t, y) have a solution?

2. Could there be two or more solutionghat start from the samg(0) ?

Questionl is aboutexistenceof y(z). Isthere a solution curve througk=0, y =y (0) ?
Question2 is aboutuniquenessf y(¢). Could two solution curves go through one point?

When f(z, y) is reasonable, we expect exactly one curve through evenyt poj :
existence and also uniguenes&/hich functions are reasonable? Here are answers:

1. A solution exists if f(z, y) is a continuous function far near0 andy neary(0).
2. There can’t be two solutions with the samé) whendf/dy is also continuous.

The word “continuous” has a precise technical meaning. Letlm imprecise and
nontechnical. Continuity at a point rules out jumps and itiée in a small neighborhood
of that point. The particular functiofi = y/¢ is certainly ruled out at points where= 0:

d
d—f — % with y(0) = 0 has infinitely many solutionyy = C.

The particular functionf = t/y is also ruled out whery(0) = 0 (no division by0):

d t
d_Jt] = — with y(0) =0 hastwo solutionsy(¢) =¢ and y(t) = —t.
y
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In those examplesy/t andt/y are starting from0/0. Solutions do exist (that fact
wasn’t guaranteed). Solutions are not unique (no surprigdd ask more fromf(z, y).

There is one important point that we emphasize here, bedazmdd easily be missed.

- 9 . .
Continuity of f and a—f at all points does not guarantee that solutions reach = oo.
y

Yes, there will be a solution starting from(0). That solution will be unique. Bup(z)
could blow up at some finite time The first nonlinear equation in the book (Section 1.1)
was an example of early explosion:

. dy 5 . 1

Blow-up att =1 The solution tOE = y“with y(0) = 1is y(t) = 1

That functionf = y? is certainly continuous. Its derivativig’/dy = 2y is also continu-
ous. But the derivativey grows when the solution grows. To be sure there is ho expiosio
at a finite timer, we ask for an upper bourid on the continuous functiodyf/dy :

aof
If =2
| ay

For a linear differential equation’ = a(¢)y + ¢(¢), the derivativedf /9y of the right hand
side is justa(z). Thenif|a(¢)| < L andg(z) is continuous for all time, solution curves go
fromt = —oo tot = oco. Chapter 1 found a formula for(z) in this linear case.

| will end with one final nonlinear fact. The conditidaf/dy| < L is pushed to its
limit when df/dy = L exactly. Theny’ = Ly + ¢(r). A comparison with this linear
equation gives information about the nonlinear equatidremydf/dy| < L:

If y'= f@t.y) and z’ = f(t,2), then |y(t) —z(1)| < e™|y(0) —z(0)|. (1)

If y(¢) andz(¢) start very close, they stay clas&his is the opposite of what you see on
the cover of this book. The cover shows a famous examptdhabs. solutions go wild.

A slight change iny (0) will send the solution on a completely different (and disygrath.
We now know that Pluto’s orbit is chaotic : very very unpredide. The equations allow
it, because they don't havéf/dy| < L. Pluto is not a planet.

< L for all ¢+ and y there is a unique solution throughy (0) reaching all z.

Pictures of the Solution

Example 1 dy/dt =2—y Solutiony() =2+ Ce™ y(oc0) =2

The perfect picture of’ = 2 — y would show a small arrow at every pointy. The

arrow would have slopes = 2 — y. Along the all-important “steady state ling” = 2,

this slope would beera The arrows are flats = 0) along that line : a constant solution.
Above that steady line, the sloge- y is negative. The vectors have componefts

across andly = (2 — y)dt down. We don’t have space for an arrow at every point,

but Figure 3.1 gives the ide®MATLAB calls the field of arrows a “quiver”.
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Figure 3.1: (a) Arrows with slopeg(z, y) show the direction of the solution curvesr).
(b) Along an isocline f(t, y) = s, all arrows have the same slopa. Heres = 2 — y.

Notice that all arrows poirtbward the liney = 2. That steady state solutionstable
The formulay(z) = 2 + Ce™" confirms that the solutions approagh= 2.

First key idea The solution curves y(t) =2 + Ce™" are tangent to the arrows
Tangent means: The curves have the same slope2 — y as the arrows! The curves
solve the equation, the equation specifies the slopes, thahave correct slopes.

Second key ideaPut your arrows along isoclines An isocline (meaning “same slope”)
is a curvef(z, y) = constant. This idea makes the arrows much easier to drawth@ll
isoclines2 — y = s are horizontal lines for this equationf = 2 — y. When the differential
equation isly/dt = f(t, y), each choice of slope produces an isoclinef (¢, y) = s.

In our example, those isoclin@&— y = s are flat becaus¢'(t,y) = 2 — y does
not depend on (autonomous equation). | start the picture by drawing a feuelines.
| always draw the isocling’(¢, y) = 0 (here2 — y = 0 is the steady state ling = 2).
For this equation, that “nullcline” or “zerocline” with = 0 is also a solution curve
The arrows have slope zero when= 2, so they point along the flat line.

How to understand these picture$f?e arrows are pointing along the solution curves
The curves cross over isoclines. But they don't cross overzéro isocliney = 2.

All arrows are pointing toward the ling = 2. Those arrows will eventually take us
across every other isocline. The pictures say that theisalaurvesy(¢) are asymptotic to
that liney = 2. For this equatiody/dt = 2 — y we know the solutiong = 2 + Ce™.

Figure 3.2: Solution curves (tangent to arrows) go throsghlines:y’ =2 — y.
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dy 2 . _ 1
Example 2 =YY Solutionsy (t) = T3 Co—

The slope of every small arrow is — y2. In the range < y < 1, y will be larger
thany2. The arrows have positive slope— y? in this range (small slope near = 0,
small slope neay = 1, all up and to the right). The other two ranges are abpve 1
and belowy = 0. There the slopes — y? are negative—arrows go down and right.
The solution curves are steep wheis large, becausg? >> y.

Figure 3.3 shows the isoclines(t, y) = y — y> = s = constant. Againf does
not depend om! The equation is autonomous, the isoclines are flat linegrd hretwo
zeroclinesy =1 and y = 0 (wheredy/dt = 0 andy is constant). Those arrows have
zero slope and the graph ofz) runs along each zerocline : a steady state.

The question is about all the other solution curves: Whathey tlo? We happen to
have a formula fow (¢), but the point is thatve don’t need it Figure 3.3 shows the three
possibilities for the solution curves to thagistic equationy’ = y — y?:

y(@) > 1or—occ

1. Curves aboveg = 1 go from+oo down toward the lingy = 1 (dropin curves)
2. Curves between = 0 andy = 1 go up toward that lingg = 1 (S-curves

3. Curves belowy = 0 go down (fast) towarg = —oo  (dropoff curves).

The solution curves go across all isoclines except the twackaes wherey — y2 = 0.
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Figure 3.3: The arrows form a “direction field”. Isoclings— y2 = s attract or repel.

You see thes-curves betweefi andl. The arrows are flat as they leaye= 0, steepest
aty = % flat again as they approagh = 1. The dropoff curves are below = 0.
Those arrows get very steep and the curves never reacho: y = 1/(1 —e™") gives
1/0 = minus infinitywhens = 0. That dropoff curve never gets out of the third quadrant.
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Important  Solution curves have a special feature for autonomous iemsat’ = f(y).
Suppose the curve(r) is shifted right or left to the curv&(¢r) = y(t + C). ThenY(¢)
solves the same equatidi = f(Y)—both sides are just shifted in the same way.

Conclusion: The solution curves for autonomous equatidns f(y) just shift along
with no change in shapeYou can also see this by integratidy/f(y) = dt (separa-
ble equation). The right side integrateste- C. We get all solutions by allowing all’.

In the logistic example, alf-curves and dropin curves and dropoff curves come from
shifting oneS-curve andbnedropin curve an@nedropoff curve.

Solution Curves Don’t Meet

Is there a solution curve through every point ¥) ? Could two solution curves meet at
that point? Could a solution curve suddenly end at a point 2s&Hpicture questions”
are already answered by the facts.

At the start of this section, the functiorfsanddf/dy were required to be continuous
neart = 0, y = y(0). Then there is a unique solution id = f£(z, y) with that start.
In the picture this meansThere is exactly one solution curve going through the point.
The curve doesn't stop. By requiringanddf/dy to be continuous at and neali points,
we guarantee one non-stopping solution curve through e@ny.

Example 3 will fail! The solution curves fafy /dt = —t/y are half-circles and not
whole circles.They start and stop and meet on the liney = 0 (where f = —t/y is not
continuous). Exactly one semicircular curve passes through everytpagth y # 0.

Example 3  dy/dt = —t/y is separable. Thendy = —tdt leads toy? +t2 = C.

Start again with pictures. The isoclinéz, y) = —t/y = s isthe liney = (—1/s)z.
All those isoclines go througfo, 0) which is a very singular point. In this example the
direction arrows with slope are perpendicular to the isoclines with slape/dt = —1/s.

The isoclines are rays out frorg®,0). The arrow directions are perpendicular to
those rays and tangent to the solution curvitse curves are half-circlesy? + 2 = C.
(There is another half-circle on the opposite side of the.a$o two solutions start from
y = 0 attime—T and go forward toy = 0 attimeT'.) The solution curves stop at= 0,
where the functionf = —t/y loses its continuity and the solution loses its life.

Figure 3.4: Fory’ = —t/y the isoclines are rays. The solution curves are half-arcle
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Example 4 y’ =14t — y is linear but not separable. The isoclines trap the solution

Trapping between isoclines is a neat part of the pictures hdsed on the arrows.
All arrows go one way across an isocline, so all solution cues go that way Solutions
that cross the isocline can’t cross back. The zero isocfirey) = 1+t —y = 01in
Figure 3.5is the lingg = ¢ + 1. Along that isocline the arrows have slopeThe solution
curves must cross from above to below.

The central isoclind + ¢t — y = 1 in Figure 3.5 is thet5° line y = ¢. This solves
the differential equation! The arrow directions are exaaibng the line: slope = 1.
Other solution curves could never touch this one.

The picture shows solution curves in a “lobster trap” betw#ee lines: the curves
can't escape. They are trapped between thejline r and every isoclind +¢t —y = s
above or below it. The trap gets tighter and tightersdscreases fronf to 1, and the
isocline gets closer t¢ = . Conclusion from the picture The solution y(¢#) must
approachz.

This is a linear equation’ + y = 1 + ¢. The null solutionsty’ + y = 0 areCe™".
The forcing terml + ¢ is a polynomial. A particular solution comes by substitgtin
yp(t) = at + b into the equation and solving for those undetermined coeiffisa andb :

(at +b) =1+t—(at+b) a=1landb=0 y=y,+y,=Ce'+1t (2)
The solution curves = Ce™" + ¢ do approach the ling = r asymptotically ag — oo.

Figure 3.5: The solution curves for = 1 + ¢ — y get trapped between tH&° isoclines.

B REVIEW OF THE KEY IDEAS =

. The direction field fory’ = f(¢, y) has an arrow with slopg at each point, y.
. Along the isoclinef(z, y) = s, all arrows have the same slope
. The solution curveg(¢) are tangent to the arrows. One way through isoclines!

. Fact: Whenf anddf/dy are continuous, the curves cover the plane and don’t meet

ga b W N P

. The solution curves for autonomous$ = f(y) shift left-righttoY (t) = y(t — T).
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Problem Set 3.1

(a) Why do two isoclines (¢, y) = s; and f(¢, y) = s, never meet ?
(b) Along the isoclinef(z, y) = s, what is the slope of all the arrows ?
(c) Then all solution curves go only one way acrossan .

(a) Areisoclinesf(t,y) = sy andf (¢, y) = s, always parallel ? Always straight ?
(b) An isocline f(z,y) = s is a solution curve when its slope equals .

(c) The zeroclinef (¢, y) = 0 is a solution curve only when is : slope0.
If y1(0) < y,(0), what continuity of f(z, y) assures thap, (1) < y,(¢) for all ¢ ?

The equationly/dt = t/y is completely safe ify(0) # 0. Write the equation as
ydy = tdt and find its unique solution starting from(0) = —1. The solution
curves are hyperbolas—can you draw two on the same graph ?

The equationly/dt = y/t has many solutiongs = Ct in casey(0) = 0. It has
no solution ify (0) # 0. When you look at all solution curves= Ct, which points
in thet, y plane have no curve passing through ?

For y’ = ty draw the isoclinesy = 1 andsy = 2 (those will be hyperbolas).
On each isocline draw four arrows (they have slopeand2). Sketch pieces of
solution curves that fit your picture between the isoclines.

The solutions toy” = y arey = Ce’. ChangingC gives a higher or lower curve.
But y’/ = y is autonomous, its solution curves should be shifting rigind left!

Drawy = 2¢" andy = —2e' to show that they really améght-left shiftsof y = e’

andy = —e’. The shifted solutions to’ = y aree’*¢ and—e!*C.

Fory’ = 1 — y? the flat linesy = constant are isoclines— y? = s. Draw the
linesy = 0 andy = 1 andy = —1. On each line draw arrows with slope- y2.
The picture says that = andy = are steady state solutions. From

the arrows ory = 0, guess a shape for the solution cugve- (e’ —e™?)/(e’ +e77).

The parabola = #2/4 and the liney = 0 are both solution curves for’ = /] y|.
Those curves meet at the point 0, y = 0. What continuity requirement is failed
by f(y) = /|y, to allow more than one solution through that point ?

Supposey = 0 up to timeT is followed by the curvey = (¢t — T)?/4. Does
this solvey’ = /|y | ? Draw thisy(r) going through flat isoclineg/|y| = 1 and2.

The equationy’ = y2 —t is often a favorite in MIT’s course 18.03: not too easy.
Why do solutionsy(¢) rise to their maximum ory? = ¢ and then descend ?

Construct f(z, y) with two isoclines so solution curves g through the higher
isocline and other solution curves gownthrough the lower isoclin€lrue or false
Some solution curve will stay between those isoclines :continental divide.



