
THE CORE IDEAS IN OUR TEACHING

GILBERT STRANG

What will our students remember? One answer comes quickly but
it is a counsel of despair: nothing at all. At the other extreme is an
impossible hope that we all cherish: everything we say. Let me look
for an intermediate answer, closer to reality, possibly by changing the
question.

I have come to believe that each course has a central core. We may
not see it ourselves, when we teach a new topic every day. For the
calculus course, I won’t even venture an answer: at least not here. My
examples will be differential equations and linear algebra, because writ-
ing a textbook forced me to uncover (painfully slowly!) the underlying
structure of the course.

May I begin with linear algebra. The ideas of a vector space and
a basis for that space are central. We have a serious job to help stu-
dents understand these words. The building blocks are “linear combi-
nations” and “linear independence”. We certainly need good examples,
and good bases for them. I think it is here that the course becomes
coherent—or it can scatter into unconnected examples of isolated ideas.

I will start with a matrix A. A more abstract person would start from
a linear transformation. But we are aiming for a basis; we are choosing
coordinates; they bring us to a matrix. There are four fundamental
subspaces associated with that matrix:

1. Its nullspace N(A) (the kernel) dimension n− r
2. Its column space C(A) (the range) r
3. Its row space, which is C(AT ) r
4. The nullspace N(AT ) of the transpose m− r

These are the spaces that we want students to remember. I draw
them as often as possible (two in Rn and two in Rm). I count their
basis vectors to find their dimension: the first big theorems in linear
algebra. The rank r determines all dimensions. I propose multiple
choices of A—the beauty of this subject is in the wonderful variety
of matrices. And I connect the four subspaces to factorizations of A,
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which are really choices of bases that lie at the absolute center of pure
and applied linear algebra.

The bases in U and Q and S and V become increasingly perfect.

A = LU Elimination gives an echelon basis for the row space
A = QR Gram-Schmidt gives an orthonormal basis for C(A)
A = SΛS−1 Eigenvectors give a basis in which A is diagonal
A = UΣVT Orthonormal bases in the columns of U and V .

We are constantly constructing bases for the fundamental subspaces.
Elimination and Gram-Schmidt orthogonalization end after finitely
many steps. Diagonalization by eigenvectors is deeper and better, but
A must be square and nondefective. The Singular Value Decomposition
produces perfect bases vi and ui for all four subspaces – orthonormal
and also diagonalizing for every matrix A:

Avi = σiui (i ≤ r) Avi = 0 and ATui = 0 (i > r)

The success of the SVD comes from the spectral theorem for sym-
metric matrices: ATA has a full set of orthonormal eigenvectors vi.
Beautifully, the ui turn out to be orthonormal eigenvectors of AAT .
This can be a highlight for the last day of a linear algebra course.

For an earlier day, one idea is to ask students to “read” a few matri-
ces: [

cos θ − sin θ
sin θ cos θ

] [
1 0
0 0

] [
−1 1 0

0 −1 1

]
The rotation is familiar, the projection is almost too easy. The differ-
ence matrix is also the incidence matrix for a simple graph (three nodes
in a line). Incidence matrices of a larger graph are terrific examples –
all four subspaces have a meaning.

May I turn from subspaces to the basic course on differential equa-
tions. Part of this course is a collection of methods to solve separable
equations, exact equations, logistic equations y′ = ay− by2, and more.
We go forward to systems of equations, and test nonlinear equations
for stability. But the coherent part (the central problem) is to solve
linear equations with constant coefficients. How can we present
their solutions?

I believe we have to answer this question. It is the ODE equivalent
of solving Ax = 0 and Ax = b and Ax = λx. It certainly rests on the
most important functions in this course: exponentials est and eλt. By
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working with exponentials, we (almost) turn the differential equation
into algebra.

Start with the simplest right hand sides f(t) = 0 and est.

Ay′′ +By′ + Cy = 0 Ay′′ +By′ + Cy = est

The key idea is to expect solutions y = Gest :

G(As2 +Bs+ C)est = 0 G(As2 +Bs+ C)est = est.

On the left, two values of s are allowed: the roots s1 and s2 of As2 +
Bs+C = 0. On the right, any s is allowed (and the possibilities s1 = s2
and s = s1 and s = s1 = s2 need special attention). Normally we have

yn = ynullspace = c1e
s1t + c2e

s2t

yp = yparticular = G(s)est =
1

As2 +Bs+ C
est.

Those two parts of y(t) connect linear differential equations to linear
algebra. The complete solution combines all yn with one yp. Linearity
is in control and the consequence is y = yn + yp.

I apologize for asking you to read what you know so well. The sim-
plicity of y = Gest has to be recognized and remembered. This is where
calculus meets algebra. G is the prime example of an undetermined
coefficient (determined by the equation). An elementary course could
continue as far as f(t) = eiωt and cosωt and sinωt and stop. The
serious question is to solve the differential equation for all f(t).

I see two instructive ways to reach y(t). Both begin with special
right hand sides, and combine the solutions. The combination has to
be an integral and not just a finite sum: calculus is needed now. Here
are the good options:

1. Combine exponentials est with weights F (s) to get f(t). By
linearity, the solution y(t) will combine the exponentials
F (s)G(s)est.

2. Combine impulses δ(t − s) with weights f(s) to get f(t). By
linearity, the solution y(t) will combine the impulse responses
f(s)g(t− s).

Where est is localized at frequency s, the delta function δ(t − s) is
completely localized at time s.
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Method 1 uses the Laplace transform. The transform of f(t) gives
the right weights F (s) :

F (s) = transform of f(t) y(t) = inverse transform of F (s)G(s)est.

For each s, that solution F (s)G(s) est is easy. The hard part is the
inverse Laplace transform, to combine those solutions into y(t).

Realistically, we know a very limited number of transform pairs.
Method 1 almost limits us to the same short list as before: f can
combine e(a+iω)t, cosωt, sinωt, t, and their products. This is a space of
functions whose derivatives stay in the space. You can guess that I am
advocating Method 2. It begins with an impulse δ(t) :

(1) Ag′′ +Bg′ + Cg = δ(t) with g(0) = 0 and g′(0) = 0.

Introducing that delta function is a good thing! We are finding the
fundamental solution g(t)—the Green’s function, the growth factor,
the impulse response. This is a high point in the course. And it is easy
to do, because this same g(t) also solves the homogeneous equation:

(2) Ag′′ +Bg′ + Cg = 0 with g(0) = 0 and g′(0) = 1/A.

The solution must have the form g(t) = c1e
s1t+c2e

s2t. The two initial
conditions give c1 and c2 and a neat formula for g(t) :

(3) g(t) =
es1t − es2t

A(s1 − s2)

(
or g(t) =

tes1t

A
when s1 = s2

)
.

Then the original equation, with any right side f(t), is solved by

(4) yparticular(t) =

∫ t

0

g(t− s) f(s) ds.

Discussion In coming quickly to the formula for y(t), I have left
multiple loose ends. Let me go backwards more slowly, as we would
certainly do in a classroom. Methods 1 and 2 are closely connected.
The Laplace transform of δ(t) is 1. Then equation (1) transforms to

(5) (As2 +Bs+ C) G(s) = 1.

The transfer function G(s) = 1/(As2 +Bs+C) is the Laplace trans-
form of the impulse response g(t). These functions can be written in
terms of A,B,C or s1 or s2. A lot of effort has gone into choosing good
parameters! The damping ratio B/

√
4AC and the natural frequency√

C/A are two of the best.
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We must also explain why equations (1) and (2) have the same so-
lution g(t). Mechanically, this comes from partial fractions:

1

As2 +Bs+ C
=

1

A(s− s1)(s− s2)
=

1

A(s1 − s2)

(
1

s− s1
− 1

s− s2

)
.

The inverse Laplace transform confirms that es1t and es2t go into g(t) .

Here is a truly “mechanical” explanation of (1) = (2). A bat hits a
ball at t = 0. The velocity jumps instantly to g′(0) = 1/A. This comes
from integrating Ag′′ + Bg′ + Cg = δ(t) from t = 0 to t = h. The left
side produces the jump in Ag′ and the integral of δ(t) is 1. The other
terms disappear as h→ 0, leaving Ag′(0) = 1.

In working with δ(t), some faith is needed. It is worth developing
and it is not misplaced. A delta function is an extremely useful model.
So is its integral the step function, which turns on a switch at t = 0.
By linearity, the step response is the integral of g(t).

Finally, let me connect Method 1 directly to Method 2. In the
first method, the Laplace transform of y(t) is F (s)G(s). In the second
method, y(t) is the convolution of f(t) with g(t). The connection is
the Convolution Rule: The transform of a convolution f(t) ∗ g(t) is a
multiplication F (s)G(s).

In the language of signal processing, any constant coefficient linear
equation can be solved in the “s-domain” or the “t-domain.” The
poles s1, s2 of the transfer function G(s) = 1/(As2 + Bs + C) control
the behavior of y(t) : oscillation, decay, or instability. The whole course
develops out of the quadratic formula for those roots s1 and s2.

Note The actual course would start with first order equations:

y′ − ay = 0 y′ − ay = est

The null solutions are yn = ceat. The particular solution is yp =
est/(s−a). The transfer function is G(s) = 1/(s−a). The fundamental
solution (impulse response, growth factor, Green’s function) solves

g′ − ag = δ(t) with g(0) = 0
g′ − ag = 0 with g(0) = 1

This function is simply g = eat. At this early point it doesn’t need
all those names! We recognize it as 1/(integrating factor). Its Laplace
transform is G(s) = 1/(s−a). For systems y′ = Ay we have the matrix
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exponential g = eAt. The solution yn + yp for any right hand side f(t)
and initial condition y(0) is

(6) y(t) = y(0)eat +

∫ t

0

ea(t−s) f(s) ds.

The input f(s) at time s grows in the remaining time t−s by the factor
ea(t−s). The solution y(t) (the integral) combines all of these outputs
ea(t−s) f(s).

That single paragraph translates into weeks of teaching, even without
δ(t). Perhaps first order equations with constant coefficients might be
the one topic that is understood and remembered ? I don’t like to
think so, because a teacher has to remain an optimist.

I plan to prepare video lectures going at a normal pace, and linked
to http://math.mit.edu/dela. That website has much more about
differential equations and linear algebra and a new textbook for those
courses.
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