Linear Algebra, Geodesy, and GPS   by  Gilbert Strang and Kai Borre
     
      Wellesley-Cambridge Press   Box 812060   Wellesley MA 02181
      fax 617 253-4358  phone 781 431-8488  email gs@math.mit.edu
         640 pages  (1997)  hardcover   ISBN  0-9614088-6-3
                     http://www-math.mit.edu/~gs
   
 
TABLE OF CONTENTS 

Preface...................................................ix 
The Mathematics of GPS..................................xiii 

Part I Linear Algebra 

1  Vectors and Matrices....................................3 
   1.1 Vectors.............................................3 
   1.2 Lengths and Dot Products...........................11 
   1.3 Planes.............................................20 
   1.4 Matrices and Linear Equations......................28 
2  Solving Linear Equations...............................37 
   2.1 The Idea of Elimination............................37 
   2.2 Elimination Using Matrices.........................46 
   2.3 Rules for Matrix Operations........................54 
   2.4 Inverse Matrices...................................65 
   2.5 Elimination = Factorization: A = LU................75 
   2.6 Transposes and Permutations........................87 
3  Vector Spaces and Subspaces...........................101 
   3.1 Spaces of Vectors.................................101 
   3.2 The Nullspace of A: Solving Ax = 0................109 
   3.3 The Rank of A: Solving Ax = b.....................122 
   3.4 Independence, Basis, and Dimension................134 
   3.5 Dimensions of the Four Subspaces..................146 
4  Orthogonality.........................................157 
   4.1 Orthogonality of the Four Subspaces...............157 
   4.2 Projections.......................................165 
   4.3 Least-Squares Approximations......................174 
   4.4 Orthogonal Bases and Gram-Schmidt.................184 
5  Determinants..........................................197 
   5.1 The Properties of Determinants....................197 
   5.2 Cramer's Rule, Inverses, and Volumes..............206 
6  Eigenvalues and Eigenvectors..........................211 
   6.1 Introduction to Eigenvalues.......................211 
   6.2 Diagonalizing a Matrix............................221
   6.3 Symmetric Matrices................................233 
   6.4 Positive Definite Matrices........................237 
   6.5 Stability and Preconditioning.....................248 
7  Linear Transformations................................251
   7.1 The Idea of a Linear Transformation...............251 
   7.2 Choice of Basis: Similarity and SVD...............258 

Part II Geodesy 

8  Leveling Networks.....................................275
   8.1 Heights by Least Squares..........................275 
   8.2 Weighted Least Squares............................280
   8.3 Leveling Networks and Graphs......................282 
   8.4 Graphs and Incidence Matrices.....................288 
   8.5 One-Dimensional Distance Networks.................305 
9  Random Variables and Covariance Matrices..............309 
   9.1 The Normal Distribution and  X2...................309 
   9.2 Mean, Variance, and Standard Deviation............319 
   9.3 Covariance........................................320 
   9.4 Inverse Covariances as Weights....................322 
   9.5 Estimation of Mean and Variance...................326 
   9.6 Propagation of Means and Covariances..............328 
   9.7 Estimating the Variance of Unit Weight............333
   9.8 Confidence Ellipses...............................337 
10 Nonlinear Problems....................................343 
   10.1 Getting Around Nonlinearity......................343 
   10.2 Geodetic Observation Equations...................349 
   10.3 Three-Dimensional Model..........................362 
11 Linear Algebra for Weighted Least Squares.............369 
   11.1 Gram-Schmidt on A and Cholesky on A T A..........369 
   11.2 Cholesky's Method in the Least-Squares Setting...372 
   11.3 SVD: The Canonical Form for Geodesy..............375 
   11.4 The Condition Number.............................377 
   11.5 Regularly Spaced Networks........................379 
   11.6 Dependency on the Weights........................391 
   11.7 Elimination of Unknowns..........................394
   11.8 Decorrelation and Weight Normalization...........400
12 Constraints for Singular Normal Equations.............405 
   12.1 Rank Deficient Normal Equations..................405 
   12.2 Representations of the Nullspace.................406 
   12.3 Constraining a Rank Deficient Problem............408 
   12.4 Linear Transformation of Random Variables........413 
   12.5 Similarity Transformations.......................414 
   12.6 Covariance Transformations.......................421 
   12.7 Variances at Control Points......................423 
13 Problems With Explicit Solutions......................431 
   13.1 Free Stationing as a Similarity Transformation...431 
   13.2 Optimum Choice of Observation Site...............434 
   13.3 Station Adjustment...............................438 
   13.4 Fitting a Straight Line..........................441 

Part III Global Positioning System (GPS) 

14 Global Positioning System.............................447 
   14.1 Positioning by GPS...............................447 
   14.2 Errors in the GPS Observables....................453 
   14.3 Description of the System........................458 
   14.4 Receiver Position From Code Observations.........460 
   14.5 Combined Code and Phase Observations.............463 
   14.6 Weight Matrix for Differenced Observations.......465 
   14.7 Geometry of the Ellipsoid........................467 
   14.8 The Direct and Reverse Problems..................470
   14.9 Geodetic Reference System 1980...................471 
   14.10 Geoid, Ellipsoid, and Datum.....................472 
   14.11 World Geodetic System 1984......................476 
   14.12 Coordinate Changes From Datum Changes...........477 
15 Processing of GPS Data................................481 
   15.1 Baseline Computation and M-Files.................481 
   15.2 Coordinate Changes and Satellite Position........482 
   15.3 Receiver Position from Pseudoranges..............487 
   15.4 Separate Ambiguity and Baseline Estimation.......488 
   15.5 Joint Ambiguity and Baseline Estimation..........494 
   15.6 The LAMBDA Method for Ambiguities................495 
   15.7 Sequential Filter for Absolute Position..........499
   15.8 Additional Useful Filters........................505 
16 Random Processes......................................515 
   16.1 Random Processes in Continuous Time..............515 
   16.2 Random Processes in Discrete Time................523 
   16.3 Modeling.........................................527
17 Kalman Filters........................................543 
   17.1 Updating Least Squares...........................543 
   17.2 Static and Dynamic Updates.......................548 
   17.3 The Steady Model.................................552 
   17.4 Derivation of the Kalman Filter..................558 
   17.5 Bayes Filter for Batch Processing................566 
   17.6 Smoothing........................................569 
   17.7 An Example from Practice.........................574 

The Receiver Independent Exchange Format.................585 
Glossary.................................................601 
References...............................................609 

Index of M-files.........................................615 
Index....................................................617



Accessibility