1.3 Matrices Multiplying Vectors: A times x

An m by n matrix A has m rows and n columns.

Those columns a_1, a_2, \ldots, a_n are in m-dimensional space $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$

Their combinations are $x_1 a_1 + \cdots + x_n a_n = A x = \text{matrix } A \times \text{vector } x$

There is a **row way** to multiply Ax and also a **column way** to compute the vector Ax.

Row way = Dot product of vector x with each row of A

$$Ax = \begin{bmatrix} 2 & 5 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = v_1 \begin{bmatrix} 2v_1 + 5v_2 \\ 3v_1 + 7v_2 \end{bmatrix} + v_2 \begin{bmatrix} 2 & 5 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 10 \end{bmatrix}$$

Find 7, then 10.

Column way = Ax is a combination of the columns of A

$$Ax = \begin{bmatrix} 2 & 5 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = v_1 \begin{bmatrix} \text{column 1} \end{bmatrix} + v_2 \begin{bmatrix} \text{column 2} \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 7 \\ 10 \end{bmatrix}$$

7 and 10 together.

Which way to choose? Dot products with **rows** or combination of **columns**?

For computing with numbers, I use the row way: dot products.

For understanding with vectors, I use the column way: combine columns.

Same result Ax from the same multiply-adds. Just in a different order.

$C(A) = \text{Column space of } A = \text{all combinations of the columns} = \text{all outputs } A x$

The **identity matrix** has $Ix = x$ for every x

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

The column space of the 3 by 3 identity matrix I is the whole space \mathbb{R}^3.

If all columns are multiples of column 1 (not zero), the column space $C(A)$ is a line.

Line containing all cu

Plane from all $cu + dv$

$cu = -u/2$
3.3 Independent Columns and Rows : Bases by Elimination

Remember \(A = CR \) with \(r \) independent columns in \(C \) (but how to find them?)

The good way is elimination on the \(m \) rows of \(A \) (not the columns)

In Chapter 2, elimination reduced \(A \) to the \(n \) by \(n \) identity matrix : \(A \) was invertible

Now elimination will produce an \(r \) by \(r \) identity matrix inside \(R \)

That identity matrix locates the \(r \) independent columns of \(A \)

Here is an example of elimination
\[
A = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 8 & 14 \\ 0 & 4 & 4 \end{bmatrix} \quad \rightarrow \quad \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix} \quad \rightarrow \quad \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \text{“reduced row echelon form”}
\]

This last matrix \(R_0 \) reveals the row space and column space and nullspace of \(A \)

Basis for the row space of \(A = \text{Rows of } R = \text{Rows 1 and 2 of } R_0 \)

Basis for the column space of \(A = \text{Columns 1 and 2 of } A \). Then \(A = CR \)

Basis for the nullspace of \(A \) : Solve \(R_0 x = 0 \) to find \(x = \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix} \) in Section 3.4

We will show how elimination works to reach this special form \(R_0 : m - r \) zero rows

Three types of elimination steps All of them can be reversed!

1. Subtract a multiple of one row from another row (below or above)

2. Multiply a row by a nonzero number (to produce pivot = first nonzero = 1)

3. Exchange rows (to move pivot rows in \(R \) above any zero rows in \(R_0 \))

Key point Those steps do not change the row space of a matrix

The result \(R_0 = \begin{bmatrix} R \\ 0 \end{bmatrix} \) has the same row space as \(A \) : simpler rows and \(m - r \) zero rows
3.5 Four Fundamental Subspaces $C(A)$, $C(A^T)$, $N(A)$, $N(A^T)$

The big picture

$C(A^T)$
row space all $A^T y$
dimension r

R^n
0

nullspace
$N(A)$
dimension $n - r$

$N(A^T)$
dimension $m - r$

$C(A)$
column space all $A x$
dimension r

R^m
0

left nullspace
$N(A^T)$
$A^T y = 0$

Fundamental Theorem of Linear Algebra, Part 1

The column space and row space both have dimension r.
The nullspaces have dimensions $n - r$ and $m - r$.

This tells us the **Counting Theorem**: How many solutions to $A x = 0$? $n - r$

m equations, n unknowns, rank $r \Rightarrow A x = 0$ has $n - r$ independent solutions

At least $n - m$ solutions. More solutions for dependent equations (then $r < m$)

There is always a nonzero solution x to $A x = 0$ if $n > m$ Good to know

Fundamental Theorem, Part 2: **Subspaces are orthogonal**: Chapter 4

Fundamental Theorem, Part 3: **Perfect bases = singular vectors v, u**: Chapter 7

Row space: Basis v_1 to v_r
Nullspace: Basis v_{r+1} to v_n
Column space: Basis u_1 to u_r
Nullspace of A^T: Basis u_{r+1} to u_m
Part 7: Singular Values and Vectors:
\[Av = \sigma u \text{ and } A = U\Sigma V^T \]

7.1 Singular Vectors in \(U \) and \(V \)—Singular Values in \(\Sigma \)

An example shows orthogonal inputs \(v \) going into orthogonal outputs \(Av \)

\[
Av_1 = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 9 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad \text{and} \quad Av_2 = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}
\]

\(v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) is orthogonal to \(v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \)
\(u_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \) is orthogonal to \(u_2 = \begin{bmatrix} -3 \\ 1 \end{bmatrix} \)

Divide inputs \(v_1 \) and \(v_2 \) by \(\sqrt{2} \)

Divide outputs \(u_1 \) and \(u_2 \) by \(\sqrt{10} \)

Four unit vectors with \(Av_1 = 3\sqrt{5} u_1 \) and \(Av_2 = \sqrt{5} u_2 \)

Notice \(\sqrt{10}/\sqrt{2} = \sqrt{5} \)

\(v_1, v_2 = \) orthogonal basis for the row space of \(A = \) right singular vectors in \(V \)

\(u_1, u_2 = \) orthogonal basis for the column space of \(A = \) left singular vectors in \(U \)

\(\sigma_1 = 3\sqrt{5} \) and \(\sigma_2 = \sqrt{5} \) are the singular values of \(A \) in the diagonal matrix \(\Sigma \)

Express \(Av_1 = 3\sqrt{5} u_1 \) and \(Av_2 = \sqrt{5} u_2 \) in matrix form \(AV = U\Sigma \)

\[
V = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} /\sqrt{2} \quad \text{and} \quad U = \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix} /\sqrt{10} \quad \text{are orthogonal matrices} \quad V^TV = I \quad U^TU = I
\]

Matrix form
\[
AV = U\Sigma \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \begin{bmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix} \quad \text{Multiply by} \quad V^{-1} = V^T
\]

\(A = U\Sigma V^T \) is the perfect decomposition of \(A \): orthogonal–diagonal–orthogonal