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Abstract 

It is well known that two prover proof systems 
are a convenient tool for establishing hardness of ap- 
proximation results. In this paper, we show that 
two prover proof systems are also convenient start- 
ing points for establishing easiness of approximation 
results. Our approach combines the Feage-Lovdsz 
(STOC92) semidefinite programming relaxation of 
one-round two-prover proof systems, together with 
rounding techniques for the solutions of semidefinite 
progmms, as introduced by Goemans and Williamson 
(STO C94). 

As  a consequence of our approach, we present im- 
proved approximation algorithms for M A X  2SAT and 
MAX DICUT. The algorithms are guamnteed to de- 
liver solutions within a factor of 0.931 of the optimum 
for MAX 2SAT and within a factor of 0.859 for  MAX 
DICUT, improving upon the guarantees of 0.878 and 
0.796 of Goemans and Williamson. 

1 Introduction 

We consider optimization problems defined on 
Boolean variables X I ,  . . . , E , ,  in which the objective 
function S(x1, . . . , xn) to maximize can be expressed 
as a sum of nonnegative terms involving only two 
Boolean variables. More precisely, let 

~ ( 2 1 , .  . . ,zn) = C wijfij(Xi1 zj), 
i < j  

where wij 2 0 and f;j : {true,false} x 
{true,false} + {0,1}. Without loss of general- 
ity, we can assume that, for every f i j ,  there exists at 
least one truth assignment for xi and xj which makes 
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fij equal to 1, and similarly one assignment for which 
fij is 0. Thus fij takes the value 1 for one, two or 
three out of the four possible truth assignments for xi 
and xj. If fij depends on both variables, we refer to 
such functions as and-, xor-, and or-functions respec- 
tively, since these cases can be assimilated with the 
corresponding Boolean operators. The following are 
the prototypical problems associated with the three 
types of functions. 

1. MAX DICUT: Given a directed graph D = 
(V,A)  and a nonnegative weight wij for each arc 
( i ,  j), the goal is to find a set S V such that the 
directed cut S+(S) = { ( i , j )  E A : i E S,j 4 S} 
has maximum total weight. We let xi be true if 
i belongs to S; all fij’s are thus and-functions. 
(In fact, the fij’s are restricted forms of and- 
functions, since exactly one of the variables is 
negated.) 

2. MAX CUT: Given an undirected graph G = 
(V, E )  and a nonnegative weight we for each edge, 
the goal is to find a set S E V such that the result- 
ing cut 6(S) = { ( i , j )  E E : I { i , j }  n SI = 1) has 
maximum total weight. Again, we let xi be true 
if i belongs to S;  all f i j ’ s  are thus xor-functions. 
(In fact, the fij’s are restricted forms of xor- 
functions, since variables are never negated.) 

3. MAX 2SAT: In proper MAX 2SAT, we are given 
a set of clauses of length 2 (i.e. disjunction of two 
literals, each of the form xi or Zi) and a nonneg- 
ative weight for each clause, and the goal is to 
find an assignment maximizing the weight of the 
satisfied clauses. Thus, for proper MAX SSAT, 
all functions fij are or-functions. In (improper) 
MAX SSAT, we allow also unit clauses that con- 
tain only one literal. 

For the problems above, it is NP-hard to find the 
optimal solution. Hence the question arises of how 
well can the optimal solution be approximated in poly- 
nomial time. More precisely, for which value of q < 1 



is there a polynomial algorithm that is guaranteed to 
deliver a solution whose weight is at least q times the 
weight achievable by the optimal solution. 

A random assignment of the variables is expected 
to satisfy 1/4 of the terms in MAX DICUT, 1/2 of the 
terms in MAX CUT, and 3/4 of the terms in proper 
MAX 2SAT. Hence one expects to achieve ratios of 
approximation of at least 1/4, 1/2, and 3/4 respec- 
tively (and this can actually be achieved by simple 
derandomization techniques). For a long time, these 
were essentially the best approximation ratios known 
for these problems. (The 3/4 ratio was extended to 
handle unit clauses in MAX 2SAT [17, 91.) 

Recently, major breakthroughs improved our un- 
derstanding of these problems considerably. On the 
negative side, Arora et al. [2] showed NP hardness re- 
sults for approximating MAX SSAT, which imply, by 
the facts that MAX 3SAT is in MAX SNP and that 
the three problems above are MAX SNP-hard [15], 
that for some q < 1, it is NP-hard to approximate 
these problems within a ratio of q.  An explicit upper 
bound on q can be computed from the proof in [2] 
and from the chain of reductions that follows in [15]. 
The current tightest known upper bound on q is above 
0.99. 

On the positive side, Goemans and Williamson [lo] 
have derived improved approximation algorithms for 
MAX DICUT, MAX CUT, and MAX 2SAT. Their al- 
gorithm is based on first obtaining a vector for each 
Boolean variable (or each vertex of the graph), and 
then randomly partitioning these vectors with a uni- 
formly generated hyperplane. The variables whose 
corresponding vectors lie on one side of the hyper- 
plane are set to 1, and the other variables are set 
to 0. The vectors are obtained through the solution 
of a convex relaxation of the problem, or more pre- 
cisely a semidefinite programming relaxation. The 
performance guarantees obtained by Goemans and 
Williamson are 0.87856 for MAX CUT and MAX 
ZSAT, and 0.79607 for MAX DICUT. This constitutes 
the first non-trivial improvement in the approximation 
of any of these problems. 

In this extended abstract, we consider the approach 
of Goemans and Williamson, and show that further 
improvements can be obtained for MAX DICUT and 
MAX 2SAT. The improvements are based on consid- 
ering a stronger semidefinite program than the one 
considered in [lo] and on rounding the corresponding 
vectors in a non-uniform way. As we show, there is 
much freedom in selecting the non-uniform rounding 
scheme. The improvements in performance guaran- 
tee are quite significant. For MAX PSAT, there ex- 
ists a rounding scheme for which the improved perfor- 

mance guarantee is 0.931 (rather than 0.87856), while 
for MAX DICUT we obtain an improved performance 
guarantee of 0.859 (rather than 0.79607). These values 
were obtained by numerically solving a constrained 
minimization problem of 3 variables. 

It is interesting that the semidefinite programs 
that lead to the improvements in approximation ra- 
tio are exactly those that were considered by Feige 
and LovLz [7] in their study of one-round two-prover 
interactive proofs. One-round two-prover proof sys- 
tems are exceptionally useful for proving hardness of 
approximation results [7, 6, 14, 11. Our current work 
shows that they are also a useful framework for de- 
signing approximation algorithms with a strong per- 
formance guarantee. We elaborate a bit more on this 
point. 

As part of [7], Feige and Lovbz represented o n e  
round two-prover proof systems as a quadratic pro- 
gramming problem. The value of this quadratic pro- 
gram was equal to the acceptance probability of the 
verifier, under the optimal strategy for the provers. 
The quadratic program was relaxed to a semidefinite 
program. The question that Feige and Lovkz asked 
was: under which circumstances, the value of the 
semidefinite program is 1 iff the value of the original 
quadratic program is l? This question had a two-fold 
motivation. The first motivation concerned a certain 
parallel repetition conjecture, and is beyond the scope 
of the current paper. The second motivation was in 
the design of polynomial time algorithms for the exact 
solution of certain problems (e.g., it  leads to an algo- 
rithm of computing the chromatic number of perfect 
graphs, as in [13, 111). This second motivation will 
resurface in Section 3. In the current paper, we are 
concerned with approximate solutions rather than ex- 
act solutions, and hence we ask what is the worst-case 
ratio between the value of the semidefinite program 
and the value of the original quadratic program. The 
answers we give are based on the techniques developed 
by Goemans and Williamson [lo]. 

Feige and Lovbz observe that many NP-hard op- 
timization problems have simple representations as 
one-round tweprover interactive proofs, and this au- 
tomatically leads to relaxed positive semidefinite for- 
mulations for these problems (see [7] for examples). 
Hence there is the potential of obtaining improved a p  
proximation algorithms for a wide range of NP-hard 
optimization problems. In the current paper, we con- 
centrate only on a small subset of these problems, 
which corresponds to one-round two-prover proof sys- 
tems in which the answer of each prover is only one 
bit long. The reason we concentrate on this subcase, 
is that this is the case that is most easily handled by 
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the rounding techniques of Goemans and Williamson. 
In the rest of this paper, we no longer refer to in- 

teractive proofs and the general Feige-Lovkz formu- 
lation. We specialize our presentation to the actual 
NP-hard optimization problems that we study, namely 
MAX 2SAT and MAX DICUT. 

2 Formulations 

For the definitions of the three main problems stud- 
ied in Goemans and Williamson [lo] - MAX CUT, 
MAX 2SAT and MAX DICUT - see the introduc- 
tion. In this section, we present relaxed semidefinite 
programs for these problems. The semidefinite p r e  
grams that are used by our approximation algorithms 
are equivalent to those used in Feige and Lovkz [I .  
These are presented in Section 2.2. But first, in Sec- 
tion 2.1, we show that by including a subset of the 
constraints of [7], we obtain semidefinite relaxations 
which are equivalent to those used by Goemans and 
Williamson [lo]. In Section 2.3, we discuss additional 
constraints that can be added to obtain even stronger 
relaxations. We suspect that these constraints give 
further improvements to the ratio of approximation 
for MAX PSAT, MAX CUT and MAX DICUT, but 
we have not been able to prove this. 

2.1 Relaxations of Goemans and 
Williamson 

Optimization problems of the type that was pre- 
sented in the introduction can be formulated as 
quadratic integer programs. We first follow the a p  
proach of Feige and Lovkz [7]. 

For every index i, let t i  be equal to 1 if xi =true 
and 0 otherwise, and let f; be 1 if xi =false and 0 
otherwise. As a result, we have that t i  + fj = 1 and 
ti f i  = 0. These two constraints guarantee that t i  and 
fi are 0-1 and distinct. By including one, two or three 
of the terms t i t j ,  t i  f j ,  f i t j  or f i  f j  in the objective 
function, one can model all three problems. 

We can obtain an upper bound on the optimum 
value by relaxing the t i ’ s  and f i ’ s  to be vectors (say of 
dimension I C )  instead of scalars. For example, in the 
case of MAX DICUT, we obtain the following relax- 
ation (DZl): 

Maximize w i j ( t i  . fj) 

subject to: t i . f ; = O  i E V  
i E V  
i E V, 

(: ,j 1 E A 

t i  + f i  = U0 
t i ,  f i  E Rk 

where uo is any unit vector (either given or a variable) 
and I‘.’’ denotes the inner product. The constraints 
t i  . f i  = 0 and t i  + f i  = uo correspond to their scalar 
counterparts and express the desire of setting variable 
i to either true or false but not both (notice that 
together they imply that (UO - t i )  (vo - f’) = 0). One 
could eliminate the variables f i  by using fj = uo - t i :  

Maximize 

subject to: 

w i j ( t i  . vo - t i  t j )  

(i , j  1 E A 

t i .  WO - t i  . t i  = 0 
vo . vo = 1 

tj E Rk 
vo E Rk. 

Alternatively, the constraints t i  + fi = vo can be ex- 
pressed in terms of inner products in several ways. 
We can either eliminate vo and impose that (ti + j i )  
(ti + f j )  = 1 for all i and j ,  or we can impose that 

WO . (ti + f i )  for all i. As in [lo], if the dimension k 
is large enough, the relaxation can be formulated as a 
semidefinite program, and is thus polynomially solv- 
able (or, more precisely, can be approximated within 
an additive E in time polynomial in the input and 
log 3 ) .  To ensure this, one needs to set k to  be equal 
to 2n + 1 (where n = IVl, if we use the formulation 
in terms of the 2n + 1 vectors t i ,  f i  and vo) or n + 1 
(since the fj’s linearly depend on the t i’s) ,  or even 
just Jm by using a result of Barvinok [5] and 
Pataki [16] (since the relaxation can be expressed by 
imposing n + 1 linear constraints on inner products, 
see [lo]). Both MAX 2SAT and MAX CUT can be 
similarly upper bounded, by just modifying the o b  
jective function. 

The formulation above contains only a subset of 
the constraints that are used in Feige and Lovhz [7]. 
However, in this weakened form, these relaxations can 
be seen to be equivalent to the relaxations considered 
in Goemans and Williamson [lo]. Indeed, letting vi = 
t i  - f i ,  or t i  = $(vo + v i )  and fj = $ ( V O  - vi), we can 
reformulate (011) for k = n + 1 as: 
Maximize 

i E V 

i E V, 

ZIO . ( t i  + f i )  = WO . WO = 1 and ( t i  + fj) * ( t i  + f i )  = 

1 
4 
- W i j ( l +  210.21; - W O .  wj - vi 4j) 

(i,jW 

subject to: vi . vi = 1 
vi E R “ + ~  

i E V U (0) 
i E VU{O). 

which we call (012). The reduction is identical for 
MAX CUT and MAX BSAT, resulting in the relax- 
ations (CUT2) and (SAT2). For MAX CUT, the ob- 
jective function of (CUT’) does not depend on vo, 
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since the contribution of any edge ( i ,  j )  is of the form 
1 1 i f j  + fi *t j = [ (vo+vi) ( V O  -vj ) + ( V O  -v i ) .  ( V O  +vj )] = 

f ( 1  - v i  . V i ) .  

2.2 Relaxations of Feige and Lovdsz 

The relaxations considered in the previous sec- 
tion can be strengthened by adding valid inequalities. 
Because of their equivalence, we can either use the 
Feige-LovLz type of formulation (like ( D I l ) ) ,  or the 
Goemans-Williamson one (like (DIz) ) .  For simplicity, 
we will be using the latter. 

The FeigeLovLz [7] formulation contains the ad- 
ditional constraints t i  . t j  > 0, tj . f j  > 0, f i  . f j  2 
0 .  nansforming these constraints to the Goemans- 
Williamson formulation, we obtain 

vo Vi + vo . Vj + V i  . vj  2 -1 ( 1 )  
-VO * - vo . vj  + vi * vj 2 -1 (2 )  
-vo . vi + vo . vj  - vi . vj > -1. (3) 

The relaxations we consider are obtained by adding 
the inequalities (1)-(3) for any i and j .  The result- 
ing relaxations will be denoted by (DI3), (CUT’) and 
(SAT3).  They can still be formulated as semidefinite 
programs and can thus be solved arbitrarily closely 
to  optimum in polynomial time. These relaxations 
are equivalent to the relaxations in [?I. We notice 
that the inequalities (1 ) - (3 )  are not satisfied by any 
three vectors; for example, taking three coplanar vec- 
tors separated by angles of 2n/3 would violate (1)  
since its left-hand-side is -3 /2 .  We also remark that 
(CUT3) is identical to (CUT.). Indeed, given a solu- 
tion V I ,  . . . ,U, for (CUT2),  one can always select vo 
to be orthogonal to all vi’s resulting in a solution sat- 
isfying (1)-(3) and of the same objective value. 

Adding the inequalities (1)-(3) is most important 
for MAX SSAT. Indeed, consider for example a MAX 
SSAT instance with only one clause, say x1 V x 2 .  The 
objective function in (SAT2) or (SAT3) is f(3 + vo . 
V I  + vo . vz - V I  . V Z ) .  In (SAT3) ,  this value cannot be 
more than 1, but in (SAT’) it can be made equal to 
8 by letting V O ,  V I  and 212 be coplanar and vo V I  = 
vo * v2 = -VI  v2 = f. By relating the value of a 
heuristic algorithm to the value of (SATz) ,  one can 
thus not improve beyond a performance guarantee of 
8 = 0.8888.. .. On the other hand, we describe an 
algorithm which delivers a solution within a factor of 
0.931 of the value of (SAT’). 

2.3 Additional valid inequalities 

It is possible to obtain even stronger relaxations, 
by allowing any vector vk to take the role of vo in the 

above constraints. This results in the following valid 
constraints: 

v i ’ v j + v i . v k + v j ’ v k  2 -1  (4) 
-vi ’ vj - Vi ’ V k  + vj  ‘ vk 2. -1 ( 5 )  
-vi ’ Vj + vi . vk - v j  . v k  2 -1 (6) 

Vi * Vj - Vi ’ vk - V j  ’ vk  > -1. (7)  

Their validity follows from the fact that these con- 
straints hold for Boolean variables. The relaxations 
that are obtained by adding the inequalities (4)-(7) 
for all distinct indices i, j and k will be denoted by 
(D14),  (CUT4) and (SAT4).  (They can still be formu- 
lated as semidefinite programs and can thus be solved 
arbitrarily closely to optimum in polynomial time.) 

In the case of MAX CUT, by a result of Barahona 
and Mahjoub [4], the resulting semidefinite relaxation 
(CUT‘.) has value equal to the maximum cut value for 
any planar graph (their result in fact holds even if one 
gets rid of the semidefinite constraints, by considering 
only the linear constraints obtained by replacing vi .U ,  

by a scalar yij in (4)-(7)). It is interesting to note 
that the worst instance known for (CUT2) is the 5- 
cycle which happens to  be planar, and is thus solved 
optimally by (CUT‘). 

One could try to go a step further and add addi- 
tional valid inequalities to  the relaxations. For exam- 
ple, one could consider the -called cycle inequalities. 
For any “cycle” C and any even subset F of C ,  one 
could add the inequality 

vi * vj - v ~ . v ~ > ~ - I C I .  (8 )  
( i , j ) € F  ( i , j )€C \F  

However, as shown by Barahona [3],  the inequalities 
(8 )  are implied by (4)-(7). 

3 Satisfiable formulas 

The question of whether there exists a (directed) 
cut that contains all the edges, or a satisfying assign- 
ment for a 2CNF formula, is solvable in polynomial 
time. Hence we would like our relaxed versions of 
these problems to capture this fact. For example, for 
a 2CNF formula in which the sum of the weights of 
the clauses is W ,  we would like our semidefinite re- 
laxation of the problem to have value W if and only 
if the formula is satisfiable. This property did not 
hold for (SAT2). A qualitative improvement of the 
(SAT3) relaxation over the (SAT.) relaxation is that 
this property does hold for (SAT3).  Similarly, for a 
graph (digraph) in which the sum of the weights of the 
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edges is W ,  (CUT3) (or (013))  gives value W if and 
only if the graph is bipartite (or there is a directed cut 
with all the edges). The case of (CUT3) and (013) is 
actually a special case of Theorem 4.18 in [7]. The 
case of (SAT3) was not proved in [7], and can either 
be proved by extending the techniques of [7], or by 
using rounding techniques in the spirit of [lo]. More 
specifically, instead of picking a random vector r rela- 
tive to which to do the rounding, we let r = UO. Only 
if there remain variables whose value is not resolved by 
this specific choice of r, we handle them by choosing a 
random (or any) vector r (as often as needed to fix all 
variables). The proof rests on the fact that, for any 
clause say x j V x j ,  the fact that v ~ ~ v j + v ~ ~ v j - v i . v j  = 1 
implies that a t  least one of the following three condi- 
tions must hold: either vo . U; > 0, or vo . v j  > 0 or 
v i .  v j  = -1. In all three cases, the algorithm produces 
a satisfying assignment. In fact, the proof works for 
any formula that is a conjunction of terms, where in 
each term there is an arbitrary function of two vari- 
ables (SSAT, CUT, and DICUT are special cases of 
this). 

4 The algorithm 

The randomized algorithm of Goemans and 
Williamson proceeds as follows. First solve the 
semidefinite relaxation (CUT2), (SAT’) or (012) to 
obtain an optimum set of vectors V O ,  V I , .  . . , vn. In 
the case of (CUT2), vo is not necessary, since the ob- 
jective function does not depend on it. Then consider 
a uniformly selected hyperplane (i.e. its normal r is 
uniformly distributed on the unit sphere); the hyper- 
plane separates the vectors into two sets. In the case 
of MAX CUT, the vectors on either side defines the 
set S output by the algorithm. For MAX DICUT, 
the set S output corresponds to those vectors on the 
samesideasvo ( i . e .S=  {i:sgn(v;.r)=sgn(vo.r))). 
Finally, for MAX SSAT, a variable zj is set to true if 
vi is on the same side as vo . Goemans and Williamson 
show that the expected value of the solution produced 
is at  least 0.87856 times the value of the semidefinite 
relaxation in the case of MAX CUT and MAX 2SAT; 
the bound is 0.79607 for MAX DICUT. These algo- 
rithms can be derandomized. 

For MAX 2SAT and MAX DICUT, we show that 
improvements can be obtained by taking advantage of 
the special role of vo. Since our analysis relies heav- 
ily on numerical computations, we first explain why 
an improvement is a t  all possible. For this purpose, 
consider the algorithm of Goemans and Williamson 
for MAX 2SAT. They have shown that the probabil- 

ity that any clause, say Z i  V ?,, is satisfied is equal to 
(arccos(u0 . U;) + arccos(u0 . uj) + arccos(u; . vj))/(27r) 
and is a t  least 0.87856.. . times its contribution in the 
objective function ((3-vo .vi - vo +U, - v j  vj)/4). More- 
over, the worst case of 0.87856..  . is attained only if 
two of the inner products are equal to -0.689..  . and 
the third one is equal to 1. This observation sug- 
gests the following algorithm. First solve (SAT’) and 
then, with probability 1 - E ,  use the approximation 
algorithm of Goemans and Williamson while, with 
probability E ,  simply let t i  =true if V j  . vo 2 0 and 
false otherwise. Observe that the probability that 
the clause f j  V fj is satisfied increases with E for any 
configuration of vectors close to a worst-case configu- 
ration. As a result, if we choose E small enough, the 
worst-case ratio will improve. 

In order to obtain more substantial improvements, 
our approximation algorithms first solve (SAT3) or 
(013) ,  instead of (SAT2) or (D12). The special role 
of vo can be exploited in many ways as illustrated by 
the following rounding schemes. 

1. Select r according to a distribution which is 
skewed towards uo but is uniform in any direc- 
tion orthogonal to UO. Then, as in Goemans 
and Williamson, let i E S or z; be true if 
sgn(vi . r) = sgn(v0 . r). 

2. Decide whether i is in S or z i  is set true depend- 
ing on the values U, . r ,  vo . r and vo . v i ,  where r is 
uniformly distributed on the unit sphere. More 
precisely] decide the fate of i depending on the 
sign of a certain function f ( v i  . r, vo . r, vo . U;). 

3. Map vi to a vector wi depending on vo (and 
U;). Then proceed with the Goemans and 
Williamson’s algorithm. 

For any given scheme, because of linearity of expecta- 
tions] the performance guarantee will be at  least y if 
one can show that, for any three vectors UO, U; and v j  

satisfying (1)-(3), the probability that a given clause 
involving zi and z, is satisfied (or the arc ( i , j )  is in 
the directed cut) is a t  least 7 times its contribution 
to the objective function of the semidefinite program 
(see Goemans and Williamson [lo] for details). We 
would like to stress again the importance of imposing 
inequalities (1)-(3); without them, one cannot hope 
for performance guarantees better than 9/8 for MAX 
2SAT. Even for fairly simple schemes, an analytical 
derivation of the best y does not seem to be an easy 
task. We have, however, evaluated numerically the 
performance of several schemes by discretizing the set 
of all possible angles between the three vectors and by 
evaluating, for each triple, the corresponding ratio. 
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For MAX 2SAT, we have obtained a scheme of type 
3 which attains a performance guarantee of 0.931. We 
consider type 3 schemes of the following form. Map 
any vector vi to a vector wi, coplanar with V O ,  on the 
same side of vo as vi is, and which forms an angle 
with vo equal to f(0i) for some function f ,  where Bi is 
the angle between vo and v i .  We impose that f(x - 
e)  = 1~ - f(0) to guarantee that unnegated literals are 
treated in the same manner as negated literals. The 
original Goemans and Williamson scheme corresponds 
to fo((e) = 8. If we set fl(8) = ?(l - cos(0)) then it 
is easy to show that the probability that a given 1- 
clause is satisfied is equal to its value in the objective 
function of the semidefinite program. In other words, 
the expected weight of satisfied l-clauses is precisely 
equal to the contribution of l-clauses to the objective 
function. A scheme attaining a bound of 0.9249 can 
be obtained by taking the average between the above 
two functions: 

The best scheme we have obtained is based on another 
convex combination. More precisely, letting 

A 
j ( e )  = e + 0.806765 [-(I - case) - e] , 2 

we have shown numerically that the probability that 
a clause, say ;C;. V fj, is satisfied is at least 0.93109 
times the contribution of the clause to the objec- 
tive function. The worst-case ratio of approximately 
0.93109 is attained when Oi = O j  = ?r - 1.32238 and 
vi . vj  = 2cos(1.32238) - 1, so that inequality (1) is 

1 satisfied at equality. 
In the numerical computations, given 8i, 0, and 

v i . v j ,  we need to be able tocompute the angle between 
wi and w, in order to compute the probability that 
the clause is satisfied. This can be done by using the 
cosine rule for spherical triangles. In particular, we 
have that 

Our algorithms for MAX 2SAT and MAX DICUT 
can be derandomized, as they are based on the algo- 
rithm of Goemans and Williamson [lo]. 

5 Discussion 

Our results are a bit more general than may ap- 
pear from considering only the problems MAX DI- 
CUT, MAX CUT, and MAX 2SAT. In the introduc- 
tion we presented three types of terms, and, xor, and 
or. In addition, we had unit terms (in MAX 2SAT). 
The approximation ratio that we can achieve for each 
type of term is 0.859, 0.878, 0.931, and 1.0, respec- 
tively. Moreover, if the objective function is mixed, 
in the sense that it contains more than one type of 
term (as in the case of MAX SSAT), then the approx- 
imation ratio guaranteed by the rounding scheme for 
the most difficult type of term holds simultaneously 
for all terms. In particular, if the objective function is 
the sum of arbitrary nonnegative terms, each involv- 
ing at most two Boolean variables, then we achieve an 
approximation ratio of 0.859. Observe that this is a 
nontrivial phenomenon, that is not known to ho!d for 
other problems. For example, for any k, proper MAX 
k-SAT can be approximated within a ratio of a t  least 
0.875, but the best ratio of approximation known to 
be achievable for MAX SAT (which contains clauses 
of varying length) is roughly 0.7584 [lo]. (This bound 
can be slightly improved using results in the current 

Many questions remain open. We discuss a few of 
paper). 

them. 

vi . vj  = COS Bi COS 0, + COS Q sin Bi sin t9, 

+cosasinf(8i)sinf(Oj), 
wi . wj = cos f ( e i )  cos f(ej) 

where Q denotes the angle between the planes defined 
by (VO , v i )  and (210, v j ) .  This allows the determination 
of the angle between wi and w j .  

For MAX DICUT, the scheme based on the func- 
tion f1/2(0) can be shown numerically to give a per- 
formance guarantee of 0.857. A slightly better perfor- 
mance guarantee of 0.859 can be obtained through a 
much more complicated function. 

It is fairly easy do obtain semidefinite relaxations 
for a large variety of NP-hard optimization prob- 
lems. Some examples are presented in [7]. The 
more difficult part is to analyze the performance 
guarantee of these approximation algorithms (for 
an illustration, see the recent result of F'rieze and 
Jerrum [8]). Any new techniques for doing so are 
welcome. A notable result in this context is the 
use of semidefinite programming by Karger, Mot- 
wani, and Sudan [12] in order to color 3-colorable 
graphs with O ( ~ Z ' / ~ )  colors (which is an improve- 
ment over the previously best algorithm). 

2. For the problems studied in the current paper, 
there is hope that the stronger formulations pre- 
sented in Section 2.3 may lead to ratios of approx- 
imation that are significantly better than those 
achieved using the formulations of Section 2.2. 
Again, this would require new techniques of anal- 
ysis. 
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3. 
Relaxation 
1 or 2 I lower 

How large can the ratio be between the true o p  
timum and the optimum of the semidefinite re- 
laxation? For the relaxations (CUT3), (SAT3) 
and ( 0 1 3 ) ,  we are aware of fairly bad instances. 
For MAX CUT, the 5-cycle gives a ratio between 
the optimum cut value and the optimum value 
of (CUTS) of A = 0.88445. . . (see Goemans 
and Williamson [lo]). Since any MAX DICUT 
instance can be formulated as a MAX CUT in- 
stance, the bidirected 5-cycle also gives a ratio 
of 0.88445 for ( 0 1 3 ) .  For MAX BSAT, the in- 
stance consisting of the following 10 clauses with 
unit weights can be seen to lead to a ratio of 
& = 0.94512.. . for (SAT3): 

2 1  v x 2 ,  x 2  v 23, x3 v x4, 2 4  v x 5 ,  2 5  v x1, 

CUT DICUT 2SAT 
0.87856 0.79607 0.87856 

21 v 22, 2 2  v 23, 23 v 24,  2 4  v 2 5 ,  2 5  v 21. 

However, for all these instances, the optimum SCP 

lution of the semidefinite program includes triples 
of vectors (all different from u g )  that do not sat- 
isfy constraints (4)-(7). For (CUT4), the clique 
on 5 vertices is a fairly bad instance (and is in 
fact the smallest instance for which the value of 
(CUT4) differs from the maximum cut value by 
the result of Barahona and Mahjoub [4]). The 
maximum cut has size 6. However, selecting vec- 
tors for the vertices such that the inner product 
between any two of them is -1/4 (i.e. they form 
a regular simplex) satisfies all the constraints, 
and leads to a semidefinite solution of value 25/4. 
Hence the ratio between optimal and semidefinite 
solutions is 24/25 = 0.96. As above, this exam- 
ple can be adapted to ( 0 1 4 )  and (SAT4) as well, 
giving ratios of 24/25 and 64/65 respectively. 
This suggests a formulation (CUT,) with addi- 
tional inequalities that rules out this bad instance 
(that is, for any 5 vertices, the sum of all 10 pos- 
sible inner products is at least -2). This is, of 
course, an endless game. It suggests the following 
question. Let Qk denote the ratio of approxima- 
tion obtained for MAX CUT by a semidefinite 
program that includes all necessary valid inner 
product constraints that involve up to k vertices. 
Let qhard < 1 denote a ratio that is NP-hard to 
achieve (as guaranteed to exist from [2]). What 
is the minimal k for which qk 2 Qhard? Observe 
that 1 = qn > Qhard, and that for any fixed k 
(independent of n), qk < qhard, unless P=NP. 
In Table 1, we summarize our current under- 
standing of the tightness of the different semidef- 
inite relaxations for the three basic problems. 

0.98462 

Table 1: Summary of known upper and lower bounds 
on the worst-case ratio between the value of the o p  
timum solution and the value of semidefinite relax- 
at ions. 

4. In [lo], a ratio of 0.878 was achieved both for 
approximating MAX CUT and for approximat- 
ing MAX 2SAT. In the current paper, we “sep 
arate” these two problems by showing that for a 
given set of constraints (defined in Section 2.2), 
the ratio between the true optimum and the o p  
timum of the semidefinite relaxation is at least 
0.931 for MAX BSAT, but at most 0.885 for MAX 
CUT. However, we could not obtain such a sep 
aration between MAX CUT and MAX DICUT. 
Does (013) approximate MAX DICUT as well as 
(CUT’) approximates MAX CUT? 
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