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A b s t r a c t .  Given a subset of cycles of a graph, we consider the prob- 
lem of finding a minimum-weight set of vertices that meets all cycles 
in the subset. This problem generalizes a number of problems, includ- 
ing the minlmum-weight feedback vertex set problem in both directed 
and undirected graphs, the subset feedback vertex set problem, and the 
graph bipartization problem~ in which one must remove a minimum- 
weight set of vertices so that the remaining graph is bipartite. We give 
a ]-approxlmation algorithm for the general problem in planar graphs, 
given that the subset of cycles obeys certain properties. This results 
in ~-approximation algorithms for the aforementioned feedback and bi- 
partization problems in planar graphs. Our algorithms use the primal- 
dual method for approximation algorithms as given in Goemans and 
Williamson [14]. We also show that our results have an interesting bear- 
ing on a conjecture of Akiyama and Watanabe [2] on the cardinality of 
feedback vertex sets in planar graphs. 

1 The problems 

We consider the following general problem: given a graph G = (V, E) ,  non- 
negative weights wi on the vertices i E V, and a collection C of cycles of G, find 
a minimum-cost set of vertices F such that  every cycle in C contains some vertex 
of F .  We call this problem the hitting cycle problem, since we must hit every 
cycle in C. The hitt ing cycle problem generalizes several other problems we will 
s tudy in this paper. IfC is the set of all cycles in G, then the hitt ing cycle problem 
is equivalent to the problem of finding a minimum-weight feedback vertex set in 
a graph; that  is, the problem of finding a minimum-weight set F C.C_ V such that  
the graph G[V-F] induced by V - F  is acyclic. The feedback vertex set problem 
will be abbreviated by FVS. If G is a directed graph (digraph), and C the set of 
all directed cycles in G, then we have the minimum-weight feedback vertex set 
problem in directed graphs (D-FVS). If we are given a set of special vertices and 
C is all cycles of an undirected graph G that  contain some special vertex, then 
we have the subset feedback vertex set problem (S-FVS). Finally, if C contains 
all odd cycles of G, then we have the graph bipartization problem (BIP); that  
is, the problem of finding a minimum-weight subset F such that  G[V - F] is 
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bipartite. All these problems are also special cases of vertex deletion problems: 
that is, find a minimum-weight (or minimum cardinality) set of vertices whose 
deletion gives a graph satisfying a given property. 

We will restrict our attention to the versions of these problems in which 
the input graph is planar and simple. Yannakakis [24] has given a general 
NP-hardness proof for almost all vertex deletion problems restricted to planar 
graphs; his results apply to the planar (directed, undirected or subset) feedback 
vertex set problem and to the planar graph bipartization problem. In addition, 
the planar D-FVS is NP-hard even if both the indegree and outdegree of every 
vertex is no more than 3 [10, p. 192]. 

We consider approximation algorithms for these problems. An a-approxima- 
tion algorithm for a minimization problem runs in polynomial time and produces 
a solution of weight no more that a times the weight of an optimal solution. We 
call a the performance guarantee of the algorithm. In this paper, we give a -~ 
approximation algorithm for a general class of planar hitting cycle problems 
which includes the planar feedback vertex set problem in undirected or directed 
graphs, the planar subset feedback vertex set problem in undirected graphs, and 
the planar graph bipartization problem. 

Our algorithms are based on the primal-dual method for approximation al- 
gorithms. This method has proven useful over the past few years in designing 
algorithms for network design problems (see, for example, [13, 11, 18, 23]). The 
authors have written a survey of this method [14] which gives a generic algorithm 
and theorem for deriving approximation algorithms for the hitting set problem, 
of which the hitting cycle problem is a special case. The algorithm and analysis 
here are an application of the algorithm and theorem given in the survey. 

We now briefly review previously known work. For FVS in general undirected 
graphs, two slightly different 2-approximation algorithms were given recently by 
Becker and Geiger [6] and Bafna, Berman, and Fujito [4]; see Hochbaum for an 
overview [15]. These algorithms improve on a log n-approximation algorithm of 
Bar-Yehuda, Geiger, Naor, and Roth [5], where n is the number of vertices. Bar- 
Yehuda et al. also gave a 10-approximation algorithm for the case of undirected 
planar graphs, which we can show to be a 5-approximation algorithm for this 
case. For all three other problems we consider, the best known approximation 
algorithms for general graphs have polylogarithmic guarantees; because of space 
limitations, we simply refer the reader to the relevant papers [8, 9, 12, 17, 19, 
21]. In the case of planar graphs, the only additional result we are aware of 
is an approximation algorithm of Stamm [22] for D-FVS, but its performance 
guarantee can be linear. 

Although our result for the undirected feedback vertex set problem on planar 
graphs is worse than the known approximation algorithm for general undirected 
graphs, it still turns out to be interesting. Our result implies that the LP relax- 
ation of the cycle formulation of all four problems is within a factor of 9/4 of 
the corresponding optimum value for planar graphs. This is known to be false 
for general graphs (the ratio can be logarithmic in n [21, 9]). We in fact conjec- 
ture that the ratio cannot be greater than 3/2. This would have very interesting 
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combinatorial consequences that we discuss in Section 6. For example, it would 
imply a conjecture of Akiyama and Watanabe [2] and Albertson and Berman [3] 
that any undirected planar graph on n vertices contMns a feedback vertex set 
of size no more than n/2. Our bound of 9/4 implies the existence of a feedback 
vertex set of size at most 3n/4. This follows easily from the 4-color theorem, 
but we don't know any other proof. A coloring result of Borodin [7] shows that 
any planar graph has a feedback vertex set of size no more than 3n/5; however, 
Jensen and Toth [16, p. 6] cM1 the proof reminiscent of the proof of the 4-color 
theorem, partly because it involves 450 reducible configurations. 

The paper is structured as follows. In Section 2 we begin with some prelim- 
inary concepts and definitions. Section 3 reviews the generic primal-dual algo- 
rithm and its analysis from Goemans and Williamson [14]. In Section 4, we show 
how the algorithm leads to a 3-approximation algorithm for a class of hitting cy- 
cle problems, and in Section 5 we improve the algorithm and its analysis to give 
a ~-approximation algorithm. We comment on the integrality gap of the linear 
programming relaxation and its relation to Akiyama and Watanabe's conjecture 
in Section 6. The implementation of the algorithms is described in Section 7, 
and we conclude in Section 8. 

2 Prel iminaries  

When we refer to a cycle C of an undirected graph G = (V, E), we refer to its 
vertex set, even though this is somewhat ambiguous. If we would like to refer to 
its edge set, we will write E(C). 

Recall the hitting cycle problem defined in the previous section. Let G be an 
undirected graph, let wi >_ 0 be the weight of vertex i, and let C be a collection 
of cycles of G. The hitting cycle problem is that of finding a minimum-weight set 
F of vertices such that F intersects every member of C. In most cases, when we 
will refer to a cycle, we will implicitly mean a cycle of C, unless stated otherwise. 

We will restrict our attention to families C satisfying the following property. 
We abuse notation slightly here by referring to cycles C as both sets of edges 
and of vertices. Paths P are sets of edges; for directed graphs, the set of edges 
is a path for the underlying undirected graph. 

P r o p e r t y  A For any two cycles C1,C2 E C, let P2 be a path in C~ which 
intersects C1 only at the endpoints of P2. Let P1 be a path in C1 between 
the endpoints of P2. Then either P1 U P2 E C and (C1 - P1) U (C~ - P2) 
contains a cycle in C, or (C1 - P1) O P2 E C and (C2 - P2) U P1 contains a 
cycle in C. 

We will refer to families satisfying Property A as uncrossable. Our approximation 
algorithms will apply to any uncrossable hitting cycle problem for input graphs 
restricted to be planar, given that we can compute efficiently certain minimal 
cycles which we will define in a moment. 

We claim that the problems we are interested in correspond to uncrossable 
families. First notice that the graph H = E(C1) U E(C2) is Euterian, i.e. every 
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vertex has even degree, or every vertex has indegree equal to outdegree in the 
case of D-FVS. Also, when removing a cycle C from H, the resulting graph 
remains Eulerian (assuming C is directed in the case of D-FVS). It can therefore 
be decomposed into cycles. This shows that Property A is clearly satisfied for 
FVS. For D-FVS, Property A is also satisfied. Let a and b be the two endpoints 
of the path P~. Then either P2 is directed from a to b (and Cz - / ' 2  is directed 
from b to a) or vice versa. Thus, either P1UP2 or (C i -P1)UP2  defines a directed 
cycle C, and H - E(C) contains a directed cycle since it is Eulerian. For S-FVS, 
there must be a special vertex on either P1 or C1 - / ' 1  and also on either P2 or 
C2 - P2. Therefore, we can make sure that the Eulerian graph H - E(C) still 
contains a special vertex, so that one of the two cases of Property A must hold. 
For BIP, we observe that P1 t_J P2 and (CI - P1) t2 Pz have different parities, and 
therefore one of them must be odd. Moreover, H - E(C) is Eulerian and has an 
odd number of edges if C is odd, and therefore must contain an odd cycle in any 
cycle decomposition. So, once again, Property A holds. 

The FVS, S-FVS and BIP also satisfy an additional property: 

P r o p e r t y  B For any cycle C E C and any path P intersecting C only at the 
endpoints of P,  let C1, Cz be the two cycles defined by C and P.  Then either 
C1 or C2 (or both) belongs to C. 

Observe that this is not the case for D-PVS since there is no guarantee that P 
is a directed path. Property B will be useful for implementation purposes. 

Our approximation algorithms for uncrossable hitting cycle problems will 
depend on the embedding of the planar graph. Given a plane graph G (i.e. a 
planar graph with an embedding), any cycle C partitions the plane into two 
regions, the interior and exterior regions. We will associate to any cycle C the 
set f(C) of faces in the interior region of C. Observe that the exterior face of 
the embedding of G never belongs to f(C). We will say that cycle C1 contains 
cycle C2 and write C~ D I Cz or C2 _C! Ct if f(C1) D f(C2). Two cycles CI and 
C2 are said to be crossing if f(C1) and f(C2) cross z, Le. f(C1) f3 f(C2) r ~, 
f(C1) - f(C~) r $ and f(C2) - f(Cl) r $. Similarly, we say that a collection of 
cycles form a laminar family if no two cycles are crossing. 

We say that a cycle C E C is face-minimal if there does not exist a cycle 
C a E C, C' -~ C, with f(C') C_1 f(C). The collection of face-minimal cycles will 
play a centrM role in our approximation algorithms. The following lemma shows 
that face-minimM cycles form a laminar family. 

L e m m a  1. Let C satisfy ProperSy A and let Cx, Cz E C. If C1 is a face-minimal 
cycle then C1 and C2 do not cross. 

Proof. The proof follows immediately from Property A. ff the two cycles were 
to cross, then by choosing P~ to be a path in C2 which lies in the interior of C1, 

Observe that the exterior face is never in f(C1) LA f(C~), and thus the notions of 
crossing and intersecting are equivalent~ 
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the two cycles P1 U P2 and (C1 - P 1 ) O  P2 would both be contained in C1. This is 
a contradiction since at least one of them belongs to C and C1 is face-minimal. 

Whenever C satisfies Property B, the face-minimal cycles have a very simple 
structure given by the next lemma. 

L e m m a  2. Let C satisfy Property B. Then the face-minimal cycles are the bound- 
aries of the interior faces which are simple cycles. 

Proof. Suppose C is a face-minimal cycle of C which is not given by the boundary 
of an interior face. Then there must be a path P in the interior of C that only 
intersects C at its endpoints. Using property B, one of the two cycles defined by 
C and P must be in C. But this cycle must be contained in C, which contradicts 
the face-minimality of C. 

In particular, for families satisfying Property B, this lemma shows that the 
face-minimal cycles are the boundaries of all interior faces corresponding to 
cycles in C if the graph is 2-connected. The lemma is not true for the directed 
feedback vertex set problem, which does not satisfy Property B. 

3 T h e  p r i m a l - d u a l  f r a m e w o r k  

The uncrossable hitting cycle problem is a special case of the general hitting 
set problem in which one needs to find a minimum-weight set hitting every set 
in a given collection of sets. More precisely, given a ground set of elements E, 
weights Ce for all e E E, and sets T1,.. .  ,Tp C E, the hitting set problem 
is that of finding a minimum-weight A C_ E such that A N T/ r ~ for i = 
1, . . .  ,p. In a recent survey [14], we have developed a general methodology to 
derive approximation algorithms for hitting set problems based on the so-called 
primal.dual method. This was motivated by a sequence of papers [1, 13, 18, 23] 
developing the technique for network design problems. In the survey, we propose 
a generic primal-dual method for deriving approximation algorithms for hitting 
set problems, with a generic proof of the performance guarantee. We illustrate 
in [14] the technique on a variety of problems, and also claim that the method 
can be applied to many more problems. As we show here, the technique directly 
applies to any uncrossable hitting cycle problem in planar graphs. 

A hitting cycle problem can be formulated by the following integer program 
(IP): 

Min E w~xl 
iEV 

(IP) subject to: 

Z xi _> 1 cycles C E C 
lEO 

xi E {0, 1} i E V. 



152 

The primal-dual method simultaneously constructs a feasible solution to this 
hitting set problem, and a solution feasible for the dual of the linear programming 
relaxation of (IP).  The dual of the LP relaxation is: 

Max E Y c  
cEc 

(D) subject to: 

yc <_ wi i E V 
C:iEC 
yc >_O C E C .  

The generic primai-duM method developed in [14] is described in Figure 1. It 
is specified by the oracle VIOLATION(S) which given a set of vertices S outputs 
a specific set of cycles in C which are not hit by S. The algorithm begins with 
an empty set of vertices S and a dual solution y = 0. While S is not a feasible 
solution to the hitting cycle problem, it increases the dual variables on the cycles 
returned by VIOLATION(S) until one of the dual packing constraints becomes 
tight for some vertex i E V. This vertex is added to S and the process continues. 
When S becomes feasible, the Mgorithm performs a "clean-up" step. It goes 
through the vertices in the reverse of the order in which they were added and 
removes any vertex which is not necessary for S to remain feasible. 

In [14], it is proved that the performance guarantee of this algorithm can be 
obtained by using the following theorem. In this theorem, a minimal augmenta- 
tion F of S means a feasible solution F containing S such that for any v E F - S, 
F - v is not feasible. 

T h e o r e m  3 ( G o e m a n s  and  Wi l l i amson  [14]). The primal-dual algorithm de- 
scribed in Figure 1 delivers a solution of cost at most 7 ~ c  Yc < 7zoPT , where 
ZOPT denotes the weight of an optimum solution, if 7 satisfies that for any in- 
feasible set S C V and any minimal augmentation F of S 

IF n e l  _< 7W(S)[, 
cev(s) 

where V(S) denotes the collection of violated sets output by the VIOLATION oracle 
on input S. 

Therefore, we only need to specify what the VIOLATION oracle does, com- 
pute the value of 7 given by Theorem 3, and prove that the Mgorithm runs in 
polynomiM time in order to obtain a 7-approximation algorithm. Observe that 
by considering G -  S, we can assume without loss of generMity that, in Theorem 
3, S = 0 and F is a minimal feasible solution. 

One possibility is that the VIOLATION oracle returns only one cycle. This is 
essentially the approach used by Bar-Yehuda et al. [5] for FVS in general graphs. 
They gave a 10-approximation algorithm for this problem in planar graphs by 
simply finding a "short" cycle in the graph, but their analysis can be improved. 
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1 ye- -0  
2 S ~ - $  
3 1 ~ 0  
4 While S is not feasible 
5 1+--1+1 
6 r ~ VIOLATIOrKS) 
7 Increase Yc uniformly for all C E ]) until 3vl ~ S : ~"]~c:vl~c yc = w~l 
8 S ~- S u {m} 
9 For j ~ 1 downto 1 
10 if S - {vi} is feasible then S ~-- S - {vj} 
11 Output S (and y) 

Fig. 1. Primal-dual algorithm for uncrossable hitting cycle problems. 

We give below a brief sketch of their VIOLATION oracle and of the improved 
analysis. Given the planar graph G, we can first assume that  G has no degree 1 
vertex since such vertices can be deleted without affecting the cycles of G. We 
claim that  the resulting graph has a cycle with at most 5 vertices of degree 3 
or higher; moreover, this cycle can be chosen to be (part of) the boundary of a 
face. It is then easy to see that  3' can be chosen to be 5 in Theorem 3. To prove 
the claim, observe that,  if the graph is 2-connected, the claim is equivalent to 
the existence of a vertex of degree at most 5 in the dual graph, a well-known 
fact (since the sum of the degrees is at most 6IV I - 12). If the graph is not 
2-connected, we consider an endblock of the graph (i.e. a block with at most 
one cutvertex) and use the same argument. The only slight problem is that  the 
resulting cycle may contain the cutvertex and this cutvertex may have degree 
2 in the endblock. This however can be dealt with by using the fact that  a 
planar graph has more than one vertex of degree at most 5. The idea of having 
the VIOLATION oracle return only one cycle does not seem to work for S-FVS, 
D-FVS or BIP. 

4 A 3 - a p p r o x i m a t i o n  a l g o r i t h m  

In this section, we consider the VIOLATION oracle which, on input S, returns 
the set of face-minimal cycles of G - S (with respect to C). We will refer to this 
oracle as FACE-MINIMAL. We show that  the corresponding value of 7 is 3. In the 
following section, we give a refined oracle for which the corresponding 7 is 9/4. 
These performance guarantees are tight for D-FVS, S-FVS and BIP. 

In order to prove that  FACE-MINIMAL has a 7 value of 3, we need to show 
the following result (applied to the graph G - S). 

T h e o r e m  4. Let G be a planar graph and let All be the collection of face-minimal 
cycles corresponding to an uncrossable family C. Consider any minimal solution 
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Fo Then 
IFncI 5 

C ~  

Since F is a minimal solution, we know that  for every v E F,  F - v is not 
feasible, implying the existence of a cycle Cv E e such that  Cv NF = {v}. We call 
such a cycle Cv a witness cycle (for v). A family of witness cycles is a collection 
of witness cycles Cv E C, one for each v E F.  

L e m m a  5. There exists a laminar family of witness cycles Cv E C, v E F. 

Proof. Consider any family of witness cycles and assume the existence of two 
witness cycles Cu and Cv that  cross for u, v E F.  By assumption F O Cu = {u} 
and F M Cv = {v}. The assumption implies that  u and v have degree 2 in 
g = E(Cv) U E(Cu) and that  no other vertices of H are in F .  Since the cycles 
cross there is some path Pu of Cu in the interior of C~ which intersects Cv only 
at its endpoints. By Property A, Cu and Cv can be replaced by two cycles such 
that  one is in C, call it C ', and the other contains a cycle say C"  in C. Say that  
Cv is replaced by C~; by property A, it will contain strictly fewer faces than C~. 
Since F is feasible, both C ~ and C '1 must be hit by F.  However, since u and v 
have degree 2, it must be the case that  C'  and C '~ each have exactly one of u 
and v and are witness cycles for u and v. 

In order to show the existence of a laminar family of witness cycles, we 
need to prove that  the crossing pairs of cycles being replaced can be selected 
in such a way that  the replacing process terminates with a laminar family. For 
this purpose, we fix an ordering of the vertices in F,  say F = {1, 2 , . . . ,  k}. We 
start by repeatedly replacing C1 with all the other witness cycles that  cross it. 
Notice that  this must terminate since CI is always replaced by a cycle which 
encloses fewer faces. Thus at termination C1 does not cross any of the other 
witness cycles; we say that  we have uncrossed C1. After uncrossing Ci with all 
the other cycles (i = 1 , . . . ) ,  we uncross Ci+l with all the other cycles. The 
important  observation to make is that  as we replace a crossing pair Ci and Cj as 
explained in the first part of the proof, if Ck does not cross either C~ or Cj, then 
Ck still does not cross the new witness cycles C ~ and C" for i and j .  This follows 
from the fact that  f (Ck)  must either be contained ent irdy in one of the faces of 
H = E(C~) U E(C~) or must contain all the interior faces of H.  Therefore, as we 
replace Ci with the other witness cycles that  cross it~ we don't  need to consider 
any Ck for k < i. Therefore, this uncrossing process terminates with a laminar 
family of witness cycles. 

A laminar family :~" = {C~ E C : v E F} of witness cycles can be represented 
by a tree or more precisely by a forest by considering the partial order imposed 
by CI.  To simplify the exposition, we can add a root node r which is connected 
to all maximal sets in the family, and thus obtain a tree T.  Notice that  any 
vertex in T is either r or corresponds to a cycle C~ for v E F.  Thus for each 
vertex v E F we will correspond a vertex v E T. 

The crucial (and only) properties of 2,4 we will be using are the following: 
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1. No element of .M crosses any element of ~'. This follows from Lemma 1. 
2. Every element of ~ (and therefore the cycles corresponding to the leaves of 

T) contains at least one element of A~. 

For the analysis, and because of these two properties, we assign every element 
of .hd to some node in the tree T: cycle C E .h4 is assigned to the vertex of T 
corresponding to the smallest set in ~ (inclusion-wise) which contains it. For 
v E T, let Adv denote the set of cycles of J~4 assigned to node v of T. Observe 
that  A~r may be non-empty, and that  some AJv may be empty. However, because 
of property 2, Adv is non-empty for every leaf v of T. 

In order to prove Theorem 4, we first derive an upper bound on ~-~oe~v [FN 
C[ for every v E T. Fix v E T, and let Fv denote the subset of vertices of F 
corresponding to v (unless v = r) and the children (if any) of v in T. Observe 
that  F n C  = F v n C  for any C E A4v. Thus, ~cr ]FtaCI = ~c~.M,, ]F`'ACI- 
By definition of Fv, its cardinality is equal to the degree deg(v) of node v in T.  In 
order to get an upper bound on ~ c C m v  I F~ ACI, we construct a bipartite graph 
B. B has a vertex for every u E F,, and for every C E A/I,,, and an edge between 
u and C iff u E C. Therefore, 7]~ccm, IFv N C] is precisely the number of edges 
of B. Observe that  B is planar, since a planar embedding of B can be obtained 
from the embedding of G by placing the vertex corresponding to C E A4v in the 
interior of C. But the number of edges of a simple bipartite planar graph is at 
most twice the number of vertices minus four, unless the graph consists simply 
of a single vertex or of two vertices with one edge. Notice that  B can only be a 
single vertex if v = r. Also, B can be an edge on two vertices; this can occur 
only if v is a leaf of T or v = r. We have therefore derived that  

IF~ n CI < 2IA4~I § 2lEvi - 4 = 2lA4~ l + 2deg(v) - 4, (1) 
GilA4,, 

unless v is a leaf of T in which case 

IF~ n Ci _< 21M~I + 2deg(v) - 3, 
G'E.A4~ 

or v corresponds to r in which case 

IF~ n Ct < 21M~I + 2deg(r) - 2. 
CEA4r 

Summing over all v E T, we derive that  

IF n CI <_ 2].A4[ + 2 y]~ deg(v) - 4]TI + 1 4- 2, 
CE2~4 vET  

where l denotes the number of leaves of T. Since T is a tree, ~ deg(v) is equal 
to twice the number of nodes of the tree minus two. This implies that  

IF n CI _< 21MI-  2 + t. 
CE.ad 
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Moreover, because of property 2, the number I of leaves is upper bounded by 
]AJ[. This therefore shows that 

IT N C[ _< 3].~4 [ -  2, 

proving Theorem 4. 

For FVS, the worst instance we are aware of for our primal-dual algorithm 
with the oracle FACE-MINIMAL achieves a performance ratio of 2. However, for 
the other problems, namely D-FVS, S-FVS and BIP, the performance guarantee 
of 3 is tight. Instances achieving this ratio are given in Figure 2; the same figure 
applies to all three problems. There are k white vertices and they have a weight 
of 3, and the other (black) vertices have a weight of 1 § e. In the case of S- 
FVS, the special vertices are denoted by (black) squares, while for D-FVS the 
orientation of the arcs along two of the faces are explicitly given on the figure 
(the orientation of the other arcs are such that the shaded faces define directed 
cycles). The face-minimal cycles are the boundaries of the shaded faces, and the 
algorithm will select all white vertices in the solution for a total weight of 3k. 
However, in all three cases, the black squares constitute a feasible solution of 
weight (k § 2)(1 + e), giving the desired bound as k gets large and e tends to 
0. The analysis of our algorithm in fact indicates that bad examples arise only 
when there are two cycles in )r  several points in common. The improved 
VIOLATION oracle we develop in the next section deals precisely with such cases. 

Fig. 2. A bad example for the 3-approximation algorithm applied to BIP, to D-FVS, 
or to S-FVS. 

5 A 9/4-approximation algorithm 

We first need some preliminaries. Two (face)-disjoint 4 cycles C1 and C2 partition 
the plane into one or several regions; excluding the interiors of C1 and C2, each 

4 that is, f (C1)  N f (C2)  = 0. 
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remaining region corresponds to a connected component of the dual graph after 
having removed f(C1) U f(C2). One of these regions contains the exterior face, 
and we refer to the others as the pockets between C1 and C~. The boundary of 
any pocket is defined by two vertices common to C1 and C2, say u and v, and 
consists of two paths between u and v, one from C1 and one from C2. If there 
exist k non-empty pockets between C1 and C2 then C1 and C~ must have at least 
k + 1 vertices in common. We say that two disjoint cycles C1 and C2 surround 
a cycle C3 if f(C3) is contained in one of the pockets between C1 and C2. 

Our improved algorithm is based on the following oracle which returns a 
subset Y of the family A4 of face-minimal cycles. If A4 does not contain two 
cycles which surround a third one then the oracle returns .hi. Otherwise, the 
oracle outputs a non-empty subset 12 of A4 such that (i) there do not exist two 
cycles C1 and C2 in Y which surround a third cycle of Y, and (ii) Y consists of 
all cycles of A4 in one of the pockets between two cycles C1 and C2 of A4. This is 
always possible since the oracle can simply recursively select the non-empty set 
of cycles of one of the pockets between two cycles 6'1 and C2 until the remaining 
collection satisfies (i). 

T h e o r e m  6. Let G be a planar graph and let 12 be as defined in the paragraph 
above. Consider any minimal feasible solution F. Then 

iF n cl  _ 9 Ivl. 
CE~' 

The structure of the proof is similar to the one in the previous section, the 
main difference being the proof of a sharper version of inequality (1). The basic 
idea is to exploit the fact that the bipartite graph constructed does not have 
any cycle of length 4. However, the proof is somewhat more complicated and is 
omitted for space reasons. 

The performance guarantee of 9/4 is tight for D-FVS, S-FVS and BIP, but 
again we are not aware of an instance with a performance worse than 2 for FVS. 

6 W o r s t - c a s e  d u a l i t y  g a p s  

In this section, we discuss the worst-case ratio between the value of the problem 
considered and the optimum value of the linear programming relaxation of (IP) 
(or the value of its dual (D)), the worst-case being taken over all non-negatively 
weighted planar instances. The results of the previous section in fact immediately 
imply that this worst-case ratio p is at most 9/4 for any uncrossable hitting cycle 
problem. 

Before considering the worst-case ratio for hitting cycle problems in more 
detail, we investigate the vertex cover problem. In the vertex cover problem, one 
would like to find a minimum-weight set of vertices S such that for every edge 
at least one of its endpoints is in S. A classical linear programming relaxation 
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of this problem is given below: 

Min y ~  wixi 
iEV 

(LP) subject to: 

xi + xj > l (i,j) E E 

x~>_O i E V .  

It is well-known that the ratio between the value of the vertex cover problem 
and the value of (LP) is upper bounded by 2, and this can be approached 
arbitrarily by general graphs. However, we show below that the worst-case ratio 
is exactly 3/2 for planar instances by using the 4-color theorem. 

T h e o r e m  7. For planar graphs, Pv c = ~. 

Proof. For K4 with unit weights, the minimum vertex cover has size 3, but the 
LP value is 2 and this is obtained by setting all z~'s to 0.5. This shows that 
p v c  >_ 

To prove the other inequality, we use the 4-color theorem and a result about 
the structure of the extreme points of (LP). It is known that at the extreme 
points of (LP), zi 6 {0, �89 1} for all i [20]. Given a four-coloring of the graph 
and an optimal extreme point of (LP), we find the color class X which maximizes 
~":~iex:~i=l/2 w~. Consider then the integral solution 

.{ 
By construction Y']~i wiz7 _< 
cover since for any edge (i, j) 

1 i f z i  = 1 or z i  = � 8 9  X 
0 i f z i  = 0 or z l  _ 1~,i E X 

~ i  wizi. Furthermore, x* corresponds to a vertex 
with zi = zj = �89 both i and j cannot be in 2'. 

A proof of this result not based on the 4-color theorem would be very nice. 
Indeed, since the solution zi = 0.5 for all i is always feasible for the linear 
programming relaxation, the above theorem implies the existence of a vertex 
cover of size at most 3n/4 (or an independent set of size at least n/4), which 
follows immediately from the 4-color theorem, but no other proof of this result 
is known. 

The/s instance for the vertex cover problem leads to bad instances for many 
hitting cycle problems. Consider FVS, for example. If we replace in K4 every 
edge by a triangle (introducing one new vertex) and if we keep all weights to be 
equal to 1, then the optimum solution still has value 3, and a feasible solution to 
the linear programming relaxation of the hitting cycle formulation (IP) can be 
obtained by setting the original vertices to have xi -- 0.5 and the new vertices 
to have a:~ -- 0. This shows that the worst-case ratio pFvs for FVS on planar 
instances is at least 3. The same construction shows that that PBIP > 3/2 and 
pD-FWS >_ 3/2 for BIP and D-FVS both in the planar case. 

We conjecture that these bounds are tight. 
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C o n j e c t u r e 8 .  PFvs -- 3,PD-Fvs = ~ and PBIP = ~. 

If any part of this conjecture was true, this would have some interesting 
combinatorial implications. Consider first FVS. If P~'vs = "~, then since the 
solution with zi = �89 is feasible for the LP relaxation, this implies the existence 
of a feedback vertex set of size at most n/2, a statement conjectured by Akiyama 
and Watanabe [2] and Albertson and Berman [3]. For BIP, the conjecture that 
PBIP = 3 would similarly imply the existence of at most n/2 vertices whose 
removal makes the graph bipartite. This follows easily from the 4-color theorem 
(removing the two smallest color classes), but we are not aware of any proof 
of this statement not based on the 4-color theorem. We should point out that 
in the worst case one cannot remove less than half the vertices for either FVS 
or BIP (consider /s or multiple copies of K4). For D-FVS on simple planar 
digraphs, the same reasoning would imply the existence of a feedback vertex set 
of size at most n/2, which would follow clearly from Akiyama and Watanabe's 
or Albertson and Berman's conjecture. It seems possible in fact that n/3 vertices 
are enough for simple digraphs. 

7 I m p l e m e n t a t i o n  

In this section we sketch how our 3-approximation algorithms can be imple- 
mented in O(n ~) time, where n = IV[. For all problems considered, the FACE- 
MINIMAL oracle can easily be implemented in linear time as follows. For the 
three undirected problems (FVS, S-FVS and BIP), we can first decide whether 
the boundary of any face is a cycle of C in time proportional to the length of this 
cycle. Over all faces, this gives a linear running time to compute the set .h4 of 
face-minimal cycles in C (since the total length of all faces is equal to twice the 
number of edges, which is at most 3n - 6). To implement the FACE-MINIMAL 
oracle in the case of D-FVS, we consider the planar dual G* of the graph G. It is 
not difficult to see that the face-minimal cycles correspond to sources and sinks 
in a DAG formed by collapsing the strongly connected components of G*. The 
planar dual, its strongly connected components and the sources and sinks can 
easily be found in linear time, and as a result we can implement FACE-MINIMAL 
in linear time also for D-FVS. Notice that the FAcE-MINIMAL oracle can also be 
used to implement the "clean-up" phase (line 10 of Figure 1): a set S is feasible 
if the oracle does not return any cycle. As we build M for any of these problems, 
we can also compute for each vertex v the quantity r(v) = I{C E M : v e C}l 
which represents the rate of growth of the left-hand-side of the dual constraint 
corresponding to v. This is useful in order to select the next vertex to add to S. 
Indeed, if we keep track of a(v) = ~'~c:~c Yc for each vertex v then the next 
vertex selected by the algorithm is the one minimizing e = min~ (w~ -a(v))/r(v) .  
We can then update a(v) by setting a(v) e-- a(v) + e. r(v). As we add a vertex 
to S (and remove it from the graph), we can easily update the planar graph in 
linear time as well. Since both loops of Figure 1 are executed O(n) times, this 
gives a total running time of O(n2). 
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8 Conclus ion  

The most pressing question left open by this work is whether one can derive an 
a-approximation algorithm for FVS in planar graphs using the primal-dual tech- 
nique for a < 2. Such a result would immediately imply that planar graphs have 
feedback vertex sets of size at most an/3, which we think would be interesting 
even for a = 2, since alternate proofs invoke the four color theorem or similar 
results. To prove such a result, one would "simply" need to find some subset of 
cycles 3/" such that for any minimal fvs F,  ~'~.ceAr IF n Cl < alAq. However, we 
have not yet been able to find such a subset. Note that in order to prove a bound 
on the size of a feedback vertex set, the subset would not necessarily have to be 
polynomial-time computable. 
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