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Lectures 9 and 10
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Today, we are going to present how to use semidefinite programming to optimize a linear function
over the theta body TH(G) which was discussed in last lecture.

1 Semidefinite programming

Let Sn×n be the set of n by n real symmetric matrices.

Definition 1 A ∈ Sn×n is called positive semidefinite, denoted A � 0, if xTAx ≥ 0 for any x ∈ Rn.

There are several well-known equivalent ways to state positive semidefiniteness.

Proposition 1 The following are equivalent:

(i) A is positive semidefinite.

(ii) Every eigenvalue of A is nonnegative.

(iii) There is a matrix V such that A = V TV .

We define the Frobenius inner product for two matrices A,B ∈ Sn×n by

〈A,B〉 =
∑
i,j

AijBij = tr(ATB).

Typically, semidefinite programs are described as optimization problems of the following form:

sup 〈C,X〉 subject to 〈Ai, X〉 = bi for i = 1, . . . ,m, X � 0 (1)

where C and Ai are n by n symmetric matrices and bi are real numbers. Semidefinite programming
generalizes linear programming because linear program is a special instance of semidefinite program
that all C, Ai and X are diagonal matrices.

For the given semidefinite program (1), we define the dual program of it as

inf

m∑
i=1

biyi subject to

m∑
i=1

yiAi � C. (2)

Here we use the convention that A � B if A−B is positive semidefinite.

Theorem 2 (Weak duality) For any feasible solution X for the primal program (1) and a feasible
solution y for the dual (2),

∑m
i=1 biyi ≥ 〈C,X〉.

To prove the weak duality, we need the following useful lemma.

Lemma 3 Let A and B be n by n positive semidefinite matrices. Let C = A◦B be an n by n matrix
such that Cij = AijBij. Then C is positive semidefinite. Moreover, 〈A,B〉 ≥ 0.
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Proof: Note that 〈A,B〉 = eTCe where e is all-ones vector in Rn. So 〈A,B〉 ≥ 0 if C is positive
semidefinite.

Let A and B be positive semidefinite matrices. By the previous proposition, A = V TV and
B = WTW for some matrices V and W . Let vi (and wi) be the i-th column of V (W , resp.)
for i = 1, . . . , n. Let zi = vi ⊗ wi, where component (k, l) of zi is equal to component k of vi
times component l of wi. Define Z be the matrix whose columns are z1, . . . , zn. We have zTi zj =
(vTi vj)(w

T
i wj) = AijBij = Cij . Hence C = ZTZ and C is positive semidefinite. �

This lemma also implies the result that the positive semidefinite cone is self-dual, i.e. 〈A,B〉 ≥ 0
for all B � 0 if and only if A � 0. (For the only if part, if A 6� 0 then any eigenvector v corresponding
to a negative eigenvalue satisfies 〈A, vvT 〉 ≥ 0.
Proof of Theorem 2:

∑m
i=1 biyi − 〈C,X〉 =

∑m
i=1 yi 〈Ai, X〉 − 〈C,X〉 = 〈X,

∑m
i=1 yiAi − C〉 ≥ 0

because X � 0 and
∑m

i=1 yiAi − C � 0. �

In comparison to linear programming, strong duality does not always hold for semidefinite pro-
gramming. Also, an optimum is not always attained by a feasible solution (which is the reason that
we used inf instead of min).

Example 1 Let the primal to be

sup

〈0 0 0
0 0 0
0 0 −1

 , X

〉
subject to

〈0 1 0
1 0 0
0 0 1

 , X

〉
= 1,

〈0 0 0
0 1 0
0 0 0

 , X

〉
= 0, X � 0.

Then dual is

inf y1 subject to y1

0 1 0
1 0 0
0 0 1

+ y2

0 0 0
0 1 0
0 0 0

 �
0 0 0

0 0 0
0 0 −1

 .

This primal-dual pair doesn’t satisfy strong duality since the primal has optimum value −1 but dual
has the optimum value 0 (and in this case both primal and dual attain their optimum value).

Theorem 4 Strong duality If the dual (primal, resp.) is feasible and the primal (dual, resp.) has a
strictly feasible solution, i.e., there is positive definite X(0) with

〈
Ai, X

(0)
〉

= bi for i = 1, . . . ,m, then
there is no duality gap and dual (primal, resp.) has a feasible solution which attains the minimum.

We will prove strong duality next time.

2 Theta body

Let G = (V,E) be a graph, and w : V → R≥0 be weights for vertices. Recall that a collection of
unit vectors {vi}i∈V and a unit vector c is called an orthonormal representation of G is vTi vj = 0
for any (i, j) 6∈ E. The theta body of G is defined as

TH(G) =

{
x ∈ R|V | :

∑
i∈V

(cTui)
2xi ≤ 1 for all orthonormal rep. of G

}
.

We define the weighted theta number of G as θ(G,w) = maxx∈TH(G) w
Tx.
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Theorem 5 Let W ∈ Sn×n with Wij =
√
wiwj. Then,

θ(G,w) = max 〈W,X〉
s.t. 〈I,X〉 = 1

〈Eij , X〉 = 0 for (i, j) ∈ E
X � 0,

where Eij is n by n symmetric matrix such that (i, j) and (j, i) entries are 1 but other entries are
all zero.

Proof: The dual program of this SDP is

min t subject to tI +
∑
ij∈E

yijEij �W.

Note that X = 1
nI is a strictly feasible solution for primal, and t > λmax(W ) and yij = 0 gives a

strictly feasible solution for dual, where λmax(W ) is the maximum eigenvalue of W . Hence strong
duality holds and there are optimal solutions to both primal and dual.

(≤) We are going to prove that any feasible solution for dual gives an upper bound of θ(G,w). Let
(t, y) be a feasible solution for the dual. Then M = tI +

∑
ij∈E yijEij −W � 0, so there are vectors

si ∈ Rn such that Mij = sTi sj for all i, j ∈ [n]. In particular, sTi si = t− wi and sTi sj = −√wiwj if
(i, j) 6∈ E.

Let c be a unit vector orthogonal to all of si (introduce an extra dimension if needed). Let
ui = (

√
wic + si)/

√
t. Check that uTi ui = 1 and uTi uj = 0 if (i, j) 6∈ E. So c and ui is an

orthonormal representation of G.
For x ∈ TH(G) such that wTx = θ(G,w), we have

∑
i(c

Tui)
2xi ≤ 1. Since (cTui)

2 = wi/t, it
implies that θ(G,w) = wTx ≤ t.

(≥) We are going to prove that for each feasible solution X for primal, we can find x ∈ TH(G)
such that wTx ≥ 〈W,X〉. It implies that θ(G,w) = maxx∈TH(G) w

Tx ≥ 〈W,X〉.
Let X be a feasible solution for primal. Since X is positive semidefinite, there is a matrix R with

X = RTR. For each i = 1, . . . , n, let yi = Rei where ei is the standard unit vector in which i-th

coordinate is 1. Let vi = yi

‖yi‖ and d = R
√
w

‖R
√
w‖ . Here

√
w is the vector with entries

√
wi. Clearly

vi and d are unit vectors, and vTi vj =
eTi RTRej
‖yi‖‖yj‖ = 0 for (i, j) ∈ E since eTi R

TRej = Xij = 0 if

(i, j) ∈ E. It implies that d and vi is an orthonormal representation of Ḡ, the complement of G.

Claim 6 Let d and vi be an orthonormal representation of Ḡ. Let xi = (dT vi)
2 for each i ∈ V .

Then x ∈ TH(G).

Let c and ui be an orthonormal representation ofG. We need to show that
∑

i(c
Tui)

2(dT vi)
2 ≤

1. For, let ai = ui ⊗ vi. Then aTi ai = (uTi ui)(v
T
i vi) = 1 and aTi aj = (uTi uj)(v

T
i vj) = 0

since either uTi uj = 0 (if (i, j) 6∈ E) or vTi vj = 0 (if (i, j) ∈ E). Hence the ai’s
form an orthonormal set of vectors (not necessarily a basis). On the other hand,
〈c⊗ d, ai〉 = (cTui)(d

T vi). Hence,∑
i

(cTui)
2(dT vi)

2 =
∑
i

〈c⊗ d, ai〉2 ≤ 1

since the ai’s are orthonormal. �

By the claim, we get a point x ∈ TH(G) from d and vi by letting

xi = (dT vi)
2 =

(
√
w

T
RTRei)

2

‖Rei‖2‖R
√
w‖2

.
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‖Rei‖2 = eTi R
TRei = Xii and ‖R

√
w‖2 =

√
w

T
RTR

√
w = 〈W,X〉 so

xi =
(
√
w

T
Xei)

2

Xii 〈W,X〉
=

1

Xii 〈W,X〉

 n∑
j=1

√
wjXij

2

since W =
√
w
√
w

T
. Hence

wTx =
1

〈W,X〉

n∑
i=1

wi

Xii

 n∑
j=1

√
wjXij

2

=
1

〈W,X〉

n∑
i=1

(
√
Xii)

2 ·
n∑

i=1

 1√
Xii

n∑
j=1

√
wiwjXij

2

≥ 1

〈W,X〉

 n∑
i=1

n∑
j=1

√
wiwjXij

2

= 〈W,X〉 .

Second equality comes from that
∑

iXii = 〈I,X〉 = 1 and third inequality follows from Cauchy-
Schwartz.

�

Now we can compute θ(G,w) by solving an equivalent semidefinite program (either primal or
dual). Modulo some assumptions, semidefinite programs can be approximated within any tolerance
in polynomial time. To be a bit more precise, there are interior-point algorithms for SDP that when
being given an initial strictly primal feasible solution and an initial strictly dual feasible solution of
duality gap δ will converge to primal and dual solutions of duality gap at most ε in time polynomial
in n and in log(∆/ε). In our case, we can take X0 = 1

nI and t0 > λmax(W ) for an initial duality gap
smaller than 2w(E)/n. In particular, we can compute α(G) up to ε in time polynomial in the input
size and log(1/ε) (and similarly for ω(G) = χ(G)) when G is perfect. Once we can approximate
α(G,w) for a perfect graph, we can easily find a stable set of that weight as the problem self-reduces.
Indeed, for any v ∈ V , one can check whether α(G,w) = wv +α(G \ ({v} ∪N(v) and if so include v
in the stable set and recurse (and otherwise delete v and recurse).

Finding the coloring (or the clique covering) for a perfect graph is slightly more tricky and was
not covered in class.

3 Strong Duality for Semidefinite Programming

Strong duality does not always hold for semidefinite programming, although it typically does for
combinatorial applications. We’ll prove strong duality here as stated in Theorem 4, and explain
when it holds and why it sometimes fails.

Suppose we would like to show that there is no primal solution of value ≥ µ for some given µ.
This means there is no solution to 

〈C,X〉+ s = µ
〈Ai, X〉 = bi for all i
X � 0,
s ≥ 0.

Let us reformulate this differently. Let

C ′ =

(
C 0
0 −1

)
,
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A′i =

(
Ai 0
0 −1

)
,

and

X ′ =

(
X 0
0 s

)
.

Then letting

S =

{
(〈C ′, X ′〉, 〈A′1, X〉, · · · , 〈A′m, X ′〉) : X ′ =

(
X 0
0 s

)
� 0

}
(3)

then no primal solution of value greater or equal to µ means that v := (µ, b1, · · · , bm) /∈ S. At this
point, we would like to use the separating hyperplane theorem (see below) to separate v from S
since S is a nonempty convex set.

Theorem 7 (Separating hyperplane theorem) Let S ⊂ Rn be a nonempty, closed, convex set
and v /∈ S. Then there exists y ∈ Rn : yT v < yTx for all x ∈ S.

However, and here is where the trouble is, the set S given in (3) might not be a closed set. In
the case of linear programming, S would be a closed set as it is a linear mapping of a polyhedral
set. However, for semidefinite programming, a linear map of the positive semidefinite cone might
not be closed. Here is an example.

Example 2 Consider

S =

{(
〈
(

0 0
0 1

)
, X〉, 〈

(
0 1
1 0

)
, X〉

)
: X � 0

}
.

Observe that (ε, 2) ∈ S for any ε > 0 as it corresponds to X =

(
1/ε 1
1 ε

)
� 0. However, (0, 2) /∈ S,

showing that S is not closed.

So, in order to use Theorem 7, we need to consider the closure S̄ of S, where S is given by (3).
So, there are 2 possibilities:

1. v /∈ S̄; in this case, we’ll use the separating hyperplane theorem,

2. v ∈ S̄ \S; in this case, we will need to show that we can get arbitrarily close to µ in the primal.

We first consider case 1. By the separating hyperplane theorem, we get a vector y = (y0, · · · , ym)
such that

y0µ+

m∑
i=1

yibi < y0〈C ′, X ′〉+

m∑
i=1

yi〈A′i, X ′〉 (4)

for all X ′ =

(
X 0
0 s

)
� 0. The left-hand-side of (4) must be < 0 (by considering X ′ = 0), and the

right-hand-side must be ≥ 0 for any X ′ (otherwise we could tak a multiple of X ′ and contradict (4).
Thus,

y0µ+

m∑
i=1

yibi < 0, (5)

and from 〈y0C ′ +
∑m

i=1 yiAi, X
′〉 ≥ 0 for all X ′ =

(
X 0
0 s

)
� 0, we get y0 ≤ 0 and

y0C +

m∑
i=1

yiAi � 0. (6)
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If y0 = 0 then we get that bT y < 0 and
∑

i yiAi � 0 which implies that the dual is unbounded
(indeed, if ỹ is dual feasible then ỹ + λy is dual feasible for any λ ≥ 0) contradicting the fact that
the primal is feasible. Thus we must have that y0 < 0. By dividing by −y0, we get that ŷ = 1

−y0
y

satisfies
∑

i ŷiAi � C and ŷT b < µ. Thus we have found a dual solution of value strictly smaller
than µ.

In the second case, we assume that v ∈ S̄ \ S. Thus we have a sequence v(k) ∈ S such that
v(k) → v. This means that we have a sequence X(k) � 0 such that 〈Ai, X

(k)〉 → bi for all i = 1, · · · ,m
and 〈C,X(k)〉 → µ. But the Ai’s can be assumed to be linearly independent (otherwise just get rid of
linearly dependent equations) and therefore, there exists Zi for i = 1, · · · ,m such that 〈Aj , Zi〉 = δij
(ie. 1 if i = j and 0 otherwise). Now, consider

X̂(k) = X(k) +

m∑
i=1

(bi − 〈Ai, X
(k)〉)Zi.

Observe that 〈Ai, X̂
(k)〉 = bi for all i, but of course X(k) 6� 0. Still it is close to be, as X(k) is

and bi − 〈Ai, X
(k)〉 → 0 as k → ∞. We’ll finally use the condition that there exists a strictly

feasible solution X(0) to the primal. This means that for an appropriate 0 < αk < 1, we have that
X̄(k) = αkX

(0) + (1 − αk)X̂(k) is primal feasible and, after calculations, one can show that we can
choose αk such that αk → 0 as k →∞. Thus X̄(k) is primal feasible and its primal value converges
to µ.

Summarizing, for any µ, we have one of the following:

• a primal feasible solution of value ≥ µ,

• a dual feasible solution of value < µ, or

• a sequence of primal feasible solutions converging to µ.

By choosing µ to be the infimum in the dual, we see that there is no duality gap. We haven’t shown
yet that the dual value is attained, but we leave this to the reader.
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