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Lecture 5
Lecturer: Michel X. Goemans Scribe: Yehua Wei (2009)

In this lecture, we establish the connection between nowhere-zero k-flows and nowhere-zero
Zi-flows. Then, we present several theorems of relations between edge-connectivity of a
graph and the existence of nowhere-zero flows.

1 Nowhere-zero k-flow

Let us first recall some definitions from the previous lecture.

Definition 1 Let G = (V, E) be a directed graph, and T' be an abelian group. A nowhere-
zero I'-flow is ¢ : E — I'\ {0} such that

Z o(e) = Z P(e) (flow conservation ).

e€d—(v) e€dt(v)

If G is undirected, then we say that it has a nowhere-zero I' flow if the graph admits a
nowhere-zero I' flow after giving an orientation to all the edges.

As we saw, if one orientation works then any does, since inverses exist in abelian groups.

Definition 2 Let G be an undirected graph. For integer k > 2, a nowhere-zero k-flow ¢ is

an assignment ¢ : E — {1,...,k—1} such that for some orientation of G flow conservation
1$ achieved, i.e.,
. b= Y o)
e€d—(v) ecét(v)
forallveV.
It is often convenient to fix an orientation and let ¢ take values in {£1,--- ,£(k —1)}.

Theorem 1 (Tutte 1950) Let G be an undirected graph. Then G has a nowhere-zero
k-flow <= G has a nowhere-zero Zy-flow.

Proof: (=): By definition of nowhere-zero flows.

(<): Let ¢ be a nowhere-zero Zy-flow, define e(v) = > 5+ () @(€) = Xoces- () @(€) for all
v € V, under group operation in Z. Observe that all e(v)’s are multiples of k. Without
loss of generality, we can assume ¢ is the nowhere-zero Zy-flow such that ) i |e(v)] is
minimized where we minimize over all ¢ and all orientations of G..

Suppose ),y |e(v)| = 0, then we have obtained a nowhere-zero k-flow. Otherwise, let
S={v:ew)>0}and T = {v: e(v) < 0}. Since > .y le(v)| > 0and > i e(v) =0,
we have that both S and T are nonempty. Let U be the set of vertices reachable from S.
FUNT =0, then 0 <3 pye(v) =3 cesr () D(€) — Xees— () #(€). But 67(U) = 0, and
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thus implies Ee€5+(U) o(e) — Ze@;_(U) ¢(e) < 0, which is a contradiction. Thus, we must
have U N'T # (), which implies we can find a directed path P from some s € Stot € T.

Now, we "revert” path P to create another nowhere-zero Zj-flow. More formally, for
each arc e € P, reverse the direction of e and define

¢'(e) =k — d(e) Vee P
¢'(e) = ¢(e) Ve ¢ P

Then ¢' is also a nowhere-zero Z-flow (for the new orientation). Let €'(v) = > c5+(,) ¢'(€)—
> eco-() @'(€) for all v € V. Observe that for any v € V'\ {s,t}, €'(v) = e(v). And
e'(s) = e(s) — k, €'(t) = e(t) + k. This implies > oy |€/(v)] < >,y le(v)], contradicting
the minimality of ¢. Therefore, we have »_ i |e(v)| = 0, which implies we also have a
nowhere-zero k-flow. O

Theorem 1 implies that if G has a nowhere-zero k-flow then G has a nowhere-zero k’-flow,
for any integer k' > k. Combine with the theorem from previous lecture which states that
the existence of a nowhere-zero I'-flow depends not on the group structure of I', but only
on the size of I', we have obtained the following corollary:

Corollary 2 G has a nowhere-zero I'-flow = G has a nowhere-zero I flow for any
T > |17

2 Nowhere-zero Flow and Edge Connectivity

Now, we discuss some open problems and known results of the relation between a graph’s
edge connectivity and the existence of its nowhere-zero flows. We begin with a famous
conjecture of Tutte.

Conjecture 1 FEvery 4-edge-connected graph has a nowhere-zero 3-flow.

And here is a weaker version of this conjecture.

Conjecture 2 There exists a positive integer k such that every k-edge-connected graph has
a nowhere-zero 3-flow.

This was open for many years and was very recently settled. Carsten Thomasen [2] just
showed that every 8-edge-connected graph has a nowhere-zero 3-flow, and this was improved
[3] to show that the same is true for 6-edge-connected graphs.

Now, we present some of the results that is known about nowhere-zero flow and edge
connectivity.

Theorem 3 (Jaeger) If an undirected graph G = (V, E) is j-edge-connected, then G has
a nowhere-zero 4-flow (or nowhere-zero Ly X Za-flow).

It is also shown that there is an efficient algorithm for finding a nowhere-zero 4-flow of any
given graph G.
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Theorem 4 (Jaeger) If an undirected graph G = (V, E) is 2-edge-connected, then G has
a nowhere-zero 8-flow (or nowhere-zero Zg x ZLa X ZLa-flow).

Theorem 5 (Seymour) If G is 2-edge-connected, then G has a nowhere-zero 6-flow.

The proofs for all three theorems stated are constructive. Seymour also conjectured that if
G is 2-edge-connected, then G has a nowhere-zero 5-flow.

Here, we will present the proofs of the two theorems by Jaeger. Before we present the
proofs, we first state and prove a very useful proposition.

Proposition 6 Given an undirected graph G = (V, E), G has a nowhere-zero 2P-flow <=
there exists Fy, Iy, ..., F, C I, such that E = UleFi, and for any 1 <1 <p, F; is an even
graph (every vertex of F; has even degree).

Proof: («): Given Fi,..., F), define a Zy x Zy x ... X Zy circulation ¢ as:

1 ifee F;
[@(e)]i = { 0 otherwise

Since F = UleFi, ¢ is a nowhere-zero Zo X Zo X ... X Zo-flow.
(=): Let ¢ be a nowhere-zero Zs X Zg X ... X Zo-flow of G (which exists since G has a
nowhere-zero 2P-flow). For 1 <i < p, define

F; ={ele € E and [¢(e)]; = 1}
This means F; is an even graph for any ¢ and £ = UY_| F;. n

We also make use of a theorem by Nash-Williams, which we state without proof; we will
prove it later in the class.

Theorem 7 (Nash-Williams) If an undirected graph G = (V, E) is 2k-edge-connected,
then G has k-edge-disjoint spanning trees.

Now, we have enough tools to present the proofs of Jaeger.
Proof: [Proof of Theorem 3] By the theorem of Nash-Williams, we can find two edge
disjoint spanning trees of G, say 11, T5.

Claim 8 JA; C T4, such that (E\T1)UA; is even (again, by even, we mean for allv € V,
v has even degree in (E\ T1)U Ay ).

Proof: [Proof of the Claim|: We prove the claim by describe an algorithm to find A;.
Start the algorithm with U = E\ Ty, A1 = () and T' = Tj. At every iteration, find a leaf
vertex v of T. If the degree of v in U is even, leave U as it is, and if degree of v in U is
odd, add the edge of T incident to v into U and A;. Next, delete v, update 7" and start
another iteration. At the end of the algorithm (when 7' has exactly one vertex left), we
have that U has all even degrees except possibly at that last vertex. But the sum of degrees
(in U) of all vertices must be even, so all vertices in U must have even degrees. So we have
U= (E\Ti)UA; and U is even. O

By similar argument, there also exists Ay C T5, such that (E \ T3) U Ag is even. Now let
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F = (E \ Tl) UAq, Fr = (E \ Tg) UAy. Then ThNTy =0 implies that F1 U F» = E. By
proposition 6, we have that G has a nowhere-zero 4-flow. O

Now, we prove Theorem 4, which is similar to the previous proof.

Proof: [Proof of Theorem 4] Suppose G is 2-edge-connected but not 3-edge-connected.
Then, there exists a cut {e1, e2}. Without loss of generality, assume that, in our orientation
of G, e; and e disagree in orientation within the cut {e1,es}. Let G’ = G/ey, and by
induction (on the number of vertices), G’ has a nowhere-zero 8-flow ¢'. Define

[ 9(e) ife#e
[é(e)] - { ¢/(62) lf e = 61

Then ¢(e) is a nowhere-zero 8-flow of G (by flow conservation across the cut {ej,ea}).
Now, suppose G is 3-edge-connected, then we duplicate every edge of G to create G’ =
(V,E'). Clearly, G’ is 6-edge-connected. Again, by Nash-Williams, there exists pairwise
disjoint spanning trees 17, Ty, T4 C E’, such that 7] UTy UTy C E'. Define T; = {e € Ele is
in T/ or the duplicate of e is in T)}. Then Ty, 7%, T3 are spanning trees in (V, E), such that
for any e € E, there is ¢ such that e ¢ T;. By similar arguments as in the last proof, we can
find Aj, Aa, Az such that (E\ T;) U 4; is even. Let F; = (E'\ T;) U A;. Since Ve € E, there
is some ¢ such that e ¢ T; (and thus e € F;), we have E = F; U F5 U F3. Now, the proof is
completed by applying Proposition 6. O

3 Transforming nowhere-zero flows

The proof we gave of Tutte’s theorem stating that the existence of a nowhere-zero I'-flow
in G depends only on |T'| is non-constructive. In this section, we prove it algorithmically by
going from any nowhere-zero I'-flow to a nowhere-zero I'-flow where |I'| = |I”|. This does
not seem to be known (or at least widely known); Jensen and Toft [1, p. 210] write:

No constructive proof has been published so far as we know. However, the
arguments given by Minty [1967] for the case k = 4 seem to provide a key to a
constructive proof also in general.

For this purpose, we use the fundamental theorem of finite abelian groups which says
that any finite abelian group is isomorphic to Zg x --- X Z4, where the ¢;’s are prime
powers (the constructions below will work even for general ¢;’s). Throughout this section,
we consider a directed graph G = (V, E), so when we talk about a nowhere-zero k-flow ¢,
we assume that ¢ takes values in {£1,--- ,+(k —1)}.

As a warm-up, we show algorithmically how to find a nowhere-zero Z4-flow from a
nowhere-zero Zy x Zo-flow. Let ¢ be a nowhere-zero Zg x Zo-flow. Then, let F; = {e|[¢(e)]; #
0}, for ¢ = 1,2. This implies (V, F;) has a nowhere-zero Zs-flow for i = 1,2. Then, we can
find ¢; : F; — {—1,1}, where ¢; is a 2-flow (under operations in Z) for i = {1,2}, and we
can extend it with 0 values to F. Finally, define

¢ =201 + ¢2.
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Then ¢’ satisfies the flow conservation and Ve € E, —3 < ¢/(e) < 3, and ¢/(e) # 0. This
shows ¢’ is a nowhere-zero 4-flow, and taking values modulo 4, we get a Z4-flow of G.

We can extend this procedure to all finite abelian groups, that is, for any group I' =
Zg, X ... X Lgq,, where g;’s are prime powers for 1 < ¢ < £. Let k = (¢1 - g2 - ... - qr),
given a nowhere-zero I'-flow ¢, we can find a nowhere-zero Z-flow ¢’ algorithmically in the
following way. The ith coordinate of ¢ is a Zg,-flow and thus, we can transform it into a
gi-flow (over Z) (instead of changing the orientation as we did in the proof of Theorem 1,
we can simply decrease the flow value along P by ¢;):

¢i EF — {_(Qi — 1), cens —1,0, 1, ceny (Qi — 1)}

for each i = 1,2,...,£. Observe that, by construction, for every e, there exists ¢ such that

¢;i(e) # 0. Then define
¢ i—1
¢'(e) => (] a)si(e)
i=1 j=1

for each e € E. Then, we claim that ¢’ is a nowhere-zero k-flow in G. Indeed, by induction

on h, we have that
h

>

i=1 \j=
implying that (i) ¢'(e) # 0 (by considering the largest ¢ with ¢;(e) # 0) and (ii) |¢'(e)| < k.

i—1

h
g | oile) < [[[]ai ) -1
1 j=1

The converse can also be done. From a nowhere-zero Z;-flow, one can construct a
nowhere-zero I'-flow for I' = Z,, X ... X Zy, where k = (¢1 - g2 - ... - q¢). For this, we show
how to get a nowhere-zero Zg, X Zg, flow ¢’ from a nowhere-zero Zg, 4,-flow ¢ for any q1, go.
Remember we have the choice of the orientation; if we flip edge e, we can maintain that ¢
is a Zg, q,-flow by replacing ¢(e) by gig2 — ¢(e). Choose the orientation in such a way that
if we define X by ¢(e) = A(e) (mod ¢1) for all e € E then not only is A a Zg,-flow but also
a q1-flow. This is possible since as we flip edge e, A(e) gets replaced by q; — A(e) which is
what we need. This flow A takes value 0 on the edges of E) = {e : ¢(e) = 0 (mod ¢1)}.
Observe that every value in ¢ — A is a multiple of g1, and thus we can define

i) = — (6le) — Ae)).
q1
Observe that u satisfies the flow conservation constraints modulo ¢y (as they were satisfied
modulo g1¢2 prior to dividing by ¢1), i.e. pu defines a Zg, flow. Furthermore, p(e) # 0
(mod g2) on E; (since otherwise ¢(e) would have been 0). Thus, (A, u) constitutes a
nowhere-zero Zg, X Zg,-flow on G.
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