Lecture 19

Lecturer: Michel X. Goemans
Scribe: Juliane Dunkel
(These notes are based on notes by Jan Vondrák and Mohammed Mahdian.)
In the last lecture, we showed that every 2k-edge-connected graph has a k-arc-connected orientation. The proof was based on matroid intersection. In this lecture, we derive a result on the construction of 2 k -edge-connected graphs that allows us to derive a different proof for the above orientation theorem.

In the second part of this lecture, we discuss minimization of submodular functions.

$1 k$-edge-connectivity

Theorem 1 Let $M_{2 k}$ denote the graph consisting of two vertices that are connected by $2 k$ parallel edges.

Then any $2 k$-connected multigraph $G=(V, E)$ can be built from $M_{2 k}$ by repeatedly
(i) adding edges
(ii) pinching k edges $\left(u_{i}, v_{i}\right) \in E, i=1, \ldots, k$; that is, adding a new vertex s to V and replacing each edge $\left(u_{i}, v_{i}\right)$ by $\left(u_{i}, s\right)$ and $\left(v_{i}, s\right)$.

In order to prove this theorem we need two lemmata. By minimally k-edge-connected, we mean a graph for which the removal of any edge loses the k-edge-connectivity of the graph.

Lemma 2 Every minimally k-edge-connected graph $G=(V, E)$ has a vertex of degree k.
Proof: Let $S \subseteq V$ be minimal such that $d(S):=|\delta(S)|=k$. Such S exists, since G is minimally k-edge-connected. If $|S|=1$, then there is nothing to show. Suppose $|S| \geq 2$. Since $G[S]$ is connected, there exists an edge $e=(u, v) \in E(S)$. Because of the minimally k-edge-connectivity of G, there must exist a cut $\delta(T)$ of size k cutting e; i.e., $u \in T, v \notin T$ and $d(T)=k$. Note that $u \in S \cap T$, i.e., $S \cap T \neq \emptyset$. By submodularity of the cut function

$$
d(S \cap T)+d(S \cup T) \leq d(S)+d(T)=k+k
$$

If $S \cup T \neq V$, then k-edge-connectivity of G implies $d(S \cap T)=k$. If $S \cup T=V$, then

$$
\delta(S \backslash T)=\delta(T)
$$

implying $d(S \backslash T)=k$. In both cases we have a contradiction to the minimality of S.

The second lemma describes a technique developed by Lovász which is very useful for connectivity augmentation and other questions concerning edge-connectivity.

Lemma 3 (Splitting-Off-Lemma) Let $G=(V+s, E)$ be an undirected graph such that s has even degree and $d(s) \geq 2$. Assume that

$$
\begin{equation*}
\forall \emptyset \neq U \subset V: d(U)=|\delta(U)| \geq k \tag{1}
\end{equation*}
$$

where $k \geq 2$. Then for every edge $(s, t) \in E$ there exists an edge $(s, u) \in E$ such that the graph $G\left(V+s, E^{\prime}\right)$ with $E^{\prime}=E \backslash\{(s, t),(s, u)\} \cup\{(t, u)\}$ also satisfies ([1).
Proof: Suppose that for some edge $(s, t) \in E$ there is no edge $(s, u) \in E$ such that $G=(V+s, E \backslash\{(s, t),(s, u)\} \cup\{(t, u)\})$ satisfies property (11). Let N denote the set of neighbors of s, i.e., $N=\{u \in V \mid \exists(s, v) \in E\}$. Then for every neighbor $u \in N$ there exists a set $U \subset V$ with $d^{\prime}(U)<k$, where d^{\prime} denotes the degree w.r.t. edge set E^{\prime}. It has to hold that $u, t \in U$ and $d(U) \in\{k, k+1\}$ (see Figure (1). Now consider a minimal collection \mathcal{C} of sets $U \subset V$ with $t \in U$ and $d(U) \leq k+1$ that covers N. For every $U \in \mathcal{C}$ we derive from $d(V \backslash U) \geq k$ (because of property (1) for G) that

$$
\begin{aligned}
1 & \geq d(U)-d(V \backslash U) \\
& =(d(s, U)+d(U, V \backslash U))-(d(V \backslash U, U)+d(s, V \backslash U))=d(s, U)-d(s, V \backslash U) .
\end{aligned}
$$

Because $d(s, U)-d(s, V \backslash U)$ is an even integer (since their sum is even), we get $d(s, U)-$ $d(s, V \backslash U) \leq 0$, which implies $d(s, U) \leq \frac{1}{2} d(s)$.

Figure 1: A set U with $d(U) \leq k+1$ and $u \in U$
The last observation clearly implies $|\mathcal{C}| \geq 2$. However, $|\mathcal{C}|=2$ is not possible. If $\mathcal{C}=\left\{U_{1}, U_{2}\right\}$, then

$$
\left|N \cap\left(U_{1} \cup U_{2}\right)\right| \leq\left|N \cap U_{1}\right|+\left|N \cap U_{2}\right|-1=|N|-1
$$

and \mathcal{C} cannot cover N. Therefore, \mathcal{C} contains at least three sets U_{1}, U_{2}, U_{3} such that

$$
\begin{aligned}
t \in U_{1} \cap U_{2} \cap U_{3} & \\
U_{1} \backslash\left(U_{2} \cup U_{3}\right) & \neq \emptyset \\
U_{2} \backslash\left(U_{1} \cup U_{3}\right) & \neq \emptyset \\
U_{3} \backslash\left(U_{1} \cup U_{2}\right) & \neq \emptyset .
\end{aligned}
$$

It is easy to show (by looking at the contribution of every edge) that, for any U_{1}, U_{2}, U_{3} with the above properties, 3-way-submodularity holds, i.e.,

$$
\begin{aligned}
d\left(U_{1}\right)+d\left(U_{2}\right)+d\left(U_{3}\right) \geq d\left(U_{1} \cap U_{2} \cap U_{3}\right)+ & d\left(U_{1} \backslash\left(U_{2} \cup U_{3}\right)\right) \\
& d\left(U_{2} \backslash\left(U_{1} \cup U_{3}\right)\right)+d\left(U_{3} \backslash\left(U_{1} \cup U_{2}\right)\right) .
\end{aligned}
$$

In our special case with $(s, t) \in E$ we can strengthen the above inequality to

$$
\begin{aligned}
d\left(U_{1}\right)+d\left(U_{2}\right)+d\left(U_{3}\right) \geq d\left(U_{1} \cap U_{2} \cap U_{3}\right)+ & d\left(U_{1} \backslash\left(U_{2} \cup U_{3}\right)\right) \\
& d\left(U_{2} \backslash\left(U_{1} \cup U_{3}\right)\right)+d\left(U_{3} \backslash\left(U_{1} \cup U_{2}\right)\right)+2 .
\end{aligned}
$$

This is, since (s, t) is counted three times on the left-hand side and only once on the right-hand side. With $d\left(U_{i}\right) \leq k+1, i=1,2,3$, and property (11) for G, we obtain $3 k+3 \geq 4 k+2$, implying $k \leq 1$. This contradicts the assumption that $k \geq 2$.

The last lemma states that we can "split off" a vertex s of even degree by replacing certain pairs of edges incident to s by other edges while preserving k-edge-connectivity between all vertices other than s. Now we will demonstrate its application to the construction of all $2 k$-edge-connected graphs.
Proof of Theorem [1] Let $G=(V, E)$ be a 2k-edge-connected graph. We will show that by a sequence of removing edges and splitting-off vertices we obtain $M_{2 k}$. Since these operations are the reverse operations to (i) adding and (ii) pinching edges, the statement in the theorem follows.

Starting from G, we can remove edges until there exists a vertex s of degree $2 k$. The existence of such vertex is guaranteed by Lemma 2. Then by applying Lemma 3 k times, we can remove vertex s while preserving 2 k -edge-connectivity. Repeating this procedure we can shrink G to a graph G^{\prime} that has two vertices only and that is 2 k -edge-connected. Consequently, $G^{\prime}=M_{2 k}$.

Remark 1 Theorem \square gives another proof that any $2 k$-edge-connected graph G has a k -arc-connected orientation. Starting from $M_{2 k}$ with k edges oriented each way, we build G by (i) adding edges with an arbitrary orientation and (ii) pinching edges, where an arc is replaced by two arcs oriented the same way. This procedure preserves k-arc-connectivity.

2 Submodular function minimization

Definition $1 A$ set function $f: 2^{V} \rightarrow \mathbb{Z}$ is called submodular if

$$
\forall A, B \subseteq V: f(A)+f(B) \geq f(A \cap B)+f(A \cup B)
$$

Equivalently,

$$
\forall A \subseteq B \quad \forall j \notin B: f(A+j)-f(A) \geq f(B+j)-f(B)
$$

Examples of submodular functions are the rank function of a matroid, the cut function $d(S)=|\delta(S)|$ of an undirected graph, and the cut function $d^{+}(S)=\left|\delta^{+}(S)\right|$ of a directed graph. Also, given random variables X_{1}, \ldots, X_{n}, the entropy function

$$
H(S)=-\sum_{x_{i}: i \in S} p\left(X_{i}=x_{i} \forall i \in S\right) \log p\left(X_{i}=x_{i} \forall i \in S\right)
$$

is submodular (here, $V=\{1, \ldots, n\}, S \subseteq V$). Finally, given vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ in general position,

$$
f(S)=\log \operatorname{Vol}\left(\left\{\sum_{i \in S} \lambda_{i} a_{i} \mid 0 \leq \lambda_{i} \leq 1 \quad \forall i \in S\right\}\right)
$$

is a submodular function (the volume is taken in the appropriate affine dimension) .
Problem Statement. Let $f: 2^{V} \rightarrow \mathbb{Z}$ be a submodular function given by an oracle. The task is to find a set $S \subseteq V$ that minimizes $f(S)$ over all subsets S of V. We can assume without loss of generality that $f(\emptyset)=0$ (by adding a constant, if necessary).

This problem has many applications. As an example, consider the matroid intersection problem that we discussed in previous lectures. We know that

$$
\max _{U \in \mathcal{I}_{1} \cap \mathcal{I}_{2}}|U|=\min _{T \subseteq S}\left(r_{1}(T)+r_{2}(S \backslash T)\right)
$$

Since the rank function of a matroid is submodular and the sum of two submodular function is submodular, finding a set of maximum size that is independent for both matroids is equivalent to minimizing a submodular function. As another example, for the Shannon switching game, the opimum strategy required being able to minimize $2 r(X)-|X|$ over all sets X.

The obvious way to minimize any set function is to evaluate f for all possible sets. However, this requires an exponential number of oracle calls. If the function f has no particular structure, then there is no better way to find the minimum than calling the oracle on each of the $2^{|V|}$ sets. However, in the case of submodular functions several algorithms that use only a polynomial number of calls to the oracle have been developed. A first important question that arises in this context is the question of a compact certificate of optimality. That is, given $S \subseteq V$ that minimizes f over all subsets of V, how can we certify that S is indeed a minimizing set?

Definition 2 Let $f: 2^{V} \rightarrow \mathbb{Z}$ be a submodular function such that $f(\emptyset)=0$. We define the submodular polyhedron of f by

$$
P(f)=\left\{x \in \mathbb{R}^{V}: x(S) \leq f(S) \quad \forall S \subseteq V\right\}
$$

and the base polyhedron of f by

$$
B(f)=\left\{x \in \mathbb{R}^{V}: x \in P(f), x(V)=f(V)\right\}
$$

Figure 2: $P(f)$ for $V=\{1,2\}, f(\emptyset)=0, f(\{1\})=1, f(\{2\})=-1, f(\{1,2\})=0$

Notice that this definition does not require $x \geq 0$. Figure 2 gives an example of the above definitions. The shaded area shows $P(f)$, the point marked by a cross represents $B(f)$.

A main insight for deriving a polynomial-size certificate of optimality is given in the following theorem.

Theorem 4 Let $f: 2^{V} \rightarrow \mathbb{Z}$ be a submodular function such that $f(\emptyset)=0$. Then

$$
\min _{S \subseteq V} f(S)=\max \left\{x^{-}(V) \mid x \in B(f)\right\}
$$

where $x^{-}(U)=\sum_{v \in U} x^{-}(v)=\sum_{x \in U} \min \left(0, x_{v}\right)$.
The general idea for a certificate is to use an optimal solution x of the above convex program (we are maximizing a concave objective function over a polyhedral set) and show that $f(S)=x^{-}(V)$. The difficulty is to show efficiently that $x \in B(f)$. This issue will be discussed in detail in the next lecture. Here, we only outline the basic idea:

- Define a linear order L on V.
- For all $u \in V$, define $L(u):=\left\{v \in V: v \leq_{L} u\right\}$ and $y_{L}(u):=f(L(u))-f(L(u) \backslash\{u\})$.
- Show that for all $u \in V: y_{L}(L(u))=f(L(u))$ is an extreme point of $B(f)$.
- Show that for all extreme points x of $B(f)$ there exists an order L such that $x=y_{L}$.
- Provide a set of linear orders L_{1}, \ldots, L_{k} (polynomially many) and corresponding multipliers $0 \leq \lambda_{i} \leq 1, i=1, \ldots, k$ such that $x=\sum_{i=1}^{k} \lambda_{i} y_{L_{i}}$, i.e., x is a convex combination of the associated extreme points of $B(f)$. That will be our certificate that $x \in B(f)$.

