
18.438 Advanced Combinatorial Optimization November 12, 2009

Lecture 19

Lecturer: Michel X. Goemans Scribe: Juliane Dunkel

(These notes are based on notes by Jan Vondrák and Mohammed Mahdian.)
In the last lecture, we showed that every 2k-edge-connected graph has a k-arc-connected

orientation. The proof was based on matroid intersection. In this lecture, we derive a
result on the construction of 2k-edge-connected graphs that allows us to derive a different
proof for the above orientation theorem.

In the second part of this lecture, we discuss minimization of submodular functions.

1 k-edge-connectivity

Theorem 1 Let M2k denote the graph consisting of two vertices that are connected by 2k
parallel edges.

1

2

k

Then any 2k-connected multigraph G = (V,E) can be built from M2k by repeatedly

(i) adding edges

(ii) pinching k edges (ui, vi) ∈ E, i = 1, . . . , k; that is, adding a new vertex s to V and
replacing each edge (ui, vi) by (ui, s) and (vi, s).

In order to prove this theorem we need two lemmata. By minimally k-edge-connected,
we mean a graph for which the removal of any edge loses the k-edge-connectivity of the
graph.

Lemma 2 Every minimally k-edge-connected graph G = (V,E) has a vertex of degree k.

Proof: Let S ⊆ V be minimal such that d(S) := |δ(S)| = k. Such S exists, since G is
minimally k-edge-connected. If |S| = 1, then there is nothing to show. Suppose |S| ≥ 2.
Since G[S] is connected, there exists an edge e = (u, v) ∈ E(S). Because of the minimally
k-edge-connectivity of G, there must exist a cut δ(T ) of size k cutting e; i.e., u ∈ T, v /∈ T
and d(T ) = k. Note that u ∈ S ∩T , i.e., S ∩T 6= ∅. By submodularity of the cut function

d(S ∩ T ) + d(S ∪ T ) ≤ d(S) + d(T ) = k + k .

If S ∪ T 6= V , then k-edge-connectivity of G implies d(S ∩ T ) = k. If S ∪ T = V , then

δ(S \ T ) = δ(T ) ,
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implying d(S \ T ) = k. In both cases we have a contradiction to the minimality of S. 2

The second lemma describes a technique developed by Lovász which is very useful for
connectivity augmentation and other questions concerning edge-connectivity.

Lemma 3 (Splitting-Off-Lemma) Let G = (V +s,E) be an undirected graph such that
s has even degree and d(s) ≥ 2. Assume that

∀ ∅ 6= U ⊂ V : d(U) = |δ(U)| ≥ k , (1)

where k ≥ 2. Then for every edge (s, t) ∈ E there exists an edge (s, u) ∈ E such that the
graph G(V + s,E′) with E′ = E \ {(s, t), (s, u)} ∪ {(t, u)} also satisfies (1).

Proof: Suppose that for some edge (s, t) ∈ E there is no edge (s, u) ∈ E such that
G = (V + s,E \ {(s, t), (s, u)} ∪ {(t, u)}) satisfies property (1). Let N denote the set of
neighbors of s, i.e., N = {u ∈ V | ∃(s, v) ∈ E}. Then for every neighbor u ∈ N there
exists a set U ⊂ V with d′(U) < k, where d′ denotes the degree w.r.t. edge set E′. It
has to hold that u, t ∈ U and d(U) ∈ {k, k + 1} (see Figure 1). Now consider a minimal
collection C of sets U ⊂ V with t ∈ U and d(U) ≤ k + 1 that covers N . For every U ∈ C
we derive from d(V \ U) ≥ k (because of property (1) for G) that

1 ≥ d(U) − d(V \ U)

= (d(s, U) + d(U, V \ U)) − (d(V \ U,U) + d(s, V \ U)) = d(s, U) − d(s, V \ U) .

Because d(s, U)− d(s, V \U) is an even integer (since their sum is even), we get d(s, U)−
d(s, V \ U) ≤ 0, which implies d(s, U) ≤ 1

2
d(s).

t

u
U

s

Figure 1: A set U with d(U) ≤ k + 1 and u ∈ U

The last observation clearly implies |C| ≥ 2. However, |C| = 2 is not possible. If
C = {U1, U2}, then

|N ∩ (U1 ∪ U2)| ≤ |N ∩ U1| + |N ∩ U2| − 1 = |N | − 1 ,

and C cannot cover N . Therefore, C contains at least three sets U1, U2, U3 such that

t ∈ U1 ∩ U2 ∩ U3

U1 \ (U2 ∪ U3) 6= ∅

U2 \ (U1 ∪ U3) 6= ∅

U3 \ (U1 ∪ U2) 6= ∅ .
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It is easy to show (by looking at the contribution of every edge) that, for any U1, U2, U3

with the above properties, 3-way-submodularity holds, i.e.,

d(U1) + d(U2) + d(U3) ≥ d(U1 ∩ U2 ∩ U3) + d(U1 \ (U2 ∪ U3))

d(U2 \ (U1 ∪ U3)) + d(U3 \ (U1 ∪ U2)) .

In our special case with (s, t) ∈ E we can strengthen the above inequality to

d(U1) + d(U2) + d(U3) ≥ d(U1 ∩ U2 ∩ U3) + d(U1 \ (U2 ∪ U3))

d(U2 \ (U1 ∪ U3)) + d(U3 \ (U1 ∪ U2)) + 2 .

This is, since (s, t) is counted three times on the left-hand side and only once on the
right-hand side. With d(Ui) ≤ k + 1, i = 1, 2, 3, and property (1) for G, we obtain
3k + 3 ≥ 4k + 2, implying k ≤ 1. This contradicts the assumption that k ≥ 2. 2

The last lemma states that we can “split off” a vertex s of even degree by replacing
certain pairs of edges incident to s by other edges while preserving k-edge-connectivity
between all vertices other than s. Now we will demonstrate its application to the con-
struction of all 2k-edge-connected graphs.
Proof of Theorem 1: Let G = (V,E) be a 2k-edge-connected graph. We will show
that by a sequence of removing edges and splitting-off vertices we obtain M2k. Since these
operations are the reverse operations to (i) adding and (ii) pinching edges, the statement
in the theorem follows.

Starting from G, we can remove edges until there exists a vertex s of degree 2k. The
existence of such vertex is guaranteed by Lemma 2. Then by applying Lemma 3 k times,
we can remove vertex s while preserving 2k-edge-connectivity. Repeating this procedure
we can shrink G to a graph G′ that has two vertices only and that is 2k-edge-connected.
Consequently, G′ = M2k. 2

Remark 1 Theorem 1 gives another proof that any 2k-edge-connected graph G has a k-
arc-connected orientation. Starting from M2k with k edges oriented each way, we build G
by (i) adding edges with an arbitrary orientation and (ii) pinching edges, where an arc is
replaced by two arcs oriented the same way. This procedure preserves k-arc-connectivity.

2 Submodular function minimization

Definition 1 A set function f : 2V → Z is called submodular if

∀A,B ⊆ V : f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) .

Equivalently,

∀A ⊆ B ∀ j /∈ B : f(A + j) − f(A) ≥ f(B + j) − f(B) .
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Examples of submodular functions are the rank function of a matroid, the cut function
d(S) = |δ(S)| of an undirected graph, and the cut function d+(S) = |δ+(S)| of a directed
graph. Also, given random variables X1, . . . ,Xn, the entropy function

H(S) = −
∑

xi:i∈S

p(Xi = xi ∀ i ∈ S) log p(Xi = xi ∀ i ∈ S)

is submodular (here, V = {1, . . . , n}, S ⊆ V ). Finally, given vectors a1, . . . , an ∈ R
n in

general position,

f(S) = log V ol
({

∑

i∈S

λiai | 0 ≤ λi ≤ 1 ∀ i ∈ S
})

is a submodular function (the volume is taken in the appropriate affine dimension) .

Problem Statement. Let f : 2V → Z be a submodular function given by an oracle.
The task is to find a set S ⊆ V that minimizes f(S) over all subsets S of V . We can
assume without loss of generality that f(∅) = 0 (by adding a constant, if necessary).

This problem has many applications. As an example, consider the matroid intersection
problem that we discussed in previous lectures. We know that

max
U∈I1∩I2

|U | = min
T⊆S

(r1(T ) + r2(S \ T )) .

Since the rank function of a matroid is submodular and the sum of two submodular
function is submodular, finding a set of maximum size that is independent for both ma-
troids is equivalent to minimizing a submodular function. As another example, for the
Shannon switching game, the opimum strategy required being able to minimize 2r(X)−|X|
over all sets X.

The obvious way to minimize any set function is to evaluate f for all possible sets.
However, this requires an exponential number of oracle calls. If the function f has no
particular structure, then there is no better way to find the minimum than calling the
oracle on each of the 2|V | sets. However, in the case of submodular functions several
algorithms that use only a polynomial number of calls to the oracle have been developed.
A first important question that arises in this context is the question of a compact certificate
of optimality. That is, given S ⊆ V that minimizes f over all subsets of V , how can we
certify that S is indeed a minimizing set?

Definition 2 Let f : 2V → Z be a submodular function such that f(∅) = 0. We define
the submodular polyhedron of f by

P (f) = {x ∈ R
V : x(S) ≤ f(S) ∀S ⊆ V } ,

and the base polyhedron of f by

B(f) = {x ∈ R
V : x ∈ P (f), x(V ) = f(V )} .
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Figure 2: P (f) for V = {1, 2}, f(∅) = 0, f({1}) = 1, f({2}) = −1, f({1, 2}) = 0

Notice that this definition does not require x ≥ 0. Figure 2 gives an example of the
above definitions. The shaded area shows P (f), the point marked by a cross represents
B(f).

A main insight for deriving a polynomial-size certificate of optimality is given in the
following theorem.

Theorem 4 Let f : 2V → Z be a submodular function such that f(∅) = 0. Then

min
S⊆V

f(S) = max{x−(V ) |x ∈ B(f)} ,

where x−(U) =
∑

v∈U
x−(v) =

∑

x∈U
min(0, xv).

The general idea for a certificate is to use an optimal solution x of the above convex
program (we are maximizing a concave objective function over a polyhedral set) and show
that f(S) = x−(V ). The difficulty is to show efficiently that x ∈ B(f). This issue will be
discussed in detail in the next lecture. Here, we only outline the basic idea:

• Define a linear order L on V .

• For all u ∈ V , define L(u) := {v ∈ V : v ≤L u} and yL(u) := f(L(u))−f(L(u)\{u}).

• Show that for all u ∈ V : yL(L(u)) = f(L(u)) is an extreme point of B(f).

• Show that for all extreme points x of B(f) there exists an order L such that x = yL.

• Provide a set of linear orders L1, . . . , Lk (polynomially many) and corresponding
multipliers 0 ≤ λi ≤ 1, i = 1, . . . , k such that x =

∑

k

i=1
λi yLi

, i.e., x is a convex
combination of the associated extreme points of B(f). That will be our certificate
that x ∈ B(f).
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