The lecture started with some additional discussion of matroid matching and this was included in the previous scribe notes.

1 Graph Orientations

We first introduce some notation and definitions. Let $G=(V, E)$ be an undirected graph. Recall that for a non-empty subset $U \subset V$, the notation $\delta_{G}(U)$ denotes the set of edges with one endpoint in U and the other endpoint in $V \backslash U$.

Definition 1 Let $\lambda_{G}(u, v)$ denote the maximum number of edge-disjoint u-v paths in G. We say that G is k-edge-connected if $\lambda_{G}(u, v) \geq k$ for all $u \neq v \in V$. An equivalent statement is that each cut contains at least k edges, i.e., $\left|\delta_{G}(U)\right| \geq k$ for all non-empty $U \subset V$.

Let $D=(V, A)$ be a directed graph. For a non-empty subset $U \subset V, \delta_{D}^{+}(U)$ is the set of arcs with their tail in U and head in $V \backslash U$, and $\delta_{D}^{-}(U)$ is the set of arcs in the reverse direction.

Definition 2 Let $\lambda_{D}(u, v)$ denote the maximum number of edge-disjoint directed paths in D from u to v. We say that D is k-arc-connected if $\lambda_{D}(u, v) \geq k$ for each $u, v \in V$. An equivalent statement is that $\left|\delta_{D}^{+}(U)\right| \geq k$ for all non-empty $U \subset V$. A digraph that is 1-arc-connected is also called strongly connected.

An orientation of a graph G is a digraph obtained by choosing a direction for each edge of G. We now give some results relating edge-connectivity of G to arc-connectivity of orientations of G.

Theorem 1 (Robbins, 1939) G is 2-edge-connected \Longleftrightarrow there exists an orientation D of G that is strongly connected.

Proof: \Leftarrow : Fix a strongly-connected orientation D. For any non-empty $U \subset V$, we may choose $u \in U$ and $v \in V \backslash U$. Since D is strongly connected, there is a directed u - v path and a directed $v-u$ path. Thus $\left|\delta_{D}^{+}(U)\right| \geq 1$ and $\left|\delta_{D}^{-}(U)\right| \geq 1$, implying $\left|\delta_{G}(U)\right| \geq 2$.
\Rightarrow : Since G is 2-edge-connected, it has an ear decomposition. We proceed by induction on the number of ears. If G is a cycle then we may orient the edges to form a directed cycle D, which is obviously strongly connected. Otherwise, G consists of an ear P and subgraph G^{\prime} with a strongly connected orientation D^{\prime}. The ear is an undirected path with endpoints $x, y \in V\left(G^{\prime}\right)$ (possibly $x=y$). We orient P so that it is a directed path from x to y and add this to D^{\prime}, thereby obtaining an orientation D of G.

To show that D is strongly connected, consider any $u, v \in V(G)$. If $u, v \in V\left(G^{\prime}\right)$ then by induction there is a $u-v$ dipath. If $u \in P$ and $v \in V\left(G^{\prime}\right)$ then there is a $u-y$ dipath and by induction there is a $y-v$ dipath. Concatenating these gives a $u-v$ dipath. The case $u \in V\left(G^{\prime}\right)$ and $v \in P$ is symmetric. If both $u, v \in P$ then either a subpath of P is a $u-v$ path, or there exist a $u-y$ path, a $y-x$ path, and a $x-v$ path. (The $y-x$ path exists by induction). Concatenating these three paths gives a $u-v$ path.

The natural generalization of this theorem also holds.
Theorem 2 (Nash-Williams, 1960) G is $2 k$-edge-connected \Longleftrightarrow there exists an orientation D of G that is k-arc-connected.

We will prove this using matroid intersection. Let $G=(V, E)$ be a $2 k$-edge-connected graph and let $D=(V, A)$ denote the bidirected version of G, with two arcs (u, v) and (v, u) for each edge $\{u, v\}$. (All graphs in this lecture can be multigraphs.) We define two matroids on the ground set of $\operatorname{arcs} A$. The first one is a partition matroid:

$$
\mathcal{M}_{1}=(A,\{B \subseteq A: \forall \text { edge }\{u, v\} \in E ; B \text { contains at most one of the } \operatorname{arcs}(u, v),(v, u)\})
$$

The bases of \mathcal{M}_{1} are exactly the orientations of G. The second matroid, which will force the orientation to be k-arc-connected, is more involved. Define

- $H(U)=\{(v, u) \in A: u \in U\}$.
- $\mathcal{C}=\{H(U): \emptyset \subset U \subset V\}$.
- $f(H(U))=|E(U)|+|\delta(U)|-k=|E|-|E(V \backslash U)|-k$.

In other words, $H(U)$ is the set of arcs with their "head" in U (either crossing the cut into U or contained inside U), and $f(H(U))$ is the maximum number of edges oriented like this, so that k arcs leaving U are still available. We need the following definitions.

Definition $3 A$ family of sets $\mathcal{C} \subseteq 2^{A}$ is a crossing family if for all $H_{1}, H_{2} \in \mathcal{C}$ with $H_{1} \cap H_{2} \neq \emptyset$ and $H_{1} \cup H_{2} \neq A$, both $H_{1} \cup H_{2}$ and $H_{1} \cap H_{2}$ are also in \mathcal{C}.

Definition 4 Let \mathcal{C} be a crossing family on 2^{A}. A nonnegative function $f: \mathcal{C} \rightarrow \mathbb{Z}_{+}$is crossing submodular on \mathcal{C} if for all $H_{1}, H_{2} \in \mathcal{C}$, with $H_{1} \cap H_{2} \neq \emptyset$ and $H_{1} \cup H_{2} \neq A$,

$$
f\left(H_{1}\right)+f\left(H_{2}\right) \geq f\left(H_{1} \cup H_{2}\right)+f\left(H_{1} \cap H_{2}\right)
$$

The family \mathcal{C} defined before is indeed a crossing family. This is simply because $H\left(U_{1}\right) \cap H\left(U_{2}\right)=$ $H\left(U_{1} \cap U_{2}\right)$ and $H\left(U_{1}\right) \cup H\left(U_{2}\right)=H\left(U_{1} \cup U_{2}\right)$. Also, the function $f(H(U))=|E|-|E(V \backslash U)|-k$ is crossing submodular on \mathcal{C} since

$$
\left|E\left(V \backslash U_{1}\right)\right|+\left|E\left(V \backslash U_{2}\right)\right| \leq\left|E\left(V \backslash\left(U_{1} \cap U_{2}\right)\right)\right|+\left|E\left(V \backslash\left(U_{1} \cup U_{2}\right)\right)\right|
$$

and so $f\left(H_{1} \cap H_{2}\right)+f\left(H_{1} \cup H_{2}\right) \leq f\left(H_{1}\right)+f\left(H_{2}\right)$. Given these properties, we shall prove that

$$
\mathcal{M}_{2}=(A,\{B \subseteq A:|B| \leq|E| \text { and } \forall H \in \mathcal{C} ;|B \cap H| \leq f(H)\})
$$

is a matroid. This is implied by the following lemma.
Lemma 3 Let $\mathcal{C} \subseteq 2^{A}$ be a crossing family and $f: \mathcal{C} \rightarrow \mathbb{Z}_{+}$a nonnegative crossing submodular function. Then for any $k \in \mathbb{Z}_{+}$,

$$
\mathcal{B}=\{B \subseteq A:|B|=k \text { and } \forall H \in \mathcal{C} ;|B \cap H| \leq f(H)\}
$$

are the bases of a matroid.
Proof: We can prove this by checking that the exchange axiom holds. Let $B_{1}, B_{2} \in \mathcal{B}$, and $i \in B_{1} \backslash B_{2}$. We need to prove that there exists $j \in B_{2} \backslash B_{1}$ such that $B_{1}-i+j \in \mathcal{B}$. Observe that if $B_{1}-i+j \notin \mathcal{B}$, there must exist a set $H \in \mathcal{C},\left|B_{1} \cap H_{j}\right|=f(H)$, with $i \notin H$ and $j \in H$. Assume, by contradiction, that this holds for every $j \in B_{2} \backslash B_{1}$.

For each $j \in B_{2} \backslash B_{1}$, let $H_{j} \in \mathcal{C}$ be the maximal set such that $\left|B_{1} \cap H_{j}\right|=f\left(H_{j}\right), i \notin H_{j}$, and $j \in H_{j}$. We claim that these sets are either pairwise equal or disjoint. Indeed, if $H_{j} \neq H_{j^{\prime}}$ and $H_{j} \cap H_{j^{\prime}} \neq \emptyset$, we have, by crossing submodularity of f and the definition of \mathcal{B} that

$$
\begin{aligned}
\left|B_{1} \cap\left(H_{j} \cup H_{j^{\prime}}\right)\right|+\left|B_{1} \cap\left(H_{j} \cap H_{j^{\prime}}\right)\right| & =\left|B_{1} \cap H_{j}\right|+\left|B_{1} \cap H_{j^{\prime}}\right|=f\left(H_{j}\right)+f\left(H_{j^{\prime}}\right) \\
& \geq f\left(H_{j} \cup H_{j^{\prime}}\right)+f\left(H_{j} \cap H_{j^{\prime}}\right) \\
& \geq\left|B_{1} \cap\left(H_{j} \cup H_{j^{\prime}}\right)\right|+\left|B_{1} \cap\left(H_{j} \cap H_{j^{\prime}}\right)\right| .
\end{aligned}
$$

We deduce from here that $\left|B_{1} \cap\left(H_{j} \cup H_{j^{\prime}}\right)\right|=f\left(H_{j} \cup H_{j^{\prime}}\right)$. But then, we can replace both H_{j} and $H_{j^{\prime}}$ by $H_{j} \cup H_{j^{\prime}}$, which contradicts the maximality of both sets.

Let $\mathcal{P}=\left\{H_{j}: j \in B_{2} \backslash B_{1}\right\}$ denote the collection of these disjoint sets, and $W=A \backslash \bigcup \mathcal{P}$ the set of remaining uncovered elements. For each $H_{j} \in \mathcal{P}$, we have $\left|B_{2} \cap H_{j}\right| \leq f\left(H_{j}\right)=\left|B_{1} \cap H_{j}\right|$. All the elements of $B_{2} \backslash B_{1}$ are covered by \mathcal{P}, so $B_{2} \cap W \subseteq B_{1} \cap W$, and there is an element $i \in W$ which belongs to B_{1} but not B_{2}. Therefore $\left|B_{2} \cap W\right|<\left|B_{1} \cap W\right|$ and $\left|B_{2}\right|<\left|B_{1}\right|$ which is a contradiction.

Recall that the bases of \mathcal{M}_{1} correspond to orientations of G and that an orientation I of G is a base of \mathcal{M}_{2} if and only if for every $\emptyset \subset U \subset V,\left|I \cap \delta_{D}^{-}(U)\right| \leq\left|\delta_{G}(U)\right|-k$. Or equivalently, if for every such $U,\left|I \cap \delta_{D}^{+}(U)\right| \geq k$. From here we get that the collection of k-arc-connected orientations of G corresponds exactly to the set of common bases of \mathcal{M}_{1} and \mathcal{M}_{2}. In particular, if one such base exists, it can be found using matroid intersection ${ }^{1}$.

It remains to prove that there exists a base common to both matroids. Let $P\left(\mathcal{M}_{1}\right), P\left(\mathcal{M}_{2}\right)$ be the matroid polytopes of \mathcal{M}_{1} and \mathcal{M}_{2} respectively, and $P\left(\mathcal{M}_{1} \cap \mathcal{M}_{2}\right)$ be the convex hull of all indicator vectors of sets that are independent in both matroids. We have seen that the polytope $P\left(\mathcal{M}_{1} \cap \mathcal{M}_{2}\right)$ is integral and equal to $P\left(\mathcal{M}_{1}\right) \cap P\left(\mathcal{M}_{2}\right)$. Consider the vector $x \in \mathbb{R}^{A}$ such that $x_{a}=1 / 2$ for all $a \in A$. Since for every $\{u, v\} \in E$ we have

$$
x_{u v}+x_{v u}=1
$$

we can deduce that $x \in P\left(\mathcal{M}_{1}\right)$. Similarly, for every $\emptyset \subset U \subset V$, we have

$$
x(H(U))=|E(U)|+\left|\delta_{G}(U)\right| / 2 \leq|E(U)|+\left|\delta_{G}(U)\right|-k
$$

where the last inequality comes from the fact that $\left|\delta_{G}(U)\right| \geq 2 k$ which holds since G is $2 k$-edge connected. Since we also have $x(A) \leq|E|$, we can conclude that $x \in P\left(\mathcal{M}_{2}\right)$. But then, x is a fractional vector in $P\left(\mathcal{M}_{1} \cap \mathcal{M}_{2}\right)$ with total weight $x(A)=|A| / 2=|E|$. By the integrality of that polytope, x can be written as a convex combination of sets I that are independent in both matroids. This means that at least one (and hence all) of these sets has cardinality $|E|$ and, therefore, it is a base in both matroids.

As a final remark, we should point out that there exists a stronger orientation result due to Nash-Williams which states that any graph G can be oriented into a digraph D such that for all $u \neq v$, we have

$$
\lambda_{D}(u, v) \geq\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor .
$$

[^0]
[^0]: ${ }^{1}$ Provided that membership in \mathcal{M}_{2} can be tested efficiently, which is not explained here.

