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Lecture 11: Matroid Intersection

Lecturer: Michel X. Goemans Scribe: Jacob Steinhardt

1 Overview

The main goal of this lecture is to prove the min-max relation from last time regarding the
maximum size of a common independent set in two matroids:

max
I∈I1∩I2

|I| = min
U⊆S

r1(U) + r2(S\U),

where r1 and r2 are the respective rank functions of the matroids M1 = (S, I1) and M2 =
(S, I2).

As a preliminary step, we will prove the strong basis exchange property of matroids.

2 Strong Basis Exchange

Our goal is to prove the following lemma:

Lemma 1 (Strong Basis Exchange) Let B be the set of all bases of a matroid M =
(S, I). Let B and B′ be two elements of B. Then for all x ∈ B\B′, there exists y ∈ B′\B
such that B − x + y ∈ B and B′ − y + x ∈ B.

We begin with a useful definition:

Definition 1 Given a set A ⊆ S in a matroid M = (S, I), define the span of A as
span(A) := {e ∈ S | r(A + e) = r(A)}.

Proposition 2 1. If A ⊆ B, then span(A) ⊆ span(B).

2. If e ∈ span(A), then span(A + e) = span(A).

The proofs of 1 and 2 use the submodularity of the rank function. Recall that this is
the property that

r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ).

Proof of 1: Suppose that e ∈ span(A). Then, using submodularity with X = A + e,
Y = B, we get

r(A + e) + r(B) ≥ r((A + e) ∩B) + r(B + e) ≥ r(A) + r(B + e).

Since e ∈ span(A), we have r(A) = r(A + e), hence r(B) ≥ r(B + e). This implies
that r(B) = r(B + e), so e ∈ span(B). Thus e ∈ span(B) whenever e ∈ span(A), so
span(A) ⊆ span(B), as claimed. �
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Proof of 2: By 1, we know that span(A) ⊆ span(A + e), so we need only show that
span(A + e) ⊆ span(A). So suppose that e ∈ span(A) and that f ∈ span(A + e). We need
to show that f ∈ span(A). If we let X = A + e and Y = A + f , then using submodularity
we see that

r(A + e) + r(A + f) ≥ r(A + e + f) + r((A + e) ∩ (A + f)) ≥ r(A + e + f) + r(A).

Since e ∈ span(A), r(A) = r(A + e), so we get

r(A + f) ≥ r(A + e + f),

which implies that r(A+f) = r(A+e+f). But f ∈ span(A+e), so r(A+e+f) = r(A+e).
Then e ∈ span(A), so r(A + e) = r(A). Hence r(A + f) = r(A), so f ∈ span(A), as was to
be shown. �

As a corollary to the above proposition, we have:

Corollary 3 span(span(A)) = span(A).

Proof: Add all of the elements of span(A)\A to A. By part 2, this won’t change the span.
�

We are now ready to prove the strong basis exchange lemma.
Proof of lemma: Suppose x ∈ B\B′. Since B′ is a basis, B′+x contains a unique circuit
C, and C must contain x (since any subset of B′ would be independent). We then conclude
that x ∈ span(C − x), which implies that also x ∈ span((B ∪ C)− x). By the proposition,
then, span((B ∪C)− x) = span(B ∪C) = S, where the last step follows since B is a basis.
Hence B ∪ C − x contains a basis, call it B′′. Then B − x and B′′ are both independent,
and |B′′| > |B − x|. Hence there exists y ∈ B′′\(B − x) such that (B − x) + y ∈ B.
But B′′\(B − x) ⊆ ((B ∪ C) − x)\(B − x) ⊆ C − x, so there exists y ∈ C − x such that
(B − x) + y ∈ B. On the other hand, since C is a circuit and x, y ∈ C, it follows that
(B′ − y) + x ∈ B, so that we have established the lemma. �

3 Matroid Intersection

Recall our goal, which is to prove:

Theorem 4 (Min-max Formula)

max
I∈I1∩I2

|I| = min
U⊆S

r1(U) + r2(S\U).

We will prove this min-max formula by providing an algorithm that returns sets I and
U that have equality in the above formula (we proved last time that |I| ≤ r1(U) + r2(S\U)
for all I ∈ I1 ∩ I2 and all U ⊆ S). For the algorithm, we will start with I = ∅ and at each
step either augment I or produce a U that gives equality. Our algorithm will rely heavily
on a structure called the exchange graph.
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Definition 2 Given a matroid M = (S, I) and an independent set I ∈ I, the exchange
graph DM (I) (or just D(I)) is the bipartite graph with bipartition I and S\I with an edge
between y ∈ I and x ∈ S\I if I − y + x ∈ I.

Lemma 5 Let I and J be two independent sets in M with |I| = |J |. Then there exists a
perfect matching between I\J and J\I in DM (I).

Proof: Start by defining the truncated matroid M ′ = (S, {I ′ ∈ I | |I ′| ≤ |I|}). Then I
and J are bases in M ′. Take x ∈ J\I. By the strong basis exchange lemma, there exists
y ∈ I\J such that I − y + x ∈ B and J − x + y ∈ B, where B is the set of bases of M ′. In
particular, I−y +x and J −x+y are independent in M . It follows that (y, x) is an edge in
DM (I). We can now replace I, J with I, J −x+ y and induct (as I\(J −x+ y) has one less
element than I\J), and we will eventually end up with a perfect matching. Note that we
needed strong basis exchange, not just weak basis exchange, to ensure both that I − y + x
would be independent to get an edge in DM (I) and that J − x + y would be independent
for the induction. �

The converse to Lemma 5 does not hold as can be easily seen. We next prove a propo-
sition that is a partial converse to the above lemma.

Proposition 6 Let I ∈ I with exchange graph DM (I). Let J be a set with |J | = |I| and
such that DM (I) has a unique matching between I\J and J\I. Then J ∈ I.

Proof: Let N be the unique matching. Orient edges in N from S\I to I, and orient the
rest from I to S\I. The uniqueness of the matching implies that there is no directed cycle
in this orientation of DM (I). Hence DM (I) is a directed acyclic graph, so we can number
the vertices so that all edges point from smaller-numbered vertices to larger-numbered
vertices (for example, by performing a topological sort). So, number J\I and I\J such that
N = {(y1, x1), (y2, x2), . . . , (yt, xt)} and such that (yi, xj) is never an edge for i < j.

Now suppose for the sake of contradiction that J 6∈ I. Then J has a circuit C. Take
the smallest i such that xi ∈ C (there must exist at least one element of C in J\I since
C ⊆ J and I is independent). By construction, (yi, x) is not an arc for x ∈ C − xi.
This implies that x ∈ span(I − yi) for all x ∈ C − xi. Hence C − xi ⊆ span(I − yi), so
span(C − xi) ⊆ span(span(I − yi)) = span(I − yi). C is a cycle, so xi ∈ span(C − xi), so
xi ∈ span(I − yi). This is a contradiction, since (xi, yi) ∈ DM (I) by assumption. Therefore
J must be in I, which proves the proposition. �

We are now ready to describe the algorithm for proving the Min-Max Formula. First,
we define a new type of exchange graph.

Definition 3 For I ∈ I1∩I2, the exchange graph DM1,M2(I) is the directed bipartite graph
with bipartition I and S\I such that (y, x) is an arc if I − y + x ∈ I1 and (x, y) is an arc
if I − y + x ∈ I2.

Also define X1 := {x 6∈ I | I + x ∈ I1} and X2 := {x 6∈ I | I + x ∈ I2}. Then the
algorithm is to find a path (we call it an augmenting path) from X1 to X2 that does not
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contain any shortcuts (arcs that point from an earlier vertex on the path to a non-adjacent
later vertex on the path). Then replace I with I4P , where P is the set of vertices on the
path. As a special case, if X1 ∩ X2 6= ∅, then we end up with a path that consists of a
singleton vertex and we can just add that element to I. If there is no such path, then set
U := {z ∈ S | z can reach some vertex in X2 in DM1,M2(I)}.

To prove that this algorithm is correct, we need to show that

1. When we stop, the sets I and U do indeed give equality in the Min-Max Formula.

2. At each stage in the algorithm, I4P ∈ I1 ∩ I2.

Proof of 1: First note that X2 ⊆ U and that X1 ∩ U = ∅ (as otherwise we could
keep running out algorithm to increase the size of I). We claim that r1(U) = |I ∩ U | and
r2(S\U) = |I ∩ (S\U)|. Together, these would imply that |I| = r1(U) + r2(S\U), which is
what we need.

Suppose first that |I ∩ U | 6= r1(U). Since I ∩ U ⊆ U and I ∩ U is independent, this
would imply that |I ∩U | < r1(U). Then there would have to exist some x ∈ U\I such that
(I∩U)+x ∈ I1. Then {x} is not a singleton independent set, so I +x is either independent
or contains a unique cycle, which contains at least one element not in (I ∩ U) + x; either
way we can find y ∈ I\U such that I − y + x ∈ I1. But then (y, x) is an arc in DM1,M2(I),
so y ∈ U (since x ∈ U). This is a contradiction, so we must have |I ∩ U | = r1(U).

Now suppose that |I ∩ (S\U)| 6= r2(S\U). Then as before we must have |I ∩ (S\U)| <
r2(S\U). Thus there exists x ∈ (S\U)\I such that (I ∩ (S\U)) + x ∈ I2. So, by the same
logic as before, we can find y ∈ I\(S\U) such that I − y + x ∈ I2. But I\(S\U) = I ∩ U ,
so we have y ∈ I ∩ U such that I − y + x ∈ I2. But then (x, y) is an arc in DM1,M2(I), so
x ∈ U (since y ∈ U). This is a contradiction, so we must have |I ∩ (S\U)| = r2(S\U). �

Proof of 2: Recall that we need to show that I4P ∈ I1 ∩ I2 whenever P is a path from
X1 to X2 with no shortcuts. We first show that I4P ∈ I1. We start by definining a new
matroid M ′

1 from M1 as M ′
1 := (S ∪ {t}, {J | J\{t} ∈ I1}. In other words, we simply add

a new element {t} that is independent from all the other elements of the matroid. Then
we know that I ∪ {t} is independent in M ′

1 and M ′
2 (where we define M ′

2 analogously to
M ′

1). On the other hand, if we view DM ′
1
(I ∪ {t}) as a subgraph of DM ′

1,M ′
2
(I ∪ {t}), then

there exists a perfect matching in DM ′
1
(I ∪ {t}) between (I ∩ P ) ∪ {t} and P\I (given by

the arcs in P that are also arcs in DM ′
1
(I ∪ {t}), together with the arc between {t} and the

first vertex in P ). Furthermore, this matching is unique since P has no shortcuts, so by the
proposition we know that (I ∪ {t})4P is independent in M ′

1, hence I4P is independent in
M1.

The proof that I4P ∈ I2 is identical, except that this time the matching consists of
the arcs in P that are also arcs in DM ′

2
(I ∪ {t}), together with the arc between {t} and the

last vertex in P (rather than the first). �

So, we have proved that our algorithm is correct, and as a consequence have established
the Min-Max Formula.
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4 Runtime of the Matroid Intersection Algorithm

Let r = max(r1(S), r2(S)) and n = |S|. We can construct DM1,M2(I) in O(rn) oracle calls.
We can also find augmenting paths in O(rn) time. We will have to augment at most r times
before we obtain a maximum independent set. Thus our algorithm takes O(r2n) oracle calls
and time.

Remark 1 Cunningham has shown that we can find a maximum independent set with
O(r1.5n) oracle calls. The idea is to take a shortest augmenting path each time.

5 Weighted Matroid Intersection

We now define the weighted version of the matroid intersection problem and outline an
algorithm for solving it.

Given a weight function w : S → R and two matroids M1 and M2 with ground set S,
the weighted matroid intersection problem is the problem of computing

max
I∈I1∩I2

∑
e∈I

w(e).

The algorithm for solving weighted matroid intersection is similar to the unweighted
version of the algorithm. We start by defining an independent set I of a matroid to be
extreme if for all J ∈ I with |J | = |I| we have w(J) ≤ w(I). In other words, I is extreme
if it has the maximum weight of all independent sets of its cardinality. We also define a
length function on the vertices of the exchange graph:

l(x) =
{

w(x) x ∈ I
−w(x) x 6∈ I.

Now instead of finding an augmenting path without shortcuts, we find the shortest aug-
menting path, first based on l(x), then based on the number of arcs in the path. We can
show that there are no negative cycles in this graph, so that this problem can be solved
with the Bellman-Ford algorithm.

6 Weighted Min-Max

We also have a weighted version of the Min-Max Formula:

max
I∈I1∩I2

∑
e∈I

w(e) = min
w1,w2:w1(x)+w2(x)=w(x)∀x

(
max
I∈I1

w1(I)
)

+
(

max
I∈I2

w2(I)
)

.

Furthermore, we can choose w1 and w2 to be integer-valued functions provided that w is
an integer-valued function.
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