18.997 Topics in Combinatorial Optimization
 February 10th, 2004
 Lecture 3
 Lecturer: Michel X. Goemans
 Scribe: Dan Stratila

In this lecture we will cover:

1. Topics related to Edmonds-Gallai decompositions ([Sch03], Chapter 24).
2. Factor critical-graphs and ear-decompositions ([Sch03], Chapter 24).

Topics mentioned but covered during subsequent lectures are:

1. The matching polytope ([Sch03], Chapter 25).
2. Total Dual Integrality (TDI) and the Cunningham-Marsh formula ([Sch03], Chapter 25).

A detailed reference on matchings is the book Matching Theory by Lovasz and Plummer, [LP86].

1 Petersen's Theorem

Before stating Petersen's theorem, we recall that a graph is called cubic if each of its vertices has degree exactly 3 , and bridgeless if it cannot be disconnected by deleting any one edge (in other words any pair of vertices has edge connectivity at least 2).

Figure 1: A bridgeless cubic graph and a perfect matching on it. Edges in the matching are bold.

Theorem 1 (Petersen) Any bridgeless cubic graph has a perfect matching.
Proof: We will show that for any $V \subseteq U$, we have $c_{o}(G-U) \leq|U|$ (here $c_{o}(G)$ is the number of odd components of the graph G). The theorem will then follow from the Tutte-Berge formula.

Consider an arbitrary $U \subset V$. Each odd component of $G-U$ is left by an odd number of edges, since G is cubic. Since G is also bridgeless each component is left by at least 2 edges, hence by at least 3 edges. On the other hand, the set of edges leaving all odd components of $G-U$ is a subset of the edges leaving U, and there are at most $3|U|$ edges

Figure 2: Illustration of the proof of Petersen's theorem. Edges inside U and C_{i}, as well as between C_{4}, C_{5} and U are omitted.
leaving U, since G is cubic. Among these $3|U|$ edges, there are at least 3 edges per each odd component, therefore there are at most $|U|$ odd components. (See Figure 2.)

A bridgeless cubic graph and a perfect matching for it are shown in Figure 1.
Although any bridgeless cubic graph has a perfect matching, it is not true that any such graph can be decomposed into 3 perfect matchings. An example of this is the Petersen graph, depicted in Figure 3.

Figure 3: The Petersen graph.

1.1 Colorings and matchings

However, we can cover all edges of any bridgeless cubic graph with 4 matchings, as shown by the following theorem. (Note that a coloring is an assignment of colors to edges such
that edges sharing a vertex have different colors. Thus, a k-coloring is the same as covering all edges with k, not necessarily perfect, matchings.)

Theorem 2 (Vizing, 1964) For any graph, there is an edge coloring with at most $\Delta+1$ colors, where $\Delta:=\max _{v \in V} \operatorname{deg}(v)$ is the maximum degree of any vertex in G.

In fact, Holyer (1981) has shown that it is NP-complete to decide whether a given cubic graph is 3 -colorable. It is also NP-complete to find the edge-coloring number of a k-regular graph, for each $k \geq 3$ (Leven and Galil, 1983).

The following theorem is a particularly appealing result relating matchings and colorings.
Theorem 3 (Tait, 1878) Each planar cubic bridgeless can be decomposed into 3 matchings if and only if the 4 -color conjecture holds.

Since the 4 -color conjecture is now a theorem with a complicated proof, an easy proof of Tait's theorem is of interest.

Conjecture 1 (Fulkerson) For any bridgeless cubic graph there is exist 6 perfect matchings that cover each edge exactly twice.

More conjectures can be found in Chapter 28 of [Sch03], entirely devoted to edge-colorings.

2 Ear decompositions

Before proceeding to describe results about ear decompositions, we review a result on factorcritical graphs.

Definition $1 A$ graph G is factor-critical if for any vertex $v \in V, G-v$ has a perfect matching.

As before, let $D(G)$ be the set of vertices missed by some maximum-size matching, let $A(G):=N(D(G))=\{v: \exists w \in U,\{v, w\} \in E\}$ be the set of all vertices neighboring vertices in $D(G)$, and let $C(G):=V \backslash(D(G) \cup A(G))$ contain all other vertices. Recall from Lecture 1 that $U:=A(G)$ attains the minimum in the Tutte-Berge formula, $D(G)$ is the union of the odd components of $G-U$, and $C(G)$ is the union of even components of $G-U$.

Claim 4 Each odd connected component of $G-A(G)$ is factor-critical.
Proof: We will give a proof that relies on Edmond's algorithm. First, recall from Lecture 2 that $D(G)$ is the set of even vertices of the final forest, hence $A(G)$ is the set of odd vertices. Since there are no edges between even vertices in the final forest, each odd component of $G-A(G)$ is represented in the final graph by an even vertex.

So it suffices to show that any graph obtained by a series of blossom operations starting from a single vertex is factor-critical, and we do this by induction. Clearly, the original vertex is factor-critical (the first blossom, being an odd cycle is also factor-critical).

Now, assume that G / B, obtained from G by shrinking B, is factor-critical. If $v \notin B$, then G has a maximum matching that missing v, because G / B has one. If $v \in B$, then
we can obtain a maximum matching in G that misses v by taking a maximum matching in G / B that misses B (such a matching exists since G / B is factor-critical), and then taking a maximum matching on B that misses v. Therefore G is factor-critical.

An ear decomposition $G_{0}, G_{1}, \ldots, G_{k}=G$ of a graph G is a sequence of graphs with the first graph being simple (e.g. a vertex, edge, even cycle, or odd cycle), and each graph G_{i+1} obtained from G_{i} by adding an ear.

Adding an ear is done as follows: take two vertices a and b of G_{i} and add a path P_{i} from a to b such that all vertices on the path except a and b are new vertices (present in G_{i+1} but not in G_{i}). An ear with $a \neq b$ is called proper (or open), and an ear with P_{i} having an odd (even) number of edges is called odd (even). (See Figure 4.)

Figure 4: An even proper ear added to G_{i}.

Theorem 5 (Robbins, 1939 (implicit)) G is 2-connected if and only if G has a proper ear decomposition starting from a cycle.

Proof: Obviously, any graph that has a proper ear decomposition from a cycle is 2connected.

Conversely, we assume G is 2 -connected, and will show by induction how to construct it starting from a cycle. First, since G is 2-connected, it contains at least one cycle, which we can take as the initial cycle.

Now, suppose we have constructed a subgraph G^{\prime} of G. If $V\left(G^{\prime}\right)=V(G)$ and we are only missing edges, then we can add these edges as proper ears of length one. If $V\left(G^{\prime}\right) \subset V(G)$, then pick a vertex $v \in V(G) \backslash V\left(G^{\prime}\right)$. Since G is connected, there is a path P from some $a \in V(G)$ to v; since G is 2-connected, there is a path Q distinct from P from v back to some vertex $b \in V\left(G^{\prime}\right), b \neq a$. Hence the paths P and Q form a proper ear from a to b containing at least one new vertex.

Theorem 6 G is factor-critical if and only if G has an odd ear decomposition starting from an odd cycle.

Proof: If G has an odd ear decomposition, then it is factor critical, since blossoming yields a factor critical graph.

Conversely, suppose G is factor-critical. First, we establish the existence of an initial odd cycle. For any v, fix a near-perfect matching M_{v} that misses v. Then for an edge (u, v) the existence of M_{u} and M_{v} implies there is an alternating even path from v to u. By adding (u, v) to it we obtain an odd cycle.

Fix a vertex v. We proceed by induction; let H be the vertex set already covered by the odd ear decomposition such that no edge in M_{v} crosses H. Since G is connected, there is an edge $(a, b), a \in H, b \notin H,(a, b) \notin M_{v}$. Moreover, $M_{b} \triangle B_{v}$ implies there is an alternating path Q from b back to v. The first edge (w, u) to cross back into H on Q is not in M_{v}, by the construction of H. Therefore, we obtain an odd path from b to u, and can increase the size of H.

Moreover, G is factor-critical and 2-connected if and only it has a proper ear decomposition starting from an odd cycle.

A bipartite ear decomposition starts from an even cycle, and adds an odd length path between vertices of different color. As a result, the graph stays bipartite. Question: G is ___ if and only if it has a bipartite ear decomposition. What is ___? (Answer at end of lecture.)

Theorem 7 Let G be a 2-connected factor-critical graph. Then the number of near-perfect matchings is at least $|E(G)|$.

Proof: We proceed by induction on the number of odd ears. Consider a graph G^{\prime}, and G obtained from G^{\prime} by adding an odd ear $P=\left(u_{0}, \ldots, u_{k}\right)$ of k edges. Then $|V(G)|=$ $\left|V\left(G^{\prime}\right)\right|+k-1,|E(G)|=\left|E\left(G^{\prime}\right)\right|+k$.

We can obtain $\left|E\left(G^{\prime}\right)\right|$ near-perfect matchings by taking $\left(u_{1}, u_{2}\right), \ldots,\left(u_{k-2}, u_{k-1}\right)$ into the matching, and then generating $\left|E\left(G^{\prime}\right)\right|$ near perfect matchings in G^{\prime}. Moreover, we can obtain $k-1$ by matching all vertices on P except $u_{j}, j=1, \ldots, k$, and then taking a near-perfect matching on G^{\prime} that misses either u_{0} (if j is odd) or u_{k} (if j is even). The final matching is obtained by taking the matching missing u_{k}, but not u_{0}, removing the edge matching u_{k} in G^{\prime} and adding the edge matching u_{k} in P.

We note without further discussion that the number of linearly independent near-perfect matchings is equal to $|E(G)|$.

Answer: --- is that every edge is in a perfect matching.

References

[LP86] L. Lovász and M. D. Plummer. Matching theory, volume 121 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1986. Annals of Discrete Mathematics, 29.
[Sch03] Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. A, volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003. Paths, flows, matchings, Chapters 1-38.

