
18.997 Topics in Combinatorial Optimization February 10th, 2004

Lecture 3

Lecturer: Michel X. Goemans Scribe: Dan Stratila

In this lecture we will cover:

1. Topics related to Edmonds-Gallai decompositions ([Sch03], Chapter 24).

2. Factor critical-graphs and ear-decompositions ([Sch03], Chapter 24).

Topics mentioned but covered during subsequent lectures are:

1. The matching polytope ([Sch03], Chapter 25).

2. Total Dual Integrality (TDI) and the Cunningham-Marsh formula ([Sch03], Chapter
25).

A detailed reference on matchings is the book Matching Theory by Lovasz and Plummer,
[LP86].

1 Petersen’s Theorem

Before stating Petersen’s theorem, we recall that a graph is called cubic if each of its vertices
has degree exactly 3, and bridgeless if it cannot be disconnected by deleting any one edge
(in other words any pair of vertices has edge connectivity at least 2).

Figure 1: A bridgeless cubic graph and a perfect matching on it. Edges in the matching
are bold.

Theorem 1 (Petersen) Any bridgeless cubic graph has a perfect matching.

Proof: We will show that for any V ⊆ U , we have co(G − U) ≤ |U | (here co(G) is
the number of odd components of the graph G). The theorem will then follow from the
Tutte-Berge formula.

Consider an arbitrary U ⊂ V . Each odd component of G− U is left by an odd number
of edges, since G is cubic. Since G is also bridgeless each component is left by at least
2 edges, hence by at least 3 edges. On the other hand, the set of edges leaving all odd
components of G− U is a subset of the edges leaving U , and there are at most 3|U | edges
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|δ(C1)| ≥ 3

|δ(C2)| ≥ 3
δ(C3)| ≥ 3

|δ(U)| ≤ 3|U |

C1, odd

C2, odd

C3, odd

. . .

C5, even

. . .

C4, even

U

Figure 2: Illustration of the proof of Petersen’s theorem. Edges inside U and Ci, as well as
between C4, C5 and U are omitted.

leaving U , since G is cubic. Among these 3|U | edges, there are at least 3 edges per each
odd component, therefore there are at most |U | odd components. (See Figure 2.) ¤

A bridgeless cubic graph and a perfect matching for it are shown in Figure 1.
Although any bridgeless cubic graph has a perfect matching, it is not true that any such

graph can be decomposed into 3 perfect matchings. An example of this is the Petersen
graph, depicted in Figure 3.

Figure 3: The Petersen graph.

1.1 Colorings and matchings

However, we can cover all edges of any bridgeless cubic graph with 4 matchings, as shown
by the following theorem. (Note that a coloring is an assignment of colors to edges such
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that edges sharing a vertex have different colors. Thus, a k-coloring is the same as covering
all edges with k, not necessarily perfect, matchings.)

Theorem 2 (Vizing, 1964) For any graph, there is an edge coloring with at most ∆ + 1
colors, where ∆ := maxv∈V deg(v) is the maximum degree of any vertex in G.

In fact, Holyer (1981) has shown that it is NP-complete to decide whether a given cubic
graph is 3-colorable. It is also NP-complete to find the edge-coloring number of a k-regular
graph, for each k ≥ 3 (Leven and Galil, 1983).

The following theorem is a particularly appealing result relating matchings and colorings.

Theorem 3 (Tait, 1878) Each planar cubic bridgeless can be decomposed into 3 match-
ings if and only if the 4-color conjecture holds.

Since the 4-color conjecture is now a theorem with a complicated proof, an easy proof of
Tait’s theorem is of interest.

Conjecture 1 (Fulkerson) For any bridgeless cubic graph there is exist 6 perfect match-
ings that cover each edge exactly twice.

More conjectures can be found in Chapter 28 of [Sch03], entirely devoted to edge-colorings.

2 Ear decompositions

Before proceeding to describe results about ear decompositions, we review a result on factor-
critical graphs.

Definition 1 A graph G is factor-critical if for any vertex v ∈ V , G − v has a perfect
matching.

As before, let D(G) be the set of vertices missed by some maximum-size matching, let
A(G) := N(D(G)) = {v : ∃w ∈ U, {v, w} ∈ E} be the set of all vertices neighboring vertices
in D(G), and let C(G) := V \ (D(G)∪A(G)) contain all other vertices. Recall from Lecture
1 that U := A(G) attains the minimum in the Tutte-Berge formula, D(G) is the union of
the odd components of G− U , and C(G) is the union of even components of G− U .

Claim 4 Each odd connected component of G−A(G) is factor-critical.

Proof: We will give a proof that relies on Edmond’s algorithm. First, recall from Lecture 2
that D(G) is the set of even vertices of the final forest, hence A(G) is the set of odd vertices.
Since there are no edges between even vertices in the final forest, each odd component of
G−A(G) is represented in the final graph by an even vertex.

So it suffices to show that any graph obtained by a series of blossom operations starting
from a single vertex is factor-critical, and we do this by induction. Clearly, the original
vertex is factor-critical (the first blossom, being an odd cycle is also factor-critical).

Now, assume that G/B, obtained from G by shrinking B, is factor-critical. If v 6∈ B,
then G has a maximum matching that missing v, because G/B has one. If v ∈ B, then
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we can obtain a maximum matching in G that misses v by taking a maximum matching in
G/B that misses B (such a matching exists since G/B is factor-critical), and then taking a
maximum matching on B that misses v. Therefore G is factor-critical. ¤

An ear decomposition G0, G1, . . . , Gk = G of a graph G is a sequence of graphs with the
first graph being simple (e.g. a vertex, edge, even cycle, or odd cycle), and each graph Gi+1

obtained from Gi by adding an ear.
Adding an ear is done as follows: take two vertices a and b of Gi and add a path Pi from

a to b such that all vertices on the path except a and b are new vertices (present in Gi+1

but not in Gi). An ear with a 6= b is called proper (or open), and an ear with Pi having an
odd (even) number of edges is called odd (even). (See Figure 4.)

. . .

Gi

Pi

a b

Figure 4: An even proper ear added to Gi.

Theorem 5 (Robbins, 1939 (implicit)) G is 2-connected if and only if G has a proper
ear decomposition starting from a cycle.

Proof: Obviously, any graph that has a proper ear decomposition from a cycle is 2-
connected.

Conversely, we assume G is 2-connected, and will show by induction how to construct
it starting from a cycle. First, since G is 2-connected, it contains at least one cycle, which
we can take as the initial cycle.

Now, suppose we have constructed a subgraph G′ of G. If V (G′) = V (G) and we are only
missing edges, then we can add these edges as proper ears of length one. If V (G′) ⊂ V (G),
then pick a vertex v ∈ V (G) \ V (G′). Since G is connected, there is a path P from some
a ∈ V (G) to v; since G is 2-connected, there is a path Q distinct from P from v back to
some vertex b ∈ V (G′), b 6= a. Hence the paths P and Q form a proper ear from a to b
containing at least one new vertex. ¤

Theorem 6 G is factor-critical if and only if G has an odd ear decomposition starting from
an odd cycle.

Proof: If G has an odd ear decomposition, then it is factor critical, since blossoming
yields a factor critical graph.

Conversely, suppose G is factor-critical. First, we establish the existence of an initial
odd cycle. For any v, fix a near-perfect matching Mv that misses v. Then for an edge (u, v)
the existence of Mu and Mv implies there is an alternating even path from v to u. By
adding (u, v) to it we obtain an odd cycle.
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Fix a vertex v. We proceed by induction; let H be the vertex set already covered by the
odd ear decomposition such that no edge in Mv crosses H. Since G is connected, there is
an edge (a, b), a ∈ H, b 6∈ H, (a, b) 6∈ Mv. Moreover, Mb4Bv implies there is an alternating
path Q from b back to v. The first edge (w, u) to cross back into H on Q is not in Mv, by
the construction of H. Therefore, we obtain an odd path from b to u, and can increase the
size of H. ¤

Moreover, G is factor-critical and 2-connected if and only it has a proper ear decompo-
sition starting from an odd cycle.

A bipartite ear decomposition starts from an even cycle, and adds an odd length path
between vertices of different color. As a result, the graph stays bipartite. Question: G
is if and only if it has a bipartite ear decomposition. What is ? (Answer at end of
lecture.)

Theorem 7 Let G be a 2-connected factor-critical graph. Then the number of near-perfect
matchings is at least |E(G)|.

Proof: We proceed by induction on the number of odd ears. Consider a graph G′, and
G obtained from G′ by adding an odd ear P = (u0, . . . , uk) of k edges. Then |V (G)| =
|V (G′)|+ k − 1, |E(G)| = |E(G′)|+ k.

We can obtain |E(G′)| near-perfect matchings by taking (u1, u2), . . . , (uk−2, uk−1) into
the matching, and then generating |E(G′)| near perfect matchings in G′. Moreover, we
can obtain k − 1 by matching all vertices on P except uj , j = 1, . . . , k, and then taking a
near-perfect matching on G′ that misses either u0 (if j is odd) or uk (if j is even). The final
matching is obtained by taking the matching missing uk, but not u0, removing the edge
matching uk in G′ and adding the edge matching uk in P . ¤

We note without further discussion that the number of linearly independent near-perfect
matchings is equal to |E(G)|.

Answer: is that every edge is in a perfect matching.
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