18.434 Lecture - Electrical Networks and Spanning Trees

Rachel Chasin

September 19, 2011

We have shown that any solution to Kirchhoff's laws and boundary values is unique, and defined such a solution in terms of probabilities. Now we define one in terms of the number of spanning trees in the graph.

A tree is a graph in which there is exactly one simple path between any two vertices, i.e. a connected graph with no cycles.

A spanning tree of a graph $G=(V, E)$ is a subgraph of G that is a tree and contains all of V. A graph may have many spanning trees.

Given an electrical network $G=(V, E)$ with all conductances $=1$ (result generalizes to arbitrary conductances) and $s, t \in V$.

Let $N(s, a, b, t)=$ the number of spanning trees with a path from s to t that traverses edge (a, b) from a to b and N be the total number of spanning trees of G.

Thm: The current $i_{a b}=\frac{1}{N}(N(s, a, b, t)-N(s, b, a, t)) \forall(a, b) \in E$ defines a unit flow from s to t that satisfies Kirchhoff's laws.

Note that this is like $i_{a b}=\operatorname{Pr}_{T}\{T$ has a path from s to t traversing (a, b) from a to $b\}-\operatorname{Pr}_{T}\{T$ has a path from s to t traversing (a, b) from b to $a\}$.

The number of spanning trees relating to current then has implications for uniformly generating a random spanning tree from a graph. The probability over all spanning trees of an edge (a, b) being in a tree is $i_{a b}$. So include an (a, b) in the spanning tree with probability $i_{a b}$. Once a decision has been made for an edge, if it is not put in the tree, it can be deleted from the graph and a spanning tree generated for the remaining graph. If it is put in the tree, a and b can be combined into one node and a spanning tree generated for this new graph.

