
Maximum Satisfiability

Phil Sung

March 17, 2006

The Boolean satisfiability problem (SAT) is the problem of deciding, given a Boolean expression
in variables x1, · · · , xn, whether some assignment of the variables makes the expression true. SAT
is historically notable because it was the first problem proven to be NP-complete. (Before this
point, the idea of NP-completeness had been formulated, but no one had proven that there actually
existed any NP-complete problems.)

We will consider not arbitrary Boolean expressions but only expressions in conjunctive normal
form (CNF), i.e. of the form

((A11 ∨A12 ∨ · · ·) ∧ (A21 ∨A22 ∨ · · ·) ∧ · · ·)

where each literal Aij is either a single variable or its negation, and each clause does not contain
more than one literal associated with a single variable.

In the MAX-SAT variation of SAT, we do not require that all the disjunctive clauses be satisfied.
Instead, we want find an assignment which maximizes the number of satisfied clauses.

1 Maximum Satisfiability

Problem (MAX-SAT). Let {ci} be a set of Boolean clauses on variables x1, . . . , xn where each
clause is a disjunction of literals, each literal being a Boolean variable or its negation. Let there be
a nonnegative weight wc associated with each clause c. Find an assignment of the Boolean variables
that maximizes the total weight of the satisfied clauses.

MAX-SAT is NP-complete. Even MAX-2SAT, the restriction to instances in which each clause
has at most two literals in it, is NP-complete.

1.1 A 1/2-approximation algorithm

Algorithm 1 (RANDOM). Set each Boolean variable to be True or False uniformly and indepen-
dently. Output the resulting assignment.

Let the random variable W denote the weight of the satisfied clauses, and let Wc be the contribu-
tion to W from any particular clause c. Thus we have W =

∑
c Wc and E[Wc] = wc·Pr[c is satisfied].

For a clause c let |c| be the number of literals in c. Also let αk ≡ 1 − 2−k for all k ≥ 1. Observe
that αk ≥ 1/2.

Lemma 1. Under RANDOM, any clause c is satisfied with probability α|c|.

1

Proof. c is satisfied unless all of its literals are false. Each literal is assigned independently and
true with probability 1/2, so the probability that all of the literals are false is 2−|c|. Therefore c is
satisfied with probability 1− 2−|c| = α|c|.

Theorem 2. Under RANDOM, E[W] ≥ 1
2OPT.

Proof. By linearity of expectation, the expected value of the objective function is

E[W] =
∑

c

E[Wc] =
∑

c

wcα|c|. (1)

Then we have ∑
c

wcα|c| ≥
∑

c

1
2
wc ≥ 1

2
OPT.

The first step follows because |c| ≥ 1 and αk ≥ 1/2 when k ≥ 1; the second step follows because
OPT, the total weight of satisfied clauses, can be no more than the total weight of all clauses.
Therefore, RANDOM is a 1/2-approximation algorithm.

Observe that if the clauses are large, then the probability of satisfying them approaches 1. In
particular, if the clause size is lower-bounded by k, then the approximation factor is guaranteed to
be αk in expectation, and this approximation factor grows quickly with k. For example, in MAX-
E3SAT, the restriction of MAX-SAT to instances where each clause has exactly three literals,
RANDOM is a 7/8-approximation algorithm. In fact, no better approximation is possible for this
particular problem unless P = NP.

1.2 A (1− 1/e)-approximation algorithm

We will now solve MAX-SAT with an integer linear program. Declare variables zc ∈ {0, 1} for each
clause and yi ∈ {0, 1} for each Boolean variable. A yi which is set to 1 is associated with a True
assignment to the corresponding Boolean value; a zc which is set to 1 is associated with a clause
which is satisfied by the assignment. We want to maximize the total weight of the satisfied clauses,
subject to the constraint that a clause can only be satisfied if one of its literals is True.

For a clause c, let S+
c and S−c denote the set of variable indices which appear in c non-negated

and negated, respectively. For zc to be 1, at least one of the terms in S+
c must be 1 or one of the

terms in S−c must be 0. Formulate the ILP as follows; its LP-relaxation can be rounded to give us
a good polynomial-time approximation.

maximize
∑

c

wczc

subject to





∀c :
∑

i∈S+
c

yi +
∑

i∈S−c

(1− yi) ≥ zc

∀c : zc ∈ {0, 1}
∀i : yi ∈ {0, 1}

(2)

2

Algorithm 2 (LP-RELAX). Solve the LP-relaxation of (2):

maximize
∑

c

wczc

subject to





∀c :
∑

i∈S+
c

yi +
∑

i∈S−c

(1− yi) ≥ zc

∀c : 0 ≤ zc ≤ 1
∀i : 0 ≤ yi ≤ 1,

(3)

and denote its solution (y∗, z∗). Independently set each xi to be True with probability y∗i .

Define βk ≡ 1− (
1− 1

k

)k.

Lemma 3. Under LP-RELAX, E[Wc] ≥ β|c|wcz
∗
c for any clause c.

Proof. We can assume WLOG that all literals in c are not negated. (If any of them is negated,
we can replace it with a new un-negated variable in c and replace its corresponding variable ym

with ym′ = 1 − ym in the LP (3); this has no effect on the LP value or any of the zc’s.) Suppose
c = (x1 ∨ · · · ∨x|c|). c is not satisfied iff none of the literals are True. Because xi is set to True with
probability y∗i , the clause is true with probability

Pr[c is satisfied] = 1−
∏

i

(1− y∗i)

≥ 1−
(∑

i(1− y∗i)
|c|

)|c|

by the arithmetic-geometric inequality— from (a1a2 · · · ak)1/k ≤ (a1 + · · ·+ ak)/k, let ai = 1− y∗i
and k = |c|;

= 1−
(

1−
∑

i y
∗
i

|c|
)|c|

≥ 1−
(

1− z∗c
|c|

)|c|

because LP (3) guarantees that
∑

i y
∗
i ≥ z∗c .

Since 1− (1− z
|c|)

|c| is a concave function of z which is equal to 0 at z = 0 and β|c| at z = 1, it
must be at least β|c|z on z ∈ [0, 1]. Therefore,

Pr[c is satisfied] ≥ 1−
(

1− z∗c
|c|

)|c|
≥ β|c|z∗c

and E[Wc] ≥ β|c|wcz
∗
c , as desired.

Observe that βk decreases with k, so if the size of clauses is upper bounded by k, then

E[W] =
∑

c

E[Wc] ≥
∑

c

β|c|wcz
∗
c ≥ βk

∑
c

wcz
∗
c = βkOPTf ≥ βkOPT.

so that LP-RELAX is a βk-approximation algorithm. When k is unbounded, the guarantee is a
factor of inf βk = 1− 1/e.

3

1.3 A 3/4-approximation algorithm

RANDOM and LP-RELAX provide their best bounds on large and small clauses, respectively. In
fact, when we combine the two algorithms, we get a better performance bound than either of them
alone provides.

Algorithm 3 (LINEAR). Choose, uniformly and at random, to run either RANDOM or LP-
RELAX, and return its Boolean assignment.

Theorem 4. LINEAR achieves an approximation factor of 3/4.

Proof. We can condition the expected value of the objective function on which algorithm was
chosen:

E[Wc] = E[Wc|RANDOM]Pr[RANDOM] + E[Wc|LP-RELAX]Pr[LP-RELAX]

=
1
2
(E[Wc|RANDOM] + E[Wc|LP-RELAX])

=
1
2
(α|c|wc + β|c|wcz

∗
c)

≥ α|c| + β|c|
2

wcz
∗
c .

In fact, αk + βk = (1 − 2−k) + (1 − (1 − 1
k)k) is at least 3/2 for all values of k. So the expected

value of the objective function is

E[W] =
∑

c

E[Wc] ≥
∑

c

3
4
wcz

∗
c =

3
4
OPTf ≥ 3

4
OPT

as desired.

This bound is tight, and in fact no algorithm which picks an assignment based only on the LP
relaxation can do better. Consider the set of clauses {x1 ∨x2, x1 ∨x2, x1 ∨x2, x1 ∨x2} and let each
clause have unit weight. The LP will set each xi to be 1/2 and each zc to be 1 to give OPTf = 4.
But no relaxation can give a value which is better than the true optimum, OPT = 3. We cannot
in general show that our rounded assignment is better than 3

4OPTf , and OPTf is our only upper
bound on OPT, so we cannot give better than a 3/4-approximation using the LP relaxation.

1.4 An SDP algorithm for MAX-2SAT

Consider now the restriction of MAX-SAT to instances where each clause has at most two literals
(MAX-2SAT). We can also write this as an optimization problem in n variables yi corresponding
to the Boolean variables xi. Constrain each variable to be −1 (False) or +1 (True). Whether a
clause is satisfied or not can be written as a function of the variables yi; for any clause, let v(c) be
1 if c is satisfied and 0 if not. When we restrict the clauses to have only two literals, each clause
can be so represented using a quadratic function of the yi’s. To make each term of degree either 2
or 0 (which we will need for our relaxation), we introduce a new variable y0 and multiply it to any
degree-1 terms.

The following identities hold for clauses of one literal:

v(xi) =
1 + yi

2
→ 1 + y0yi

2
v(xi) =

1− yi

2
→ 1− y0yi

2

4

Algorithm |c| = 1 2 3 4 5 6 (Min)
RANDOM 0.5000 0.7500 0.8750 0.9375 0.9688 0.9844 0.5000
LP-RELAX 1.0000 0.7500 0.7037 0.6836 0.6723 0.6651 0.6321
LINEAR 0.7500 0.7500 0.7894 0.8105 0.8205 0.8247 0.7500

SDP 0.8786 0.8786 0.0000 0.0000 0.0000 0.0000 0.0000
COMBINED 0.7555 0.7555 0.7555 0.7758 0.7854 0.7894 0.7555

Table 1: Expected approximation ratio by clause size

Consider a two-literal clause such as (xi∨xj). It is true unless both of the literals are not satisfied:

v(xi ∨ xj) = 1− v(xi)v(xj)

= 1− 1− yi

2
· 1 + yj

2

=
1 + yi

4
+

1− yj

4
+

1 + yiyj

4

→ 1 + y0yi

4
+

1− y0yj

4
+

1 + yiyj

4

We can, of course, write a similar sum for any two-literal clause. In fact v(c) can, for any clause,
be written as the sum of multiples of terms of the form 1± ymyn.

We wish to maximize
∑

c v(c)wc over the yi’s (including y0); we can make the problem easier
by relaxing yi from ±1 to the space of unit vectors in Rn+1, and replacing the yi products with dot
products. This is the SDP formulation:

maximize
∑

c

v(c)wc =
∑

i<j

(aij(1 + yi · yj) + bij(1− yi · yj))

subject to ∀i : yi ∈ Rn+1, yi · yi = 1
(4)

The algorithm is similar to the SDP algorithm for MAX-CUT:

Algorithm 4 (SDP). Solve SDP (4), then pick a hyperplane at random to separates the True
variables from the False variables. In particular, given a solution {y∗i }, select r uniformly at
random from the unit vectors in Rn+1, and let xi be True if sgn(y∗i · r) = sgn(y∗0 · r).

Intuitively, y∗0 represents the True value, and we assign a variable to be True if its associated
vector falls on the same side of the hyperplane as y∗0.

Theorem 5. Under SDP, E[W] ≥ 0.87856 ·OPT.

This SDP-based algorithm gives us a 0.87856-approximation for MAX-2SAT; we can adapt it
to MAX-SAT by simply discarding all the larger (size ≥ 3) clauses. This algorithm essentially gives
us an expected approximation ratio of 0.87856 for clauses of size 1 and 2, and an approximation
ratio of 0 for all larger clauses. Nevertheless, by selecting randomly between this and LINEAR, we
can improve the approximation ratio. An algorithm, COMBINED, which chooses LINEAR 96% of
the time and SDP the rest of the time achieves an approximation ratio of 0.7555.

The best proven ratio for MAX-SAT is 0.7846, and numerical tests on some algorithms suggest
a ratio of 0.8331 is possible.

5

2 The method of conditional expectation

In fact, it is possible to achieve the approximations we showed not just in expectation but in a deter-
ministic way (“derandomizing”) using the method of conditional expectation. We will demonstrate
this method by derandomizing RANDOM, the 1/2-approximation algorithm.

First, observe that we can calculate the expectation of W conditioned on any partial set of
assignments to the variables— if a literal is false, then remove it from all the clauses in which it
appears; if it is true, then ignore the clauses which contain it, as they are already satisfied. Then
the conditional expectation of W is the unconditioned expectation of W (weight of satisfied clauses)
in the reduced set of clauses, which is given by (1), plus the weight of the already-satisfied clauses.

We can now write the expected value of W as a weighted average of conditional expectations:

1
2
OPT ≤ E[W] = E[W |x1] Pr[x1] + E[W |x1] Pr[x1].

Since the left-hand expression is a weighted average of the conditional expectations, one of the
conditional expectations must be at least the average; we can calculate which it is because we know
how to evaluate the conditional expectations. Suppose for example that E[W |x1] ≥ E[W]. Then
we can write

1
2
OPT ≤ E[W |x1] = E[W |x1, x2] Pr[x2] + E[W |x1, x2] Pr[x2].

Similarly, we can iterate through all the variables, always choosing the assignment that gives
a higher expected W . Eventually we will find some assignment of all the variables such that the
conditional expectation of W is at least OPT/2. Of course, this the conditional expectation in this
case is simply the value of W for that particular assignment, and selecting that assignment get us
the desired approximation factor deterministically. This can be done in polynomial time.

We can represent this procedure as walking down a full binary tree of depth n, where each
leaf represents the objective value associated with a complete assignment of the variables, and
nodes higher up represent conditional expectations associated with less and less complete variable
assignments. We start at the root with no variables set and we wish to walk down a path where
the conditional expectations. The weight at each node is the average of its children, and at each
node all we need to do is calculate the value at the node’s children to determine which direction to
go.

This strategy is easily extended to LP-RELAX. It can in principle be used with any randomized
assignment scheme. However, in practice, calculating the conditional probabilities can be difficult
for a general scheme.

6

