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Problem set 6

This problem set is due in class on Monday April 27th.

1. Suppose you are given an m X n matrix A € R™*" with row sums r,--- ,r,, € Z
and column sums cy,--- ,¢, € Z. Some of the entries might not be integral but the
row sums and column sums are. Show that there exists a rounded matrix A" with the
following properties:

e row sums and column sums of A and A" are identical,

e a;; = [a;;] or aj; = |a;;] (i.e. aj; is a;; either rounded up or down.).

(Hint. Think of flows.)

By the way, this rounding is useful to the census bureau as they do not want to publish
statistics that would give too much information on specific individuals. They want to
be able to modify the entries without modifying row and column sums.

2. At some point during baseball season, each of n teams of the American League has
already played several games. Suppose team ¢ has won w; games so far, and g;; = g;i
is the number of games that teams ¢ and j have yet to play. No game ends in a tie,
so each game gives one point to either team and 0 to the other. You would like to
decide if your favorite team (Red Sox?), say team n, can still win. In other words, you
would like to determine whether there exists an outcome to the games to be played
(remember, with no ties) such that team n has at least as many victories as all the
other teams (we allow team n to be tied for first place with other teams).

Show that this problem can be solved as a maximum flow problem. Explain.

3. Consider the s — t flow problem on a directed graph in which every directed edge has
a lower bound I(e) = 0 and an upper bound u(e) = 1.

(a) Write the dual linear program of this maximum flow problem.

(To make the dual a bit nicer to interpret, it is useful to add a variable f € R
in the primal, impose that the net flow of out of s equals f and that the net
flow out of ¢t equals —f, and maximize f. In the dual linear program, we will
have one variable, say y,, for every vertex v € V (which corresponds to either
the flow balance constraint if v ¢ {s,t} or the newly introduced constraints if
v € {s,t}), and also one dual variable, say z. for every directed edge (arc) e € E
(corresponding to the inequalities z. < u(e)).)

(b) Does this dual always have an optimum solution that is integral?

(c¢) Show that for any integer solution to the dual (i.e. y,, z. € Z) you can obtain an
s —t cut of value at most the value of the dual solution.
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(d) Now suppose you are given a non necessarily integral feasible solution for this
dual of value V' (in the dual linear program). Show how we can obtain a cut of
value at most V.

4. Let G be an undirected graph in which the degree of every vertex is at least k. Show
that there exist two vertices s and t with at least k edge-disjoint paths between them.

5. (Optional.) Consider an undirected graph G = (V, E) with capacities u : E — R.
Assume that V| is even. Let T be a corresponding (Gomory-Hu) cut equivalent tree.

An odd cut is a set of edges 0(S) with |S| odd (and therefore the other side V' \ S
also has odd cardinality). An edge e = (s,t) of the cut tree is called odd if its removal
induces an odd cut (the edges incident to the leaves of the tree are for example odd
edges).

(a) Consider any set S C V of odd cardinality. Show that there exists an odd edge
e = (s,t) of T with |SN{s,t}| =1 (i.e. with precisely one endpoint in 5).

(b) Deduce that the a minimum odd cut can be obtained by taking the smallest of
the cuts induced by the odd edges of the Gomory-Hu cut tree.



