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Solutions to Problem Set 1

1. (a) Consider the bipartite graph G with a vertex for each square and two squares are
adjacent if they share an edge. This graph is bipartite since the squares can be
colored black and white in a checkerboard pattern.

Any perfect tiling gives a perfect matching by simply selecting the edges corre-
sponding to the dominoes selected. And vice versa.

Figure 0.1: Maximum configuration of dominoes.

(b) We claim that the configuration shown in Figure 0.1 is a maximum one and so
no perfect tiling exists. We will prove that the matching M corresponding to the
configuration in Figure 0.1 is maximum by showing that there is no augmenting
path as in the lecture. (Alternatively we could use Hall’s theorem.)

Let A be the set of black squares and B the set of white squares. Orient the edges
of G according to M , i.e. all the edges in M are oriented from B to A, and the
edges not in M are oriented from A to B as in Figure 0.3.

Let v be the only exposed vertex of A and w be the only exposed vertex of B, and
consider L to be the set of vertices reachable from v (the enclosed area in Figure
0.3). Since w is not in L we obtain that no augmenting path exists.

We can also deduce the fact that no perfect matching exists from Hall’s theorem
by observing that the 11 black vertices in L (the enclosed region on the right of
Figure 0.3) has only 10 (white) neighbors.

2. Let ρ(G) be the size of a minimum edge cover and ν(G) the size of the maximum
matching. A maximum matching covers 2ν(G) vertices, and, because of the connect-
edness, the n − 2ν(G) remaining vertices can be covered by no more than n − 2ν(G)
edges. This edges and the maximum matching are thus an edge cover of size n− ν(G).
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Figure 0.2: Oriented graph.
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Figure 0.3: Set of reachable vertices from v.

On the other hand, a minimum edge cover has to be a forest (an acyclic graph). (In-
deed, if it has any cycles then the removal of any edge of the cycle would still give an
edge cover, of smaller cardinality.) The number of connected components of this forest
is precisely n − ρ(G) (because every component is a tree, and a tree on k vertices has
k − 1 edges), and one can take one edge per component to get a matching. That is,
ν(G) ≥ n − ρ(G).

3. Let A, B be the bipartition of V .

(a) Because of k-regularity, we have |A| = |B|. Let n = |A|. By König’s theorem,
let C be a minimum vertex cover of size equal to the maximum matching. Then,
N(A \ C) ⊆ B ∩ C, and because of k-regularity, |A \ C| ≤ |B ∩ C|. Similarly,
|B \ C| ≤ |A ∩ C|. Adding the inequalities we get |V \ C| ≤ |C|, which implies
that |C| ≥ n.

(b) Any integer solution of the LP formulation

Min
∑

i,j

cijxij

subject to:∑

j

xij = 1 i ∈ A

∑

i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B

is a perfect matching. Also, all the extreme points (if any) of the LP are integral
(see lecture notes on bipartite matching). Thus, it is enough to prove that the LP
is feasible (so it will have at least one extreme point), and xij = 1/k is a feasible
solution.
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4. (a) Clearly the edge coloring number is at least δ since the ∆ edges incident to a
vertex of maximum degree have to be colored by different colors. To show the
reverse inequality, first we will transform the graph G into a ∆-regular graph.
For this purpose, first add vertices if needed so that both sides of the bipartition
have the same number of vertices. Then add edges to the graph (in any way)
so that every vertex has now degree ∆. In the resulting graph H , we know by
the previous exercise that there exists a perfect matching. Deleting this perfect
matching, we still have a regular graph, now a ∆ − 1-regular graph. We can
therefore again extract a perfect matching, delete it and proceed. In this process,
we have partitioned H into ∆ perfect matchings,a nd thus the edges of H can be
colored with ∆ colors. Since G is a subgraph of H , restricting this coloring toi
the edges of G gives a valid coloring with (at most, and thus exactly) ∆ colors.

(b) Consider a cycle on 3 vertices.

5. (a) Let Y ⊂ X ∈ I. Since X is an independent set, there exists a matching MX that
covers X. This matching also covers Y . Hence Y is an independent set.

(b) Let X, Y ∈ I with |X| < |Y |. It follows that there exist matchings MX and MY

such that MX covers X and MY covers Y . Consider the graph G′ = (V, MX∆MY ).
The set of edges of G′ is the union of paths and cycles.

If MX covers some element y in Y \ X. Then X + y is an independent set.

Otherwise, all the vertices in Y \ X are of degree 1 in G′. Since |Y | > |X|, we
have |Y \ X| > |X \ Y |. Therefore, by the previous observation, there are more
degree 1 vertices in Y \X than in X \ Y . It follows that there exists a path P in
the decomposition of G′ starting in a vertex y ∈ Y \X and not ending in X. We
conclude that MX∆P is a matching of G that covers X ∪ {y}. Thus, X + y is an
independent set.

6. (a) Clearly, the size of a maximum matching cannot be more than |A|−defmax (since
any matching can take have at most |A| − |X| edges incident to A − X and at
most |N(X)| edges incident to X).

Conversely, consider the minimum vertex cover C and let X = A \ C. Observe
that N(X) ⊆ C ∩ B, and thus:

def(X) = |X|− |N(X)| ≥ |A\C|− |C ∩B| = |A|− |C ∩A|− |C ∩B| = |A|− |C|.

Therefore defmax ≥ |A| − |C| and the result follows from König’s theorem.

(b) This is a simple counting argument. First of all,

|X ∪ Y | + |X ∩ Y | = |X| + |Y |.

Furthermore,

|N(X ∪ Y )| + |N(X ∩ Y )| ≤ |N(X)| + |N(Y )|,
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since every vertex b in B contributes at least as much to the right-hand-side than
to the left-hand-side. (Indeed, if b ∈ N(X ∪ Y ) \ N(X ∩ Y ), it should be either
in N(X) or in N(Y ), while if b ∈ N(X ∩ Y ), it should be in both N(X) and in
N(Y ).)

7. The greedy algorithm can provide solutions which are arbitrarily far away from the
optimum. Reingold and Tarjan (SIAM J. on Computing, Vol. 10, 1981) show instances
on a line for which the ratio between the greedy algorithm and the optimum cost
matching is a factor more than n0.58.


