
Massachusetts Institute of Technology Handout 3
18.433: Combinatorial Optimization February 8th, 2007
Michel X. Goemans

Lecture notes on bipartite matching

We start by introducing some basic graph terminology. A graph G = (V, E) consists of
a set V of vertices and a set E of pairs of vertices called edges. For an edge e = (u, v), we
say that the endpoints of e are u and v; we also say that e is incident to u and v. A graph
G = (V, E) is bipartite if the vertex set V can be partitioned into two sets A and B (the
bipartition) such that no edge in E has both endpoints in the same set of the bipartition. A
matching M ⊆ E is a collection of edges such that every vertex of V is incident to at most
one edge of M . If a vertex v has no edge of M incident to it then v is said to be exposed

(or unmatched). A matching is perfect if no vertex is exposed; in other words, a matching is
perfect if its cardinality is equal to |A| = |B|.

2

1

3

4

5 10

9

8

7

6

exposed

matching

Figure 1: Example. The edges (1, 6), (2, 7) and (3, 8) form a matching. Vertices 4, 5, 9 and
10 are exposed.

We are interested in the following two problems:

Maximum cardinality matching problem: Find a matching M of maximum size.

Minimum weight perfect matching problem: Given a cost cij for all (i, j) ∈ E, find
a perfect matching of minimum cost where the cost of a matching M is given by c(M) =
∑

(i,j)∈M cij. This problem is also called the assignment problem.

Similar problems (but more complicated) can be defined on non-bipartite graphs.

1 Maximum cardinality matching problem

Before describing an algorithm for solving the maximum cardinality matching problem, one
would like to be able to prove optimality of a matching (without reference to any algorithm).

Lecture notes on bipartite matching 2

For this purpose, one would like to find upper bounds on the size of any matching and hope
that the smallest of these upper bounds be equal to the size of the largest matching. This
approach of the problem is identical to the approach we used to derive duality for linear
programming. As we’ll see, in this case, the dual problem has a strong combinatorial flavor.

A vertex cover is a set C of vertices such that all edges e of E are incident to at least
one vertex of C. In other words, there is no edge completely contained in V − C (we use −
to denote the difference of two sets). Clearly, the size of any matching is at most the size
of any vertex cover. This follows from the fact that, given any matching M , a vertex cover
C must contain at least one of the endpoints of each edge in M . We have just proved weak

duality: The maximum size of a matching is at most the minimum size of a vertex cover. As
we’ll prove later in these notes, equality in fact holds:

Theorem 1 (König) For any bipartite graph, the maximum size of a matching is equal to

the minimum size of a vertex cover.

We shall prove this theorem algorithmically, by describing an efficient algorithm which
simultaneously gives a maximum matching and a minimum vertex cover. König’s theorem
gives a good characterization of the problem, namely a simple proof of optimality. In the
example above, one can prove that the matching (1, 9), (2, 6), (3, 8) and (5, 7) is of maximum
size since there exists a vertex cover of size 4. Just take the set {1, 2, 5, 8}.

The natural approach to solving this cardinality matching problem is to try a greedy

algorithm: Start with any matching (e.g. an empty matching) and repeatedly add disjoint
edges until no more edges can be added. This approach, however, is not guaranteed to give
a maximum matching. We will now present an algorithm that does work, and is based on
the concepts of alternating paths and augmenting paths. A path is simply a collection of
edges (v0, v1), (v1, v2), . . . , (vk−1, vk) where the vi’s are distinct vertices. A path can simply
be represented as v0-v1-. . .-vk.

Definition 1 An alternating path with respect to M is a path that alternates between

edges in M and edges in E − M .

Definition 2 An augmenting path with respect to M is an alternating path in which

the first and last vertices are exposed.

In the above example, the paths 4-8-3, 6-1-7-2 or 5-7-2-6-1-9 are alternating, but only
the last one is augmenting. Notice that an augmenting path with respect to M which
contains k edges of M must also contain exactly k + 1 edges not in M . Also, the two
endpoints of an augmenting path must be on different sides of the bipartition. The most
interesting property of an augmenting path P with respect to a matching M is that if we set
M ′ = M 4 P ≡ (M − P) ∪ (P −M), then we get a matching M ′ and, moreover, the size of
M ′ is one unit larger than the size of M . That is, we can form a larger matching M ′ from
M by taking the edges of P not in M and adding them to M ′ while removing from M ′ the
edges in M that are also in the path P . We say that we have augmented M along P .

The usefulness of augmenting paths is given in the following theorem.

Lecture notes on bipartite matching 3

Theorem 2 A matching M is maximum if and only if there are no augmenting paths with

respect to M .

Proof: (By contradiction)
(⇒) Let P be some augmenting path with respect to M . Set M ′ = M 4 P . Then M ′ is

a matching with cardinality greater than M . This contradicts the maximality of M .
(⇐) If M is not maximum, let M ∗ be a maximum matching (so that |M ∗| > |M |). Let

Q = M 4 M∗. Then:

• Q has more edges from M ∗ than from M (since |M ∗| > |M | implies that |M ∗ − M | >
|M − M∗|).

• Each vertex is incident to at most one edge in M ∩ Q and one edge M ∗ ∩ Q.

• Thus Q is composed of cycles and paths that alternate between edges from M and M ∗.

• Therefore there must be some path with more edges from M ∗ in it than from M (all
cycles will be of even length and have the same number of edges from M ∗ and M).
This path is an augmenting path with respect to M .

Hence there must exist an augmenting path P with respect to M , which is a contradiction.
4

This theorem motivates the following algorithm. Start with any matching M , say the
empty matching. Repeatedly locate an augmenting path P with respect to M , augment M
along P and replace M by the resulting matching. Stop when no more augmenting path
exists. By the above theorem, we are guaranteed to have found an optimum matching. The
algorithm terminates in µ augmentations, where µ is the size of the maximum matching.
Clearly, µ ≤ n

2
where n = |V |.

In the example, one would thus augment M along an augmenting path, say 5-7-2-6-1-9,
obtain the matching (1, 9), (2, 6), (3, 8) and (5, 7), and then realize that no more augmenting
paths can be found.

The question now is how to decide the existence of an augmenting path and how to find
one, if one exists. These tasks can be done as follows. Direct edges in G according to M as
follows : An edge goes from A to B if it does not belong to the matching M and from B to
A if it does. Call this directed graph D.

Claim 3 There exists an augmenting path in G with respect to M iff there exists a directed

path in D between an exposed vertex in A and an exposed vertex in B.

Exercise 1. Prove claim 3.

This gives an O(m) algorithm (where m = |E|) for finding an augmenting path in G.
Let A∗ and B∗ be the set of exposed vertices w.r.t. M in A and B respectively. We can
simply attach a vertex s to all the vertices in A∗ and do a depth-first-search from s till we
hit a vertex in B∗ and then trace back our path.

Lecture notes on bipartite matching 4

Thus the overall complexity of finding a maximum cardinality matching is O(nm). This
can be improved to O(

√
nm) by augmenting along several augmenting paths simultaneously.

If there is no augmenting path with respect to M , then we can also use our search
procedure for an augmenting path in order to construct an optimum vertex cover. Consider
the set L (for Labelling) of vertices which can be reached by a directed path from an exposed
vertex in A.

Claim 4 When the algorithm terminates, C∗ = (A−L)∪(B∩L) is a vertex cover. Moreover,

|C∗| = |M∗| where M∗ is the matching returned by the algorithm.

This claim immediately proves König’s theorem.
Proof: We first show that C∗ is a vertex cover. Assume not. Then there must exist
an edge e = (a, b) ∈ E with a ∈ A ∩ L and b ∈ (B − L). The edge e cannot belong to
the matching. If it did, then b should be in L for otherwise a would not be in L. Hence,
e must be in E − M and is therefore directed from A to B. This therefore implies that b
can be reached from an exposed vertex in A (namely go to a and then take the edge (a, b)),
contradicting the fact that b /∈ L.

To show the second part of the proof, we show that |C∗| ≤ |M∗|, since the reverse
inequality is true for any matching and any vertex cover. The proof follows from the following
observations.

1. No vertex in A − L is exposed by definition of L,

2. No vertex in B ∩ L is exposed since this would imply the existence of an augmenting
path and, thus, the algorithm would not have terminated,

3. There is no edge of the matching between a vertex a ∈ (A−L) and a vertex b ∈ (B∩L).
Otherwise, a would be in L.

These remarks imply that every vertex in C∗ is matched and moreover the corresponding
edges of the matching are distinct. Hence, |C∗| ≤ |M∗|. 4

Exercise 2. An edge cover of a graph G = (V, E) is a subset of R of E such that every
vertex of V is incident to at least one edge in R. Let G be a bipartite graph with no isolated
vertex. Show that the cardinality of the minimum edge cover R∗ of G is equal to |V | minus
the cardinality of the maximum matching M ∗ of G. Give an efficient algorithm for finding
the minimum edge cover of G.

2 Minimum weight perfect matching

By assigning infinite costs to the edges not present, one can assume that the bipartite graph
is complete. The minimum cost (weight) perfect matching problem is often described by the
following story: There are n jobs to be processed on n machines or computers and one would

Lecture notes on bipartite matching 5

like to process exactly one job per machine such that the total cost of processing the jobs is
minimized. Formally, we are given costs cij for every i ∈ A, j ∈ B and the goal is to find a
perfect matching M minimizing

∑

(i,j)∈M cij.
In these notes, we present an algorithm for this problem which is based upon linear

programming, and we will take this opportunity to illustrate several important concepts in
linear programming. The first algorithm given for the assignment problem was given by
Kuhn [1955], but he showed only finiteness of the algorithm. A refined version was given by
Jim Munkres [1957], and showed a polynomial running time. An algorithm is polynomial-
time if its running time (the number of basic operations to run it) is upper bounded by a
polynomial in the size of the input (i.e. the number of bits needed to represent the input).
Munkres’ analysis even shows that the algorithm is strongly polynomial, and this means that
the running time is polynomial in the number of numbers involved (i.e. does not depend on
the size of the costs cij). In this algorithm, the number of operations is upper bounded by
O(n3) where n = |V |.

The algorithm is often called the Hungarian method, as it relies on ideas developed by
Hungarians including König.

We start by giving a formulation of the problem as an integer program. We first need to
associate a point to every matching. For this purpose, given a matching M , let its incidence

vector be x where xij = 1 if (i, j) ∈ M and 0 otherwise. One can formulate the minimum
weight perfect matching problem as follows:

Min
∑

i,j

cijxij

subject to:
∑

j

xij = 1 i ∈ A

∑

i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B

xij integer i ∈ A, j ∈ B.

This is not a linear program, but a so-called integer program. Notice that any solution to
this integer program corresponds to a matching and therefore this is a valid formulation of
the minimum weight perfect matching problem in bipartite graphs.

Consider now the linear program (P) obtained by dropping the integrality constraints:

Min
∑

i,j

cijxij

subject to:

(P)
∑

j

xij = 1 i ∈ A

∑

i

xij = 1 j ∈ B

Lecture notes on bipartite matching 6

xij ≥ 0 i ∈ A, j ∈ B.

This is the linear programming relaxation of the above integer program. In a linear program,
the variables can take fractional values and therefore there are many feasible solutions to the
set of constraints above which do not correspond to matchings. But we only care about the
optimum solutions. The set of feasible solutions to the constraints in (P) forms a polytope,
and when we optimize a linear constraint over a polytope, the optimum will be attained at
one of the “corners” or extreme points of the polytope.

In general, even if all the coefficients of the constraint matrix in a linear program are either
0 or 1, the extreme points of a linear program are not guaranteed to have all coordinates
integral (this is of no surprise since the general integer programming problem is NP-hard,
while linear programming is polynomially solvable). As a result, in general, there is no
guarantee that the value ZIP of an integer program is equal to the value ZLP of its LP
relaxation. However, since the integer program is more constrained than the relaxation, we
always have that ZIP ≥ ZLP , implying that ZLP is a lower bound on ZIP for a minimization
problem. Moreover, if an optimum solution to a linear programming relaxation is integral
then it must also be an optimum solution to the integer program.

Exercise 3. Prove this last claim.

Exercise 4. Give an example of an integer program where ZIP 6= ZLP .

However, in the case of the perfect matching problem, the constraint matrix has a very
special form and one can show the following very important result.

Theorem 5 Any extreme point of (P) is a 0-1 vector and, hence, is the incidence vector of

a perfect matching.

Because of the above theorem, the polytope

P = {x :
∑

j

xij = 1 i ∈ A

∑

i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B}

is called the bipartite perfect matching polytope.
To demonstrate the beauty of matchings, we shall give two completely different proofs of

this result, one purely algorithmic and one purely algebraic. The algebraic proof is related
to the notion of totally unimodularity and is presented in Section 3.

To prove it algorithmically, we describe an algorithm for solving the minimum weight
perfect matching problem. The algorithm is “primal-dual”. To explain what this means, we
need to introduce the notion of duality of linear programs, and let’s do it in the specific case

Lecture notes on bipartite matching 7

of our bipartite matching problem. Suppose we have values ui for i ∈ A and vj for j ∈ B
such that ui + vj ≤ cij for all i ∈ A and j ∈ B. Then for any perfect matching M , we have
that

∑

(i,j)∈M

cij ≥
∑

i∈A

ui +
∑

j∈B

vj. (1)

Thus,
∑

i∈A ui +
∑

j∈B vj is a lower bound on the cost of the minimum cost perfect matching
(for bipartite graphs). To get the best lower bound, we would like to maximize this quantity,
and therefore we obtain another linear program

Max
∑

i∈A

ui +
∑

j∈B

vj

subject to:

(D) ui + vj ≤ cij i ∈ A, j ∈ B.

This is called the dual linear program (D), and it can be shown to be dual to (P) in the
sense of linear programming duality. The dual constraints can be interpreted as wij ≥ 0
where wij = cij − ui − vj.

If, for any instance, we could always find a feasible solution u, v to (D) and a perfect
matching M such that we have equality in (1) (i.e. the cost of the perfect matching is equal
to the value of the dual solution) then we would know that the matching found is optimum.
Given a solution u, v to the dual, a perfect matching M would satisfy equality if it contains
only edges (i, j) such that wij = cij−ui−vj = 0. This is what is referred to as complementary

slackness. However, for a given u, v, we may not be able to find a perfect matching among
the edges with wij = 0.

The algorithm performs a series of iterations. It always maintains a dual feasible solution
and tries to find an “almost” primal feasible solution x satisfying complementary slackness.
The fact that complementary slackness is imposed is crucial in any primal-dual algorithm.
In fact, the most important (and elegant) algorithms in combinatorial optimization are
primal-dual. This is one of the most important tool for designing efficient algorithms for
combinatorial optimization problems (for problems which, of course, admit such efficient
solutions).

More precisely, the algorithm works as follows. It first starts with any dual feasible
solution, say ui = 0 for all i and vj = mini cij for all j. In a given iteration, the algorithm
has a dual feasible solution (u, v) or say (u, v, w). Imposing complementary slackness means
that we are interested in matchings which are subgraphs of E = {(i, j) : wij = 0}. If E has
a perfect matching then the incidence vector of that matching is a feasible solution in (P)
and satisfies complementary slackness with the current dual solution and, hence, must be
optimal. To check whether E has a perfect matching, one can use the cardinality matching
algorithm developed earlier in these notes. If the maximum matching output is not perfect
then the algorithm will use information from the optimum vertex cover C∗ to update the
dual solution in such a way that the value of the dual solution increases (we are maximizing
in the dual).

Lecture notes on bipartite matching 8

In particular, if L is as in the previous section then there is no edge of E between A ∩ L
and B − L. In other words, for every i ∈ (A ∩ L) and every j ∈ (B − L), we have wij > 0.
Let

δ = min
i∈(A∩L),j∈(B−L)

wij.

By the above argument, δ > 0. The dual solution is updated as follows:

ui =

{

ui i ∈ A − L
ui + δ i ∈ A ∩ L

and

vj =

{

vj i ∈ B − L
vj − δ j ∈ B ∩ L

One easily check that this dual solution is feasible, in the sense that the corresponding vector
w satisfies wij ≥ 0 for all i and j. What is the value of the new dual solution? The difference
between the values of the new dual solution and the old dual solution is equal to:

δ(|A ∩ L| − |B ∩ L|) = δ(|A ∩ L| + |A − L| − |A − L| − |B ∩ L|) = δ(
n

2
− |C∗|),

where A has size n/2 and C∗ is the optimum vertex cover for the bipartite graph with edge
set E. But by assumption |C∗| < n

2
, implying that the value of the dual solution strictly

increases.
One repeats this procedure until the algorithm terminates. At that point, we have

an incidence vector of a perfect matching and also a dual feasible solution which satisfy
complmentary slackness. They must therefore be optimal and this proves the existence of
an integral optimum solution to (P). Since, by carefully choosing the cost function, one can
make any extreme point be the unique optimum solution to the linear program, this proves
Theorem 5.

Of course, as some of the readers might have noticed, the proof is not complete yet since
one needs to prove that the algorithm indeed terminates. This can be proved by noticing
that at least one more vertex of B must be reachable from an exposed vertex of A (and no
vertex of B becomes unreachable), since an edge e = (i, j) with i ∈ (A ∩ L) and j ∈ B − L
now has wij = 0 by our choice of δ. This also gives an estimate of the number of iterations.
In at most n/2 iterations, all vertices of B are reachable or the matching found has increased
by at least one unit. Therefore, after O(n2) iterations, the matching found is perfect. The
overall running time of the algorithm is thus O(n4) since it takes O(n2) to compute the set L
in each iteration. By looking more closely at how vertices get labelled between two increases
of the size of the matching, one can reduce the running time analysis to O(n3).

Exercise 5. Check that the running time of the algorithm is indeed O(n3).

Example: Consider the instance given by the following cost matrix defined on a bipartite
graph with 5 vertices on each side of the bipartition:

Lecture notes on bipartite matching 9

0 2 7 2 3
1 3 9 3 3
1 3 3 1 2
4 0 1 0 2
0 0 3 0 0

Assume that uT = (2, 3, 0,−2, 0) and vT = (−2, 0, 3, 0, 0). The set E of edges with
wij = 0 corresponds exactly to the set of edges in Figure 1. The maximum cardinality
matching algorithm finds the matching (1, 9), (2, 6), (3, 8) and (5, 7), and the set of labelled
vertices is {3, 4, 8}. We compute δ as

δ = min
i∈{3,4},j∈{6,7,9,10}

wij = 1

corresponding to the edge (3, 9). The new vectors u and v are uT = (2, 3, 1,−1, 0) and
vT = (−2, 0, 2, 0, 0). The value of the dual solution has increased from 4 units to 5. The
corresponding set E now has a perfect matching, namely (1, 6), (2, 7), (3, 9), (4, 8) and (5, 10)
of cost 5. Both the matching and the dual solution are optimal.

3 Total unimodularity

The algebraic proof of Theorem 5 relies on the concept of totally unimodularity.

Definition 3 A matrix A is totally unimodular if every square submatrix of A has determi-

nant −1, 0 or +1.

The importance of total unimodularity stems from the following theorem. This theorem
gives a subclass of integer programs which are easily solved. A polyhedron P is said to be
integral if all its vertices or extreme points are integral.

Theorem 6 Let A be a totally unimodular matrix. Then, for any integral right-hand-side

b, the polyhedron

P = {x : Ax ≤ b, x ≥ 0}
is integral.

Before we prove this result, two remarks can be made. First, the proof below will in
fact show that the same result holds for the polyhedrons {x : Ax ≥ b, x ≥ 0} or {x : Ax =
b, x ≥ 0}. In the latter case, though, a slightly weaker condition than totally unimodularity
is sufficient to prove the result. Secondly, in the above theorem, one can prove the converse
as well: If P = {x : Ax ≤ b, x ≥ 0} is integral for all integral b then A must be totally
unimodular.
Proof: Adding slacks, we get the polyhedron Q = {(x, s) : Ax + Is = b, x ≥ 0, s ≥ 0}.
One can easily show (see exercise below) that P is integral iff Q is integral.

Lecture notes on bipartite matching 10

Consider now any bfs of Q. The basis B consists of some columns of A as well as some
columns of the identity matrix I. Since the columns of I have only one nonzero entry per
column, namely a one, we can expand the determinant of B along these entries and derive
that, in absolute values, the determinant of B is equal to the determinant of some square
submatrix of A. By definition of totally unimodularity, this implies that the determinant
of B must belong to {−1, 0, 1}. By definition of a basis, it cannot be equal to 0. Hence, it
must be equal to ±1.

We now prove that the bfs must be integral. The non-basic variables, by definition, must
have value zero. The vector of basic variables, on the other hand, is equal to B−1b. From
linear algebra, B−1 can be expressed as

1

det B
Badj

where Badj is the adjunct matrix of B and consists of subdeterminants of B. Hence, both b
and Badj are integral which implies that B−1b is integral since | detB| = 1. This proves the
integrality of the bfs. 4
Exercise 6. Let P = {x : Ax ≤ b, x ≥ 0} and let Q = {(x, s) : Ax + Is = b, x ≥ 0, s ≥ 0}.
Show that x is an extreme point of P iff (x, b−Ax) is an extreme point of Q. Conclude that
whenever A and b have only integral entries, P is integral iff Q is integral.

In the case of the bipartite matching problem, the constraint matrix A has a very special
structure and we show below that it is totally unimodular. This alongs with Theorem 6
proves Theorem 5. Remember that A corresponds to the system

∑

j

xij = 1 for all i ∈ A,

∑

i

xij = 1 for all j ∈ B.

Theorem 7 The matrix A is totally unimodular.

Proof: Consider any square submatrix T of A. We consider three cases. First, if T has
a column or a row with all entries equal to zero then the determinant is zero. Secondly, if
there exists a column or a row of T with only one +1 then by expanding the determinant
along that +1, we can consider a smaller sized matrix T . The last case is when T has at least
two nonzero entries per column (and per row). Given the special structure of A, there must
in fact be exactly 2 nonzero entries per column. By adding up the rows of T corresponding
to the vertices of A and adding up the rows of T corresponding to the vertices of B, one
therefore obtains the same vector which proves that the rows of T are linearly dependent,
implying that its determinant is zero. This proves the totally unimodularity of A. 4

We conclude with a technical remark. One should first remove one of the rows of A
before applying Theorem 6 since, as such, it does not have full row rank and this fact was
implicitly used in the definition of a bfs. However, deleting a row of A still preserves its
totally unimodularity.

Lecture notes on bipartite matching 11

Exercise 7. If A is totally unimodular then AT is totally unimodular.

Exercise 8. Use total unimodularity to prove König’s theorem.

The following theorem gives a necessary and sufficient condition for a matrix to be totally
unimodular.

Theorem 8 Let A be a m × n matrix with entries in {−1, 0, 1}. Then A is TUM if and

only if for all subsets R ⊆ {1, 2, · · · , n} of rows, there exists a partition of R into R1 and R2

such that for all j ∈ {1, 2, · · · , m}:
∑

i∈R1

aij −
∑

i∈R2

aij ∈ {0, 1,−1}.

We will prove only the if direction.
Proof: Assume that, for every R, the desired partition exists. We need to prove that the
determinant of any k × k submatrix of A is in {−1, 0, 1}, and this must be true for any k.
Let us prove it by induction on k. It is trivially true for k = 1. Assume it is true for k − 1
and we will prove it for k.

Let B be a k × k submatrix of A, and we can assume that B is invertible (otherwise the
determinant is 0 and there is nothing to prove). The inverse B−1 can be written as 1

det(B)
B∗,

where all entries of B∗ correspond to (k − 1) × (k − 1) submatrices of A. By our inductive
hypothesis, all entries of B∗ are in {−1, 0, 1}. Let b∗1 be the first row of B and e1 be the
k-dimensional row vector [1 0 0 · · ·0], thus b∗1 = e1B

∗. By the relationship between B and
B∗, we have that

b∗1B = e1B
∗B = det(B)e1B

−1B = det(B)e1. (2)

Let R = {i : b∗1i ∈ {−1, 1}}. By assumption, we know that there exists a partition of R
into R1 and R2 such that for all j:

∑

i∈R1

bij −
∑

i∈R2

bij ∈ {−1, 0, 1}. (3)

From (2), we have that
∑

i∈R

b∗1ibij =

{

det(B) j = 1
0 j 6= 1

(4)

Since the left-hand-sides of equations (3) and (4) differ by a multiple of 2 for each j (since
b∗1i ∈ {−1, 1}), this implies that

∑

i∈R1

bij −
∑

i∈R2

bij

{

= 0 j 6= 1
∈ {−1, 1} j = 1

(5)

Lecture notes on bipartite matching 12

The fact that we could not get 0 for j = 1 follows from the fact that otherwise B would be
singular (we would get exactly the 0 vector by adding and subtracting rows of B). If we
define y ∈ R

k by

yi =

1 i ∈ R1

−1 i ∈ R2

0 otherwise

we get that yB = ±e1. Thus

y = ±e1B
−1 = ± 1

det B
e1B

∗ = ± 1

det B
b∗1,

which implies that det B must be either 1 or -1. 4

