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What is a dispersive equation

The simplest possible evolution partial differential equation that is
not either hyperbolic or parabolic is the Airy Equation, which
initial value problem (IVP) can be written as{

(−i∂t + ∂xxx)u = 0
u(0, x) = u0(x),

where x ∈ R. The wave solution of this IVP is the simplest
example of a solution to a dispersive equation. We will compute
this solution explicitly and we will see that it satisfies the following,
rather informal, definition:

Definition

An evolution partial differential equation is dispersive if, when no
boundary conditions are imposed, its wave solutions spread out in
space as they evolve in time.



To find a solution for the Airy Cauchy problem let’s look for
plane-wave solutions: for fixed A and k we write

vk(x , t) = Ae(kx−ωt) = Aek(x−ω/kt)

where k =wave number and ω =angular frequency. If we
substitute vk into our equation we obtain the relationship

Aek(x−ω/kt)[−iω + (ik)3] = 0

and from here

ω =
(ik)3

i
⇐⇒ ω

k
= −k2.

The equation
ω

k
= −k2

is called the Dispersive Relation for the Airy equation.



Remark

The dispersive relations says that “plane waves with large wave
number travel faster than those with a smaller one”. This is the
reason why there is “spreading”. In mathematical terms this
phenomenon is called broadening of the wave packet.

To understand this better let’s use the Fourier transform: for the
initial data we have

u0(x) =

∫
û0(k)e ikxdk

Now think of
∫

as a sum and, for fixed k, of vk(x) = û0(k)e ikx as
a wave. Then each wave vk(x) evolves into

vk(x , t) = û0(k)e ik(x+tk2),

where the wave with larger k travels faster.



By “adding up” all these waves we obtain the solution to the Airy
IVP

u(x , t) =

∫
û0(k)e ik(x+k2t)dk.

(We will see that in the periodic case this will be different since
there boundary conditions are imposed!) It is instructive to
contrast the Airy equation with the transport equation{

(∂t + C∂x)u = 0
u(0, x) = u0(x),

where x ∈ R, and let’s pick C > 0. The dispersive relation is
ω
k = C , that is the velocity is constant, so the wave packet travels
with the same speed and there is no dispersion.



Definition (More formal)

We say that an evolution equation (defined on Rn), is dispersive if
its dispersive relation ω(k)/|k| = g(k) is a real function such that

|g(k)| → ∞ as |k| → ∞.

There is also a more geometric/analytic definition of dispersion.
Back to the solution u of the Airy IVP, we recall that

u(x , t) =: W (t)u0(x) =

∫
û0(k)e i(xk+k3t)dk.

If we define the curve

S = {(k, τ)/τ = k3, k ∈ R},
then one can also write

u(x , t) =: W (t)u0(x) = R∗u0(x , t),



where R∗ is the adjoint of R, the Fourier restriction operator on S :

R(f ) := f̂ (k, k2).

Remark

Since in general f̂ belongs only to L2(R× R) and S is of Lebesgue
measure zero, it is not obvious that f̂ restricted to S even makes
sense!

Theorem (Informal)

If S is a “curved” graph then for any f̂ ∈ L2(R× R) its restriction
on S is well defined and moreover “good” estimates can be proved.

See for example Harmonic Analysis by E. Stein.



Examples of Dispersive Equations

• The (generalized) KdV equation:

∂tu + ∂xxxu + γuk∂xu = 0,

• Nonlinear Schrödinger equation:

i∂tu + ∆u + N(u,Du) = 0,

• Boussinesq equation:

∂ttu − ∂xxu − ∂xx(1/2u2 + ∂xxu) = 0,



These equations were all introduced in order to describe a certain
wave phenomena. As a consequence the first obvious questions
that one would like to address are: existence, uniqueness and
stability of solutions (local well-posedness), maximum time of
existence, blow up, scattering, existence of solitons etc.
It turned out that while investigating these questions ones steps
out of the field of harmonic or Fourier analysis and enters others
fields like symplectic geometry, analytic number theory, probability
and dynamical systems.
To illustrate these interactions I will first look at KdV type
equations and then at Schrödinger ones.



The KdV equation

The (generalized) KdV initial value problem takes the form of{
∂tu + ∂xxxu + uk∂xu = 0

u(0, x) = u0(x),

This problem models long waves along a shallow channel. Linked
to this problem is the discovery of solitons: In 1834 a naval
architect John Scott Russel, while riding his horse along a canal
observed the first recorded soliton. The “event” was repeated in a
“controlled” manner in 1995:
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Definition

A soliton is a self-reinforcing solitary wave (a wave packet or pulse)
that maintains its shape while it travels at a constant speed.

Remark

Clearly a soliton cannot be solution to the Airy equation (remember
dispersion!!). In fact solitons are caused by a perfect cancellation
of nonlinear and dispersive effects in the medium. An interesting
feature of solitons is that in spite of the fact that they are
nonlinear phenomena, they behave “linearly” when they interact!

We actually have an explicit form of solitons to a (generalized)
KdV equation:

uc,k(x , t) = Φc,k(x − ct), for c > 0

where Φc,k = c(k + 2)/2 sech2(k/2
√

cx)1/k .



Interaction of two solitons



KdV as an integrable system

Consider the equation (k=1)

∂tu + ∂xxxu + u∂xu = 0.

Fermi, Pasta and Ulam used this equation to justify the apparent
paradox in chaos theory that many “complicated enough” physical
systems exhibit almost exactly periodic behavior instead of ergodic
behavior! There are many (equivalent) ways of formulating this
fact:

• The system is integrable

• The equation admits Lax pairs

• Inverse scattering completely solves the IVP.

• The system admits infinitely many conservation laws



Some conservation laws

The first 3 for the KdV equation are:∫
u(x , t) dx∫
u2(x , t) dx mass∫
u2
x (x , t)− u3

3
(x , t) ds Hamiltonian

The first complete algorithm to compute all the conservation laws
is due to Miura, Gardner and Kruskal. In principle at this point we
don’t even know if the integrals above actually are finite, we don’t
know yet if the solution u(x , t) exist!



Well-posedness for (generalized) KdV

We consider the IVP{
∂tu + ∂xxxu + uk∂xu = 0

u(0, x) = u0(x),

We introduce the Sobolev space Hs by recalling that the norm of a
function f in this space is(∫

|f̂ (k)|2(1 + |k|)2s dk

)1/2

< ∞

Definition

The IVP is locally well-posed in Hs if for any u0 ∈ Hs there exists
T = T (u0) and a unique solution u in a Banach space
X s

T ⊂ C ([0,T ],Hs). Moreover there is continuity with respect to
the initial data. If T can be taken arbitrerely large we say that we
have global well-posed.



The “classical” method to prove well-posedness for dispersive
equations is by a priori estimates. This is the Energy Method.
These a priori bounds are found by using the equation and
integration by parts. Using this methods the KdV equation can be
proved to be locally well posed in Hs , s > 3/2.
The second method, developed by Kenig, Ponce and Vega is
based on Oscillatory Integrals. To understand this method we first
observe that by the Duhamel Principle one can rewrite the IVP as
an “equivalent” integral equation:

u(x , t) = W (t)u0(x) + c

∫ t

0
W (t − t ′)(u∂xu)(x , t ′) dt ′,

where, as we know, W (t)u0(x) = R∗(u0)(x , t) is the solution of
the linear IVP.



This methods is based on the following steps:

• The proof of several estimates for W (t)u0(x) using the
Fourier restriction operator R and other estimates based on
oscillatory integrals.

• The definition of a Banach space X s
T of space time functions

where the norms of the above estimates are considered.
• The use of the Banach space X s

T ⊂ C ([0,T ],Hs) as a space
where to look for the fixed point of the operator

Lv(x , t) = W (t)u0(x) + c

∫ t

0
W (t − t ′)(v∂xv)(x , t ′) dt ′.

• The use of the integral equation above to claim that the fixed
point is the unique solution of the equation.

This method allowed Kenig, Ponce and Vega to improve local
well-posedness for the KdV IVP to Hs , s > 3/4, and global
well-posedness in H1. Similar results for the generalized (k > 1)
KdV equations.



Bourgain’s Contribution

Bourgain continues with the fixed point idea, but introduces in this
context another type of space: X s,b. The norm of a function
f ∈ X s,b is defined by

‖f ‖X s,b =

(∫∫
|f̂ (k, τ)|2 < k >2s< τ − k3 >2b dk dτ

)1/2

.

Again we see reappearing the cubic

S = {(k, τ)/τ = k3, k ∈ R}.

With this space Bourgain was able to now attack also the periodic
KdV equation. Here oscillatory integrals cannot be used since
Forier transform gives oscillatory series, not integrals! These spaces
were also later used by Kenig, Ponce and Vega to prove local well
posedness for negative Sobolev spaces H−ρ. More precisely on the
line ρ < 3/4 and on the circle ρ ≤ 1/2.



The symplectic KdV flow

Why do we care about negative Sobolev spaces? One very good
reason is described below. If we consider the periodic case and we
take Forier transform in space of the solution u

u(x , t) ⇐⇒ (û(k, t))k∈Z,

we can view the IVP as an Hamiltonian system of infinite
dimension for the infinite vector (û(k))k∈Z. For this system we can
define the symplectic form

(u, v) =

∫
u∂−1

x v dx

on the Sobolev space H−1/2. It is then reasonable to ask if certain
theorems (see Gromov) that are proved in the finite dimension
setting are still true here.



Theorem

(Colliander, Keel, S, Takaoka and Tao) The symplectic KdV flow is
global in time on H−1/2 and the Gromov non-squeezing theorem
holds.

This theorem has two major parts. The first deals with extending
local well-posedness in H−1/2 to global well-posedness by the use
of the I-Method. The second part deals with proving the
non-squeezing theorem by approximating the system with a finite
dimension one in an appropriate way and then by taking the limit.
Similar results where obtained earlier by Kuksin for compact
perturbation of certain linear systems and by Bourgain for a certain
Schrödinger equation.



The Schrödinger equation

The Schrödinger equation describes for example how quantum
states of a physical system change in time. One example is the IVP

NLS

{
i∂tu + ∆u + σ|u|p−1u = 0
u(0, x) = u0(x), x ∈ Rn

with p > 1 and σ = ±1.
The solution of its linear IVP is

S(t)u0(x) =

∫
e i(x ·k+t|k|2)û0(k) dk = R∗(u0),

where now R(f ) = f̂ (k, |k|2), the operator that restrict the Fourier
transform on the surface given by

P = {(k, τ)/τ = |k|2, k ∈ Rn}.



The Strichartz estimates in Rn

In order to prove (local) well-posedness for Schrödinger equations
the Strichartz Estimates are fundamental.
We call admissible couple any pare of exponents (q, r) such that

2

q
= n

(
1

2
− 1

r

)
q > 2, r < ∞.

Then for any admissible couple (q, r)

‖S(t)u0‖Lq
t L

r
x

. ‖u0‖L2
x
,

and for any other admissible couple (q̃, r̃)∥∥∥∥∫ t

0
S(t − t ′)F (t ′) dt ′

∥∥∥∥
Lq

t L
r
x

. ‖F‖
Lq̃′

t Lr̃′
x
.

Thanks to these estimates one can then prove well-posedness
results for Schrödinger type IVP via fixed point theorems.



How difficult is it to prove well-posedness? It is certainly easier if

• the interval of time [0,T ] is short,

• the initial data are small,

• the nonlinearity is weak.

In fact, from the Duhamel principle u is solution to the NLS
equation above if and only if

u(x , t) = S(t)u0 + c

∫ t

0
S(t − t ′)σ|u|p−1u(t ′) dt ′

and if one could claim that the non-linear perm is a “small”
perturbation, then a fixed point theorem in the space of the
Strichartz norms will provide well-posedness, at least for short
times. The question of long time well-posedness or blow up is far
more complex.



Scaling

There are many important player in the game of well-posedness for
NLS on Rn: scaling invariance and conservation laws, monotonicity
formula (i.e. Morawetz type estimates), Viriel identities and other
kind of symmetries. Here we only consider the first one as an
example: if u solves NLS above then

uλ(x , t) = λ
− 2

p−1 u
(x

λ
,

t

λ2

)
solves the same equation with initial datum u0,λ = u0(

x
λ). We have

that
‖u0,λ‖Ḣs ∼ λsc−s‖u0‖Ḣs

where sc = n/2− 2/(p − 1) is the critical exponent. We can now
“classify” the difficulty of the NLS problem above in terms of sc .



So for sc = n/2− 2/(p − 1) and since ‖u0,λ‖Ḣs ∼ λsc−s , we have

• If s < sc the space Hs is supercritical
(as λ →∞ the norm of ‖u0,λ‖Ḣs grows)

• If s = sc the space Hs is critical
(as λ →∞ the norm of ‖u0,λ‖Ḣs does not change)

• If s > sc the space Hs is subcritical
(as λ →∞ the norm of ‖u0,λ‖Ḣs gets smaller).

Local well-posedness is by now very well understood, (see also
Cazenave, Weissler, Kato, Tsutsumi, Ginibre,Velo etc). In recent
years a lot of progress as been made to prove global well-posedness
at the level of the energy (H1) or mass (L2) norms, even when
they are “critical spaces” in the sense above.



Energy critical NLS in R3

These are two types of theorems now available:

Theorem (Defocusing case σ = −1)

Assume that the energy of the quintic defocusing NLS∫
Rn

1

2
|∇u|2 dx − 2σ

6

∫
Rn

|u|6 dx

is finite. Then the IVP is globally well-posed and at infinity (in
time) the solution approximate a linear one (scattering).

For the proof see Bourgain and Grillakis in the radial case,
Colliander-Keel-S-Takaoka-Tao for the general case. Also see
Ryckman-Visan for n = 4 and Visan for n > 4.



Theorem (Focusing case σ = 1)

Assume that u is the solution of the quintic focusing NLS and

sup
t
‖∇u0(t)‖L2

x
< ‖∇W ‖L2

x
,

where W is the stationary solution. Then if we also assume radial
symmetry the same conclusion as above holds.

For the proof see Kenig-Merle, See also Killip-Visan for n ≥ 5,
where the radial assumption has been removed.
In a certain sense the complement of this last theorem is a
collection of recent and strong results of blow up rate and blow up
profile due to Merle-Raphael.



Schrödinger equations on manifolds

Given a manifold (M, g) equipped with its Laplace-Beltrami
operator ∆g one can certainly define a Schrödinger equation on it.
The interesting questions here are related to the understanding of
the influence of the geometry on the behavior of the
solutions...when they exist. I will list some results by concentrating
on Strichartz estimates:

• On the sphere Sn: There is a loss of 1
n derivative.

Burq-Gerard-Tzvetkov

• On the hyperbolic space Hn: There is a larger family of
Strichartz estimates.
Banica, Banica-Carles-S, Ionescu-S, Banica-Carles-Duyckaerts,
Ancher-Pierfelice

• On the torus Tn: Limited Strichartz estimates.
Bourgain

Here Tn is the Torus for which the symbol of ∆ is
∑n

i=1 k2
i !



The cubic defocusing Schrödinger equation in

T2

Well-posedness in Hs , s > 0 follows from the Strichartz estimate
due to Bourgain:

‖S(t)u0‖L4
TL4

T
≤ ‖u0‖Hε

x

for any ε > 0. The interesting part of the proof of this estimate is
that it is based on counting the lattice points on a “thin” sphere

k2
1 + k2

2 = R2 + θ, |θ| < 1,R >> 1.

Here Gauss lemma is used to claim that this number is smaller
than Rε for any ε > 0.
What about irrational tori? If one wants to use the same method
of Bourgain then one needs to have a good estimate for the
number of lattice points on a “thin” ellipsoid. This is basically an
open question except for a partial result of Bourgain.



Notion of Weak Turbulence

Definition

Weak turbulence is the phenomenon of global-in-time solutions
shifting their mass toward increasingly high frequencies.

This shift is also called forward cascade.

One way of measuring weak turbulence is to consider the
function in time

‖u(t)‖2
Ḣs =

∫
|û(t, k)|2|k|2sdξ

for s � 1 and prove that it grows for large times t.

Weak turbulence is incompatible with scattering or complete
integrability.



Conjecture

Solutions to dispersive equations on Rn DO NOT exhibit weak
turbulence. There are solutions to dispersive equations on Tn that
exhibit weak turbulence. In particular for NLS(T2) there exists
u(x , t) s. t. ‖u(t)‖2

Ḣs →∞ as t →∞.

Theorem (Colliander-Keel-Staffilani-Takaoka-Tao)

Let s > 1, K � 1 and 0 < σ < 1 be given. Then there exist a
global smooth solution u(x , t) to the defocusing IVP{

(i∂t + ∆)u = −|u|2u
u(0, x) = u0(x), where x ∈ T2,

(NLS(T2))

and T > 0 such that ‖u0‖Hs ≤ σ and ‖u(T )‖2
Ḣs ≥ K .



The toy model

The idea of the proof is to make the ansatz

v(t, x) =
∑
n∈Z2

an(t)e
i(〈n,x〉+|n|2t),

and rewrite the equation as an ODE in terms of the infinite vector
(an(t)). We also consider only the resonant part of the ODE and
we construct a special finite set of frequencies Λ that is closed
under resonance and has several other “good”properties. Thanks
to these properties we arrive to a finite dimension toy model

−i∂tbj(t) = −bj(t)|bj(t)|2 − 2bj−1(t)
2bj(t)− 2bj+1(t)

2bj(t),

for j = 0, ....,M + 1, with the boundary condition

b0(t) = bM+1(t) = 0.



Remark

This new IVP conserves the momentum, the mass
(
∑M

j=1 |bj(t)|2 = 1) and the energy!

Global well-posedness for this system is not an issue. Then we
define

Σ = {x ∈ CM / |x |2 = 1} and W̃ (t) : Σ → Σ,

where W̃ (t)b(0) = b(t) for any solution b(t) of our system. It is
easy to see that if we define the torus

Tj = {(b1, ...., bM) ∈ Σ / |bj | = 1, bk = 0, k 6= j}

then
W̃ (t)Tj = Tj for all j = 1, ....,M

(Tj is invariant).



At this point the problem has been set up in such a way that if we
could show that once we start “near” one of the first tori (low
frequencies) we end up at a certain time T near one of the last tori
(high frequencies) then we are done. In fact we have the following
result:

Theorem

Let M ≥ 6. Given ε > 0 there exist x3 within ε of T3 and xM−2

within ε of TM−2 and a time T such that

W (T )x3 = xM−2.

Remark

Our theorem does not show that one can find a solution u which
Hs norm grows in time. We cannot even prove that it grown as a
log |t|!



I would like to conclude by listing other topics of great interest and
intense mathematical activity:

• Wave maps
Nahmod-Stefanov-Uhlenbeck, Klainerman-Rodnianski,
Krieger-Schlag, Shatah-Struwe, Sterbenz-Tataru, Tao.

• Schrödinger maps
Bejenaru-Kenig-Ionescu, Chang-Shatah-Uhlenbeck,
Ding-Wang, Kenig-Lamm-Pollack-S-Toro, McGahagan,
Nahmod-Stefanov-Uhlenbeck, Rodnianski-Rubenstain-S,
Terng-Uhlenbeck.

• “Almost surely” well-posedness
Oh, Bourgain, Burq-Tzvetkov, Oh-Rey Bellet-Nahmod-S

• Regularity theorems for supercritical dispersive equations
(similar to Navier-Stokes)
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