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Abstract

In the decades since its introduction, Szemerédi’s regularity lemma has been widely adopted

by the combinatorial community as a powerful microscope for studying the asymptotic regimes

of extremal problems. Yet this power comes at the cost of limited resolution outside of the

very far asymptotic regime, as the regularity lemma’s quantitative bounds necessarily involve

tower-type dependencies. We investigate the very first application of Szemerédi’s regularity

lemma, which was the following celebrated Ramsey-Turán result proved by Szemerédi in 1972:

any K4-free graph on n vertices with independence number o(n) has at most ( 1
8 +o(1))n2 edges.

Four years later, Bollobás and Erdős gave a surprising geometric construction, utilizing the

isoperimetric inequality for the high dimensional sphere, of a K4-free graph on n vertices with

independence number o(n) and (1
8 − o(1))n2 edges.

Bollobás and Erdős asked to estimate the minimum possible independence number in the

critical window, when the number of edges is about n2/8. This required a level of accuracy

beyond the reach of regularity-based approaches, and remained one of the main open problems

in this area, receiving considerable attention. In this paper, we develop new regularity-free

methods which give rise to nearly best-possible dependencies, and solve several longstanding

open problems concerning this critical window. Along the way, we introduce a new twist on

another influential combinatorial technique, known as dependent random choice, which produces

substantially better bounds.

1 Introduction

Szemerédi’s regularity lemma [38] is one of the most powerful tools in extremal combinatorics.

Roughly speaking, it says that every graph can be partitioned into a small number of parts such

that the bipartite subgraph between almost every pair of parts is random-like. The small number of

parts is at most an integer M(ε) which depends only on an approximation parameter ε. The exact

statement of the regularity lemma is given in the beginning of Section 2. For more background on

the regularity lemma, the interested reader may consult the well-written surveys by Komlós and

Simonovits [27] and Rödl and Schacht [29].

In the regularity lemma, M(ε) can be taken to be a tower of twos of height ε−O(1), and proba-

bilistic constructions of Gowers [23] and Conlon and Fox [8] show that this is best possible. Unfor-

tunately, this implies that the bounds obtained by applications of the regularity lemma are usually
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quite poor. It remains an important problem to determine if new proofs giving better quantitative

estimates for certain applications of the regularity lemma exist (see, e.g., [24]). Some progress has

been made, including the celebrated proof of Gowers [25] of Szemerédi’s theorem using Fourier

analysis, the new proofs [9, 18, 26] that bounded degree graphs have linear Ramsey numbers, the

new proof [17] of the graph removal lemma, and the new proofs [7, 28] of Pósa’s conjecture for

graphs of large order.

The earliest application of the regularity lemma1 is a celebrated result of Szemerédi from 1972

in Ramsey-Turán theory; see Theorem 1.1. For a graph H and positive integers n and m, the

Ramsey-Turán number RT(n,H,m) is the maximum number of edges a graph G on n vertices

with independence number less than m can have without containing H as a subgraph. The study

of Ramsey-Turán numbers was introduced by Sós [34]. It was motivated by the classical theorems

of Ramsey and Turán and their connections to geometry, analysis, and number theory. Ramsey-

Turán theory has attracted a great deal of attention over the last 40 years; see the nice survey by

Simonovits and Sós [33].

Theorem 1.1 (Szemerédi [36]). For every ε > 0, there is a δ > 0 for which every n-vertex graph

with at least
(

1
8 + ε

)
n2 edges contains either a K4 or an independent set larger than δn.

Four years later, Bollobás and Erdős [5] gave a surprising geometric construction, utilizing the

isoperimetric inequality for the high dimensional sphere, of a K4-free graph on n vertices with

independence number o(n) and (1
8 − o(1))n2 edges. Roughly speaking, the Bollobás-Erdős graph

consists of two disjoint copies of a discretized Borsuk graph, which connect nearly antipodal points

on a high dimensional sphere, with a dense bipartite graph in between which connects points

between the two spheres which are close to each other. For details of this construction and its

proof, see Section 8.

Bollobás and Erdős asked to estimate the minimum possible independence number in the critical

window, when the number of edges is about n2/8. This remained one of the main open problems in

this area, and, despite considerable attention, not much progress has been made on this problem.

In particular, Bollobás and Erdős asked the following question.

Problem 1.2 (From [5]). Is it true that for each η > 0 there is an ε > 0 such that for each n

sufficiently large there is a K4-free graph with n vertices, independence number at most ηn, and at

least (1
8 + ε)n2 edges?

They also asked the following related problem, which was later featured in the Erdős paper [11]

from 1990 entitled “Some of my favourite unsolved problems”.

Problem 1.3 (From [5]). Is it true that for every n, there is a K4-free graph with n vertices,

independence number o(n), and at least n2

8 edges?

1We remark that Szemerédi [36] first developed a regularity lemma which is weaker than what is now commonly

known as Szemerédi’s regularity lemma as stated above. Original proofs of several influential results, including

Theorem 1.1, Szemerédi’s theorem [37] on long arithmetic progressions in dense subsets of the integers, and the

Ruzsa-Szemerédi theorem [30] on the (6, 3)-problem, used iterative applications of this original regularity lemma.

This iterative application of the original regularity lemma is of essentially the same strength as Szemerédi’s regularity

lemma as stated above and gives similar tower-type bounds.
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Erdős, Hajnal, Simonovits, Sós, and Szemerédi [13] noted that perhaps replacing o(n) by a

slightly smaller function, say by n
logn , one could get smaller upper bounds on Ramsey-Turán num-

bers. Specifically, they posed the following problem.

Problem 1.4 (From [13]). Is it true for some constant c > 0 that RT(n,K4,
n

logn) < (1/8− c)n2?

This problem was further discussed in the survey by Simonovits and Sós [33] and by Su-

dakov [35]. Motivated by this problem, Sudakov [35] proved that if m = e−ω((logn)1/2)n, then

RT(n,K4,m) = o(n2).

In this paper, we solve the Bollobás-Erdős problem to estimate the minimum independence

number in the critical window. In particular, we solve the above problems, giving positive answers

to Problems 1.2 and 1.3, and a negative answer to Problem 1.4. We next discuss these results in

depth.

The bound on δ as a function of ε in the now standard proof of Theorem 1.1 (sketched in

Section 2) strongly depends on the number of parts in Szemerédi’s regularity lemma. In particular,

it shows that δ−1 can be taken to be a tower of twos of height ε−O(1).

Our first result is a new proof of Theorem 1.1 which gives a much better bound and completely

avoids using the regularity lemma or any notion similar to regularity. More precisely, it gives a

linear bound for δ on ε in Theorem 1.1, in stark contrast to the tower-type dependence given by

the original proof.

Theorem 1.5. For every α and n, every n-vertex graph with at least n2

8 + 1010αn edges contains

either a copy of K4 or an independent set of size greater than α.

It is natural to wonder whether one must incur a constant factor of 1010. Our second result

sharpens the linear dependence down to a very reasonable constant. Its proof uses the regularity

lemma with an absolute constant regularity parameter (independent of n and α).

Theorem 1.6. There is an absolute positive constant γ0 such that for every α < γ0n, every n-

vertex graph with at least n2

8 + 3
2αn edges contains a copy of K4 or an independent set of size greater

than α.

We also prove the following corresponding lower bound, which shows that the linear dependence

in Theorem 1.6 is best possible, matching the dependence on α to within a factor of 3 + o(1).

Starting with the Bollobás-Erdős graph, the construction finds a slightly denser K4-free graph

without increasing the independence number much. It also gives a positive answer to Problem 1.2

of Bollobás and Erdős with the linear dependence that our previous theorems now reveal to be

correct. Here, we write f(n)� g(n) when f(n)/g(n)→ 0 as n→∞.

Theorem 1.7. For (log logn)3/2

(logn)1/2
· n� m� n, we have

RT(n,K4,m) ≥ n2

8
+

(
1

2
− o(1)

)
mn.

Bollobás and Erdős drew attention to the interesting transition point of exactly n2

8 edges. Thus

far, the best result for this regime was a lower bound on the independence number of ne−O(
√

logn)

by Sudakov [35]. The proof relies on a powerful probabilistic technique known as dependent random

choice; see the survey by Fox and Sudakov [19].
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By introducing a new twist on the dependent random choice technique, we substantially improve

this lower bound on the independence number at the critical point. We think that this new variation

may be interesting in its own right, and perhaps could have other applications elsewhere, as the

main dependent random choice approach has now seen widespread use. Our key innovation is to

exploit a very dense setting, and to select not the common neighborhood of a random set, but the

set of all vertices that have many neighbors in a random set; then, we apply a “dispersion” bound

on the binomial distribution in addition to the standard Chernoff “concentration” bound.

Theorem 1.8. There is an absolute positive constant c such that every n-vertex graph with at least
n2

8 edges contains a copy of K4 or an independent set of size greater than cn · log logn
logn .

We also prove an upper bound on this problem, giving a positive answer to Problem 1.3 of

Bollobás and Erdős. The proof is again by modifying the Bollobás-Erdős graph to get a slightly

denser K4-free graph whose independence number does not increase much.

Theorem 1.9. There is an absolute positive constant c′ such that for each positive integer n, there

is an n-vertex K4-free graph with at least n2

8 edges and independence number at most c′n· (log logn)3/2

(logn)1/2
.

Recall that Bollobás and Erdős [5] constructed a K4-free graph on n vertices with (1− o(1))n
2

8

edges with independence number o(n). The various presentations of the proof of the Bollobás-Erdős

result in the literature [3], [4], [5], [13], [14], [33] do not give quantitative estimates on the little-o

terms. By finding good quantitative estimates for the relevant parameters, we can use the Bollobás-

Erdős graphs to prove the following theorem. This result gives a negative answer to Problem 1.4 of

Erdős, Hajnal, Simonovits, Sós, and Szemerédi [13]. It also complements the result of Sudakov [35],

showing that the bound coming from the dependent random choice technique is close to optimal.

Theorem 1.10. If m = e−o((logn/ log logn)1/2)n, then

RT(n,K4,m) ≥ (1/8− o(1))n2.

We summarize the results in the critical window in the following theorem. All of the bounds,

except for the first result in the first part, which is due to Sudakov [35], are new. As before, we

write f(n)� g(n) to indicate that f(n)/g(n)→ 0 as n→∞.

Theorem 1.11. We have the following estimates. Here c and c′ are absolute constants.

1. If m = e−ω((logn)1/2)n, then RT(n,K4,m) = o(n2);

while if m = e−o((logn/ log logn)1/2)n, then RT(n,K4,m) ≥ (1/8− o(1))n2.

2. If m = cn · log logn
logn , then RT(n,K4,m) ≤ n2/8;

while if m = c′n · (log logn)3/2

(logn)1/2
, then RT(n,K4,m) ≥ n2/8.

3. If (log logn)3/2

(logn)1/2
· n� m� n, we have

n2

8
+

(
1

2
− o(1)

)
mn ≤ RT(n,K4,m) ≤ n2

8
+

3

2
mn.
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Organization. In Section 2, we recall Szemerédi’s original proof of Theorem 1.1 using the regu-

larity lemma. Our new proof has two main steps. First, we show that every K4-free graph on n

vertices with at least n2/8 edges and small independence number must have a large cut, with very

few non-crossing edges. Second, we show that having a large cut implies the desired Ramsey-Turán

result.

For the first step we present two different approaches. The first approach, presented in Section 3,

is conceptually simpler. Here we apply the regularity lemma with an absolute constant level of

precision and then apply the stability result for triangle-free graphs to obtain a large cut that lets

us obtain Theorem 1.6. The second approach, presented in Section 4, avoids using the regularity

lemma completely, and leads to Theorem 1.5. Once we know that the maximum cut is large,

we proceed to the second step, presented in Section 5, where we obtain either a K4 or a large

independent set. The conclusions of the proofs are found in Section 6. In Section 7 we prove

Theorem 1.8 by introducing a new variant of the dependent random choice technique. In Section 8,

we give a quantitative proof of the Bollobás-Erdős result, and use it to establish Theorem 1.10. In

Section 9, we show how to modify the Bollobás-Erdős graph to get a slightly denser graph whose

independence number is not much larger. We use this to establish Theorems 1.7 and 1.9. Finally,

Section 10 contains some concluding remarks. Throughout this paper, all logarithms are base e

unless otherwise indicated. For the sake of clarity of presentation, we systematically omit floor and

ceiling signs whenever they are not crucial.

2 Szemerédi’s proof

In this section we recall the standard proof of Theorem 1.1. We reproduce the proof here because

our proof of Theorem 1.6 starts the same way. We first need to properly state the regularity lemma,

which requires some terminology. The edge density d(X,Y ) between two subsets of vertices of a

graph G is the fraction of pairs (x, y) ∈ X × Y that are edges of G. A pair (X,Y ) of vertex

sets is called ε-regular if for all X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, we have

|d(X ′, Y ′)− d(X,Y )| < ε. A partition V = V1 ∪ . . .∪ Vt is called equitable if ||Vi| − |Vj || ≤ 1 for all

i and j. The regularity lemma states that for each ε > 0, there is a positive integer M(ε) such that

the vertices of any graph G can be equitably partitioned V (G) = V1 ∪ . . . ∪ Vt into 1
ε ≤ t ≤ M(ε)

parts where all but at most εt2 of the pairs (Vi, Vj) are ε-regular.

We next outline the standard proof of Theorem 1.1. We apply Szemerédi’s regularity lemma

to obtain a regular partition. The edge density between two parts cannot exceed 1
2 + ε, or else

we can find a K4 or a large independent set. Then the reduced graph has density exceeding 1
2 , so

by Mantel’s theorem we can find three vertex sets pairwise giving dense regular pairs, from which

we can obtain a K4 or a large independent set. We follow this outline with a few simple lemmas

leading to the detailed proof.

Lemma 2.1. Let G be a K4-free graph with independence number at most α. Let uv be an edge of

G. Then u and v have at most α common neighbors.

Proof. If we have an edge uv whose endpoints have codegree exceeding α, then there is an edge xy

within the common neighborhood of u and v. This forms a K4.
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Lemma 2.2. Let t, γ > 0 satisfy γt ≤ 1. If G is a K4-free graph on n vertices with independence

number at most γn, and X and Y are disjoint vertex subsets of size n/t, then the edge density

between X and Y is at most 1
2 + γt.

Proof. Let A ⊂ X be the vertices with Y -degree greater than n
2t + γn

2 . If A contains an edge, then

the endpoints of that edge will have neighborhoods in Y that overlap in more than γn vertices,

contradicting the K4-freeness of G by Lemma 2.1. Hence, A is an independent set and |A|/|X| ≤ γt.
It follows that the edge density between X and Y is at most

|A|
|X|
· 1 +

(
1− |A|
|X|

)
·
n
2t + γn

2

|Y |
≤ (γt)1 + (1− γt) ·

n
2t + γn

2

n/t

= γt+ (1− γt) · 1

2
(1 + γt)

<
1

2
+ γt .

Lemma 2.3. Suppose that X, Y , and Z are disjoint subsets of size m, and each of the three pairs

are ε-regular with edge density at least 3ε. Then there is either a K4 or an independent set of size

at least 4ε2m.

Proof. We may assume that ε < 1
3 , as otherwise the given conditions are vacuous. By the regularity

condition, at most an ε-fraction of the vertices of X fail to have Y -density at least 2ε, and at most

ε-fraction fail to have Z-density at least 2ε. Select one of the other vertices x ∈ X, and let Y ′

and Z ′ be x’s neighborhoods in Y and Z. At most an ε-fraction of the vertices of Y fail to have

Z ′-density at least 2ε, so among the vertices of Y ′, there are still at least εm of them that have

Z ′-density at least 2ε. Pick one such y ∈ Y ′. Now x and y have at least (2ε)2m common neighbors

in Z, and that is either an independent set, or it contains an edge uv which forms a K4 together

with x and y.

Now we recall the standard proof of Theorem 1.1 using the regularity lemma.

Proof of Theorem 1.1. Suppose we have a K4-free graph G on n vertices with at least (1
8 + ε)n2

edges. Let β = ε/6, M = M(β) be the bound on the number of parts for Szemerédi’s regularity

lemma with regularity parameter β, and δ = ε2/(9M). So M and δ−1 are at most a tower of height

ε−O(1). We apply Szemerédi’s regularity lemma with regularity parameter β to get a regularity

partition into 1
β ≤ t ≤ M parts. For clarity of presentation, we ignore floor signs here and

assume all parts have exactly n/t vertices. At most βt2(n/t)2 ≤ εn2/6 edges go between pairs

of parts which are not β-regular, and at most εn2/4 edges go between parts which have edge

density less than ε/2 between them. The number of edges within individual parts is less than

t · (n/t)2/2 = n2/(2t) ≤ βn2/2 = εn2/12. Thus, more than
(

1
8 + ε

2

)
n2 edges of G go between pairs

of parts which are β-regular and have edge density at least ε/2 between them.

Since ε > δt, by Lemma 2.2, if there is no independent set of size δn, then the edge density

between each pair of parts in the regularity partition is less than 1
2 + ε. Consider the t-vertex

reduced graph R of the regularity partition, whose vertices are the parts of the regularity partition,

and two parts are adjacent if the pair is β-regular and the edge density between them is at least

ε/2. As there are more than
(

1
8 + ε

2

)
n2 edges between pairs of parts which form edges of R, and
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the edge density between each pair is less than 1
2 + ε, the number of edges of R is more than(

1
8 + ε

2

)
n2
/[(

1
2 + ε

)
(n/t)2

]
>
(

1
4 + ε

4

)
t2. By Mantel’s theorem, R must contain a triangle. That

is, the regularity partition has three parts each pair of which is β-regular and of density at least

ε/2. As β = (ε/2)/3, Lemma 2.3 tells us that there is an independent set of size greater than
ε2

9
n
t ≥ δn.

We note that the above proof can be modified to use the weak regularity lemma by Frieze and

Kannan [20, 21] to give a singly exponential dependence between δ and ε, i.e., δ = 2− poly(ε−1).

This observation was made jointly with David Conlon. Here is a rough sketch. We apply the weak

regularity lemma with parameter β = poly(ε) to obtain a weakly regular partition of the graph

into t ≤ 2O(β−2) parts, and let δ−1 = poly(t/ε). As before, no pair of parts can have density

exceeding 1
2 + ε, so the reduced graph has at least

(
1
4 + ε

16

)
t2 edges. Using Goodman’s triangle

supersaturation result [22], there are at least Ω(εt3) triangles in the reduced graph. Applying the

triangle counting lemma associated to the weak regular partition [6] (i.e., counting lemma with

respect to the cut norm) we see that G has at least Ω(ε4n3) triangles. We then conclude as before

to show that G must contains a large independent set.

In each of the above proofs, we needed to apply a regularity lemma with the input parameter

depending on ε, so the dependency of δ on ε is at the mercy of the regularity lemma, which cannot

be substantially improved (see [8]). In the next section, we start a new proof where we only need to

apply the regularity lemma with an absolute constant regularity parameter, so that we can obtain a

very reasonable linear dependence between δ and ε. In Section 4 we provide an alternate approach

which completely avoids the use of regularity.

3 Large cut via regularity lemma

Now we begin the proof of Theorem 1.6. It is conceptually easier than the regularity-free approach

(Theorem 1.5), so we start with it. The proof follows the same initial lines as the original argument

in Section 2, except that we only use as much regularity as we need to find a large cut. Importantly,

the cut is deemed satisfactory once its size is within an absolute constant approximation factor of

the true maximum cut, which asymptotically contains 1 − o(1) proportion of all of the graph’s

edges. We only need to apply the regularity lemma with a prescribed absolute constant level of

precision, and this is key to developing the sharper dependence on the independence number.

We need the following stability version of Mantel’s theorem to obtain our large cut.

Theorem 3.1 (Erdős [10], Simonovits [32]). For every ε > 0, there is a δ > 0 such that every n-

vertex triangle-free graph with more than
(

1
4−δ

)
n2 edges is within edit distance εn2 from a complete

bipartite graph.

We use this result to obtain the following lemma.

Lemma 3.2. For every c > 0 there is a γ > 0 such that every K4-free graph G on n vertices with at

least n2

8 edges and independence number at most γn has a cut which has at most cn2 non-crossing

edges.
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Proof. Let ν be the δ produced by Theorem 3.1 when applied with c
2 as the input. Let ε =

min
{
ν
7 ,

c
6

}
. We apply Szemerédi’s regularity lemma to G with parameter ε, to find a partition

of the vertex set into t parts of equal size, where all but at most εt2 pairs of parts are ε-regular,

and 1
ε ≤ t ≤ M . Importantly, M depends only on ε, and is completely independent of n. Let

γ = 4ε2/M .

Let H be an auxiliary t-vertex graph where each vertex corresponds to one of the parts of the

regularity partition. Place an edge between a pair of vertices in H if and only if the corresponding

pair of parts is ε-regular with edge density greater than 3ε. The total number of edges of G not

represented in H is at most

t

(
n/t

2

)
+ εt2

(n
t

)2
+

(
t

2

)
(3ε)

(n
t

)2
<
n2

2t
+ εn2 +

3

2
εn2

≤ 3εn2 . (1)

The first term came from the edges within individual parts of the regularity partition, the second

term came from pairs that were not ε-regular, and the third term came from pairs that had density

at most 3ε.

Let m be the number of edges of H. Lemma 2.2 bounds all pairwise densities by at most

1

2
+ γt ≤ 1

2
+ γM =

1

2
+ 4ε2 .

Therefore, the number of edges in the original graph is at most

e(G) ≤ m
(

1

2
+ 4ε2

)(n
t

)2
+ 3εn2 .

Yet we assumed that G had at least n2

8 edges, so dividing, we find that

m ≥
1
8 − 3ε

1
2 + 4ε2

· t2

>

(
1

4
− 6ε

)(
1− 8ε2

)
t2

>

(
1

4
− 7ε

)
t2 .

We may now appeal to the Erdős-Simonovits stability (Theorem 3.1), which by our choice of

ε implies that H is within ct2

2 edges of being complete bipartite. In particular, there is a cut of

H which has at most ct2

2 non-crossing edges. Consider the corresponding cut of G. Even if those

non-crossing edges of H corresponded to pairs of full density, after adding (1) we find that the total

number of non-crossing edges of G is at most

ct2

2

(n
t

)2
+ 3εn2 ≤ cn2 ,

as desired.

Now we deviate from the original regularity-based approach. Our next ingredient is a minimum-

degree condition.
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Lemma 3.3. Let G be a graph with n vertices and m edges, and suppose there is a vertex with

degree at most m
n . Delete the vertex from G, and let the resulting graph have n′ = n − 1 vertices

and m′ edges. Then m′

n′ ≥
m
n .

Proof. After deletion, the number of edges is m′ ≥ m − m
n = m

(
1 − 1

n

)
= m · n−1

n = m · n′n , and

therefore m′

n′ ≥
m
n .

Lemma 3.4. Let G be an n-vertex graph with at least m edges. Then G contains an induced

subgraph G′ with n′ > 2m/n vertices, at least n′mn edges, and minimum degree at least m
n .

Proof. Repeat the following procedure: as long as the graph contains a vertex v of degree at most
m
n , remove v. Let G′ be the resulting induced subgraph when this process terminates, and n′ be

the number of vertices of G′. Note that at the very beginning, the ratio of edges to vertices is at

least m
n , and by Lemma 3.3, this ratio does not decrease in each iteration. Therefore, throughout

the process, the ratio of the number of edges to the number of vertices is always at least m
n . Yet

this ratio is precisely half of the average degree of the graph, which is less than the number of

vertices of the graph, so we must have n′ > 2mn . Also, the number of edges of G′ is at least

m − (n − n′)mn = n′mn . Finally, as no more vertices are deleted, G′ has minimum degree at least
m
n .

At this point, we switch gears, and introduce our regularity-free approach, which will also reach

this same point. After both approaches have arrived here, we will complete both proofs with the

same argument.

4 Large cut without regularity

In this section, we assume the conditions of Theorem 1.5.

Lemma 4.1. Theorem 1.5 is trivial unless α ≤ n/(2 · 1010).

Proof. Theorem 1.5 assumes that the number of edges is at least n2

8 +1010αn. But if α > n/(2·1010),

then this number already rises above
(
n
2

)
, and the theorem becomes vacuous because there are no

graphs with that many edges.

Lemma 4.2. When we are proving Theorem 1.5, we may assume that all degrees are at least
n
4 + (1010 − 1)α, or else we are already done.

Proof. Let C = 1010, so that we are proving that every graph with no K4 and no independent set

of size greater than α must contain fewer than n2

8 + Cαn edges. We proceed by induction on n.

Theorem 1.5 is trivial unless α ≥ 1, in which case Cαn is already at least Cn. This exceeds
(
n
2

)
for

all n ≤ 2C, so those serve as our base cases.

For the induction step, let G be a graph with at least n2

8 + Cαn edges, and assume that the

result is known for n− 1. Suppose for the sake of contradiction that G has no K4 or independent

set of size greater than α. Let δ be its minimum degree, and delete its minimum degree vertex.

The resulting graph also has no K4 or independent set of size greater than α, so by the induction

hypothesis,

e(G)− δ < (n− 1)2

8
+ Cα(n− 1) .

9



Yet we assumed that e(G) ≥ n2

8 + Cαn. Combining these, we find that

n2

8
+ Cαn− δ < (n− 1)2

8
+ Cα(n− 1)

Cα+
n

4
− 1

8
< δ .

Therefore, δ > n
4 + (C − 1)α.

This strong minimum degree condition establishes that every neighborhood has size greater

than n/4. The first step of our regularity-free approach associates a large set of neighbors to each

vertex.

Definition 4.3. For each vertex v in G, arbitrarily select a set of exactly n/4 neighbors of v, and

call that set Nv. Define the remainder Rv to be the complement of Nv.

Definition 4.4. If a vertex u ∈ Rv has density to Nv in the range [0.3, 0.34] we say that u trisects

v.

The next lemma blocks an extreme case which would otherwise obstruct our proof.

Lemma 4.5. Let G be a graph on n vertices with minimum degree at least n/4. Suppose that for

every vertex v, all but at most 0.03n vertices of Rv trisect v. Then there is either a K4 or an

independent set of size at least n/1200.

Proof. Assume for the contrary that G is K4-free and the maximum independent set in G has size

α < n/1200. As the minimum degree is at least n/4 and G does not contain an independent set of

this size, it must contain a triangle. Let abc be an arbitrary triangle in the graph. Define the three

disjoint sets

N∗a = Na \ (Nb ∪Nc) ,

N∗b = Nb \ (Na ∪Nc) ,

N∗c = Nc \ (Na ∪Nb) .

Let m = n/4. Each of Na, Nb, and Nc has size exactly m, and Lemma 2.1 ensures that their

pairwise intersections are at most α. So, each of N∗a , N∗b , and N∗c has size at least m−2α. At most

0.06n vertices of N∗a fail to trisect either of b or c, so we may choose v ∈ N∗a which trisects both b

and c.

Since we selected v ∈ N∗a , it is adjacent to a, and therefore Lemma 2.1 implies that v has at

most α neighbors in N∗a . By above, there are still at least m − 3α non-neighbors of v in N∗a , of

which at most 0.09n fail to trisect any of v, b, or c. Therefore, we may now select u ∈ N∗a which is

non-adjacent to v, and trisects each of v, b, and c.

Let B = Nv ∩N∗b and C = Nv ∩N∗c . We will establish two claims: first, that Nu intersects B

in more than 0.17m vertices, and second, that Nu intersects C in more than 0.17m vertices. This

is a contradiction, because B and C are disjoint subsets of Nv, and the condition that u trisects v

forces |Nu ∩Nv| ≤ 0.34m. By symmetry between b and c, it suffices to prove only the first claim.

For this, suppose for the sake of contradiction that Nu intersects B in at most 0.17m vertices.

Since u trisects b, u has at least 0.3m neighbors in Nb, hence at least 0.3m− 2α neighbors in N∗b ,

10



hence at least 0.13m− 2α > 0.03n+ α neighbors in N∗b \Nv. (Here, we used α < n
1200 .) Of these,

at most 0.03n fail to trisect v, and since the resulting number is more than α, there is an edge xy

such that x, y ∈ N∗b \Nv, they both trisect v, and they both are adjacent to u.

Since x and y are adjacent, Nx and Ny overlap in at most α vertices by Lemma 2.1. Since they

both trisect v, we conclude that (Nx ∪ Ny) ∩ Nv has size at least 0.6m − α. Also by Lemma 2.1,

all but at most 2α of these vertices lie outside N∗b , because x and y are adjacent to b. Thus, we

have already identified at least 0.6m− 3α vertices of Nv \ B that are adjacent to x or y. Yet u is

adjacent to both x and y, so by Lemma 2.1, Nu can only include up to 2α of these vertices. Hence

|Nu ∩ (Nv \B)| ≤ |Nv \B| − (0.6m− 3α) + 2α

= (m− |B|)− (0.6m− 3α) + 2α .

Since v trisects b, we must have B = Nv ∩N∗b of size at least 0.3m− 2α. Thus,

|Nu ∩ (Nv \B)| ≤ (0.7m+ 2α)− (0.6m− 3α) + 2α

= 0.1m+ 7α .

Since u trisects v, we must have |Nu∩Nv| ≥ 0.3m. Therefore, |Nu∩B| ≥ 0.2m−7α, which exceeds

0.17m because α < n/1200. This establishes the claim, and completes the proof of this lemma.

The next lemma is a simple averaging argument which will be useful in the lemma that follows.

Lemma 4.6. Let a1, . . . , am be a sequence of real numbers from [0, 1] whose average exceeds 1/3.

Suppose that at most 0.1% of them exceed 0.3334. Then at most 3% of them lie outside the range

[0.3, 0.34].

Proof. On the contrary, if at least 2.9% of them fall below 0.3, then the average of the sequence is

at most

0.029 · 0.3 + 0.97 · 0.3334 + 0.001 · 1 = 0.333098 <
1

3
,

because the maximum value is at most 1.

Using the preceding two lemmas, we deduce the next lemma, which shows that if the indepen-

dence number is small in a K4-free graph, then there is a vertex v such that a substantial fraction

of the vertices in Rv have density substantially larger than 1/3 to Nv.

Lemma 4.7. Suppose that α < n/1200. In every K4-free graph on n vertices with independence

number at most α and minimum degree greater than n
4 + α, there exists a vertex v for which over

0.1% of the vertices of Rv have density greater than 0.3334 to Nv.

Proof. For every vertex v, every u ∈ Nv has at most α neighbors in Nv by Lemma 2.1. Then u

has more than n/4 neighbors in Rv. In particular, the density of the bipartite subgraph between

Nv and Rv is strictly greater than 1/3. Therefore, by Lemma 4.6, each vertex v which fails the

property produces a situation where all but 3% of the vertices of Rv trisect v. If this occurs for

every vertex v, then we satisfy the main condition of Lemma 4.5.
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Lemma 4.8. For any c > 0, the following holds with C = 9
8c + 1

2 . Let G be an n-vertex graph with

no K4, in which all independent sets have size at most α, and suppose that α ≤ cn/3. Let R be a

subset of 3n/4 vertices, and let T ⊂ R have size cn. Suppose that every vertex of T has degree (in

R) at least n
8 +Cα. Then there is a subset U ⊂ R (not necessarily disjoint from T ) of size at least

n/4 such that every vertex of U has more than α neighbors in T .

Proof. Greedily pull out a matching from G[T ] of cn
3 edges. This is possible because G[T ] has

independence number at most α ≤ cn
3 . Create an auxiliary bipartite graph H with two sides A and

B as follows. Set |A| = cn
3 , with one vertex for each of the matching edges. Let B be a copy of

R. Place an edge between a ∈ A and b ∈ B = R whenever the vertex b ∈ R is adjacent to at least

one of the endpoints of the matching edge corresponding to a. Since every vertex in T has degree

in R at least n
8 +Cα, and no independent set of size larger than α, Lemma 2.1 implies that in the

auxiliary bipartite graph H, every vertex of A has degree at least n
4 + (2C − 1)α.

Let U contain all vertices of B that have degree (in H) greater than α. Since the sum of all

degrees of B equals the sum of all degrees of A, this sum is at least
(
cn
3

)(
n
4 + (2C − 1)α

)
. At the

same time, it is also at most |R \ U |α+ |U |
(
cn
3

)
. Putting these together, we find that

(|R| − |U |)α+ |U |
(cn

3

)
≥
(cn

3

)(n
4

+ (2C − 1)α
)

so that

|U | ≥
(
cn
3

) (
n
4 + (2C − 1)α

)
−
(

3n
4

)
α

cn
3 − α

>

(
cn
3

) (
n
4 + (2C − 1)α

)
−
(

3n
4

)
α

cn
3

=
n

4
+ (2C − 1)α− 9

4c
α

=
n

4
.

Finally, from the definition of U , it follows that (in G) every vertex in U has at least α neighbors

in T .

Lemma 4.9. In a graph, let L be a subset of vertices, and let xyz be a triangle. (The vertices x,

y, and z each may or may not lie in L.) Suppose that the L-degrees of x, y, and z sum up to more

than |L|+ 3α. Then the graph contains a K4 or an independent set of size greater than α.

Proof. Let X, Y , and Z be the neighborhoods of x, y, and z within L. By inclusion-exclusion,

|L| ≥ |X ∪ Y ∪ Z| ≥ (|X|+ |Y |+ |Z|)− |X ∩ Y | − |Y ∩ Z| − |Z ∩X|
> (|L|+ 3α)− |X ∩ Y | − |Y ∩ Z| − |Z ∩X| .

Thus at least one of the pairwise intersections between X, Y , and Z exceeds α; without loss

of generality, suppose it is between the L-neighborhoods of x and y. If this intersection is an

independent set, then we have found an independent set of size greater than α. Otherwise, it spans

an edge uv, and xyuv forms a copy of K4.
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Corollary 4.10. In a K4-graph with independence number at most α, let L and X be disjoint

subsets of vertices. Suppose that every vertex of X has L-degree greater than |L|
3 + α. Then the

induced subgraph on X has maximum degree at most α.

Proof. Suppose a vertex x ∈ X has more than α neighbors in X. This neighborhood cannot be an

independent set, so it spans an edge yz. Now xyz is a triangle whose vertices have L-degree sum

greater than |L|+ 3α, and Lemma 4.9 completes the proof.

Our next lemma establishes a major milestone toward constructing a cut which contains almost

all of the edges. Such a bipartition spans few edges within each part, and the following lemma

achieves this for one part.

Lemma 4.11. For any 0 < c < 1
2 , the following holds with C = 9·105

8c + 1. In a K4-free graph on n

vertices with minimum degree n
4 +Cα and independence number at most α ≤ 10−5 · cn3 , there must

exist a subset X of
(

1
2 − c

)
n vertices for which its induced subgraph has maximum degree at most

α.

Proof. Use Lemma 4.7 to select a vertex v for which over 0.1% of the vertices of Rv have density

greater than 0.3334 to Nv. Let L = Nv and let R = Rv. Let c1 = 10−5c, so that C − 1
2 is the

constant obtained from Lemma 4.8 with parameter c1.

Each vertex u ∈ L has degree at least n
4 + Cα by assumption, but by Lemma 2.1, since u is

adjacent to v, at most α of this degree can go back to L. Therefore, every vertex of L has more

than |R|/3 neighbors in R, which implies that the total number of edges between L and R exceeds

|L||R|/3.

Let A ⊂ R be the vertices of R whose L-degree exceeds |L|+α2 . If |A| > α, then A cannot be

an independent set, so it induces an edge wx; each endpoint has L-degree greater than |L|+α2 , so w

and x have more than α common neighbors in L. That common neighborhood is too large to be an

independent set, so it must induce an edge yz, and wxyz forms a copy of K4. Therefore, |A| ≤ α.

Every vertex of R \A has total degree at least n
4 + Cα by assumption, at most |L|+α2 of which

goes to L by construction. At least n
8 +

(
C − 1

2

)
α remains within R. Let T be the c1n vertices of

R \ A of highest L-degree. We may now apply Lemma 4.8 on R and T , and find U ⊂ R of size

exactly n
4 = |R|

3 , each of whose vertices has more than α neighbors in T .

Let x be the vertex in U with highest L-degree, and let its L-degree be a. Let b be the smallest

L-degree of a vertex in T . Since |T ∪A| ≤ c1n+ α < 0.1%|R|, we must have

b > 0.3334|L| . (2)

by the initial choice of v. Since x has more than α neighbors in T , its neighborhood in T spans an

edge yz, forming a triangle xyz. The sum of the L-degrees of its vertices is at least a+ 2b. If this

exceeds |L|+ 3α, then we are already done by Lemma 4.9, so we may now assume that

a+ 2b ≤ |L|+ 3α . (3)

To put α in perspective, note that our initial assumption on α translates into

α ≤ 10−5 · cn
3

=
c1n

3
=

4

3
· c1|L| . (4)
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If U and T overlap at all, then we also have a ≥ b, so inequality (2) then forces both a, b >

0.3334|L|. Combining this with inequality (3), we find that 0.0002|L| < 3α, and since |L| = n
4 , we

have n
60000 < α. This is impossible, because we assumed that α < 10−5 · cn3 , and c < 1

2 . Therefore,

U and T are disjoint, and we may upper bound the sum of all L-degrees from R by

e(L,R) ≤ |U |a+ (|R| − |U |)b+ |T ∪A|(|L| − b) . (5)

This is because all vertices of U have L-degree at most a, and of the remaining vertices of R, only

those in T ∪A may have L-degree exceeding b; even then, all L-degrees are at most |L|. Simplifying

this expression with |U | = |R|/3, |T ∪ A| ≤ c1n+ α, and inequalities (3) and (4), we find that the

total L-degree sum from R is

e(L,R) ≤
(
|R|
3

)
a+

(
2|R|

3

)
b+ (c1n+ α)(|L| − b)

<
|R|
3

(a+ 2b) + (c1n+ α)|L|

≤ |R|
3

(|L|+ 3α) + (c1n+ α)|L|

=
|L||R|

3
+ α(|L|+ |R|) + c1n|L|

=
|L||R|

3
+ α(n) + c1n|L|

≤ |L||R|
3

+
7

3
· c1n|L| .

Yet one of our first observations was that e(L,R) > |L||R|/3. Therefore, the total amount of slack

in inequality (5) is at most 7
3 · c1n|L|.

This is a very small gap. To take advantage of it, let S be the subset of vertices in R \ (A∪U)

whose L-degree is at most |L|3 + α. Note that inequalities (4) and (2) show that this bound is less

than b, and hence S is entirely contained in R \ (A ∪ T ∪ U). We may then sharpen inequality (5)

to

e(L,R) ≤ |U |a+ (|R| − |U |)b+ |T ∪A|(|L| − b)− |S|
(
b− |L|

3
− α

)
. (6)

In particular, the new summand cannot exceed the amount of slack we previously determined, and

so

|S|
(
b− |L|

3
− α

)
<

7

3
· c1n|L|.

Hence

|S| < 7c1n|L|
3b− |L| − 3α

=
7c1n

3b
|L| − 1− 3α

|L|
.

Combining this with inequalities (2) and (4), we conclude that

|S| < 7c1n

1.0002− 1− 4c1
<

7c1n

1.0002− 1− 2 · 10−5
=

7 · 10−5

1.0002− 1− 2 · 10−5
· cn < 0.39cn ,

and so if we define X = R\(U ∪S∪A), the size of X is at least
(

1
2−c

)
n. Furthermore, every vertex

of X has L-degree greater than |L|3 + α, and so Corollary 4.10 implies that the induced subgraph

G[X] has all degrees at most α.
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Lemma 4.12. For any 0 < c∗ < 2
5 , the following holds with c = c∗/4. Let G be a K4-free graph

on n vertices with independence number at most α < c∗n
50 and minimum degree at least n

4 . Suppose

it has a set X of
(

1
2 − c

)
n vertices, which induces a subgraph of maximum degree at most α. Then

in the max-cut of G, the total number of non-crossing edges is at most c∗n2.

Proof. We will use c < 1
10 . Let Y be the complement of X. It suffices to show that the total

number of edges spanned within each of X and Y is at most c∗n2, because the max-cut can only

do better. Since G[X] has maximum degree at most α, we clearly have e(X) ≤ α|X|
2 .

By the minimum degree condition, each vertex of X must have degree at least n
4 , and at most

α of its neighbors can fall back in X. Therefore, the total number of edges from X to Y is already

e(X,Y ) ≥
(

1

2
− c
)
n ·
(n

4
− α

)
>
n2

8
− cn2

4
− αn

2
. (7)

Let A ⊂ Y be the vertices of Y which have more than |X|+α2 neighbors in X. As in the beginning

of the proof of Lemma 4.11, we must have |A| ≤ α. Summing the X-degrees of the vertices in Y ,

we find that

e(X,Y ) ≤ α|X|+ (|Y | − α) · |X|+ α

2

= α

(
1

2
− c
)
n+

1

2

(n
2

+ cn− α
)(n

2
− cn+ α

)
=
αn

2
− cαn+

1

2

(
n2

4
− (cn− α)2

)
<
αn

2
+
n2

8
(8)

The amount of slack between the bounds for e(X,Y ) in (7) and (8) is at most αn+ cn2

4 .

Let S be the subset of vertices in Y whose X-degree is at most |X|3 + α. Just as in the proof

of Lemma 4.11, we may use our bound on the slack to control the size of S. Indeed, in our upper

bound (8), we used a bound of at least |X|+α2 for every vertex of Y . Each vertex of S now reduces

the bound of (8) by
|X|
6
− α

2
≥ n

15
− α

2
≥ n

20
. (9)

Here, we used c < 1
10 to bound |X| ≤ 0.4n, and α ≤ n

30 . Therefore, the size of S is at most the

slack divided by (9):

|S| ≤
(
αn+

cn2

4

)
/
( n

20

)
= 20α+ 5cn . (10)

Using this, we may finally bound the number of edges in Y . The key observation is that Corollary

4.10 forces the induced subgraph on Y \ S to have maximum degree at most α. Therefore, even if

S were complete to itself and to the rest of Y ,

e(Y ) ≤ α(|Y | − |S|)
2

+
|S|2

2
+ |S| · (|Y | − |S|) < |Y ||S|+ α|Y |

2
.
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Combining this with (10) and our initial bound on e(X), we obtain

e(X) + e(Y ) < |Y ||S|+ αn

2

≤ (0.6n)(20α+ 5cn) +
αn

2

= 3cn2 + 12.5αn

≤ 4cn2 = c∗n2 .

Here, we used c < 1
10 to bound |Y | ≤ 0.6n, and α ≤ c∗n

50 = cn
12.5 . This completes the proof.

5 Refinement of stability

Both arguments have now found very good cuts. In this section, we show how to finish the argument

from this point.

Lemma 5.1. Let G be a K4-free graph on n vertices, at least n2

8 edges,and independence number

at most α ≤ cn. Suppose its vertices have been partitioned into L ∪ R, and e(L) + e(R) ≤ cn2.

Then |L| and |R| are both within the range
(

1
2 ±
√

3c
)
n.

Proof. Without loss of generality, suppose that |L| ≤ |R|, and let |L| = n
2 − l. The same argument

that yielded (8) implies that

e(L,R) ≤ α|L|+ (|R| − α) · |L|+ α

2

= α|L|+ 1

2

(n
2

+ l − α
)(n

2
− l + α

)
< α|L|+ n2

8
− l2

2
+ lα

=
n2

8
− l2

2
+
αn

2
.

Combining this with the assumed lower bound on e(G), assumed upper bound on e(L) + e(R), and

α ≤ cn, we find that
n2

8
≤ e(G) ≤ cn2 +

n2

8
− l2

2
+
αn

2
,

and hence
l2

2
≤ 3cn2

2
,

and l ≤
√

3c · n, as desired.

The next result actually uses an extremely weak condition on the minimum degree. It leverages

it by taking a max-cut, which has the nice property that every vertex has at least as many neigh-

bors across the cut as on its own side. This local optimality property immediately translates the

minimum degree condition to a minimum cross-degree condition, which is very useful. Although it

may seem like we are re-using many of the techniques that we introduced for earlier parts of this

proof, we are not re-doing the same work, because we are now proving properties for the max-cut,

which a priori could be somewhat different from the partitions obtained thus far.
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Lemma 5.2. Let G be a K4-free graph on n vertices with minimum degree at least cn and inde-

pendence number at most α ≤ cn
36 . Let L ∪ R be a max-cut with n

3 ≤ |R| ≤
2n
3 . Let T ⊂ L be the

vertices with R-degree greater than
(

1
2 −

c
8

)
|R|. Then every vertex of L has at most α neighbors in

T .

Proof. The minimum degree condition and the local optimality property of the max-cut implies

that every vertex of L has R-degree at least cn
2 > c|R|

2 . Suppose that L contains a triangle which

has at least two vertices in T . Then, the sum of the triangle’s R-degrees would exceed

2

(
1

2
− c

8

)
|R|+ c|R|

2
= |R|+ c|R|

4
≥ |R|+ cn

12
≥ |R|+ 3α .

This is impossible by Lemma 4.9.

Now, suppose for the sake of contradiction that some vertex v ∈ L has more than α neighbors in

T . This neighborhood is too large to be an independent set, and therefore it contains an edge with

both endpoints in T . That edge, together with v, forms one of the triangles prohibited above.

Lemma 5.3. For any 0 < c < 1, the following holds with c′ = c2/800. Assume α < cn/300. Let

G be a K4-free graph on n vertices with at least n2

8 + 3αn
2 edges, and minimum degree at least cn.

Suppose that the max-cut of G partitions the vertex set into L ∪ R such that e(L) + e(R) ≤ c′n2.

Then G either has a copy of K4, or an independent set of size greater than α.

Proof. Assume for the sake of contradiction that G has no K4 or independent sets larger than

α. Let AL ⊂ L be the vertices whose R-degree exceeds |R|+α2 , and let AR ⊂ R be the vertices

whose L-degree exceeds |L|+α2 . As in the beginning of the proof of Lemma 4.11, we must have

|AL|, |AR| ≤ α.

Next, let SL ⊂ L be the vertices whose R-degree is at most
(

1
2 −

c
8

)
|R|, and let SR ⊂ R be the

vertices whose L-degree is at most
(

1
2 −

c
8

)
|L|. We first show that SL and SR must be small. For

this, we count crossing edges in two ways. If we add all R-degrees of vertices in L, and all L-degrees

of vertices in R, then we obtain exactly 2e(L,R). Since |AL|, |AR| ≤ α, we can bound this sum by

2e(L,R) ≤
[
α|R|+ |SL|

(
1

2
− c

8

)
|R|+ (|L| − α− |SL|)

|R|+ α

2

]
+

[
α|L|+ |SR|

(
1

2
− c

8

)
|L|+ (|R| − α− |SR|)

|L|+ α

2

]
.

The first bracket simplifies to

|L||R|
2
− |SL|

(
c|R|

8
+
α

2

)
+ α

(
|R|+ |L|

2
− |R|

2

)
− α2

2
.

Since c′ < 1
300 and α < n

300 , Lemma 5.1 bounds |R| > 0.4n. Therefore, the first bracket is less than

|L||R|
2
− |SL|

(cn
20

)
+ α · |L|+ |R|

2
=
|L||R|

2
− |SL|

(cn
20

)
+
αn

2
,

and similarly with the second bracket. Hence

e(L,R) <
|L||R|

2
− |SL|

(cn
40

)
− |SR|

(cn
40

)
+
αn

2
. (11)

17



On the other hand, we were given that e(L) + e(R) ≤ c′n2, while also e(G) ≥ n2

8 + 3αn
2 .

Therefore, we must also have

e(L,R) ≥ n2

8
− c′n2 +

3αn

2
. (12)

Combining (12), (11), and |L||R| ≤ n2

4 , we find that

|SL|
(cn

40

)
+ |SR|

(cn
40

)
< c′n2 , (13)

and in particular, both |SL| and |SR| are at most 40c′n
c . Since we defined c′ = c2

800 , we have

|SL|, |SR| <
cn

20
. (14)

Finally, we derive more precise bounds on e(L) and e(R), and combine them with (11). We

start with e(L). By Lemma 5.2, every vertex of L can only send at most α edges to L \ SL, so

the number of edges that are incident to L \ SL is at most |L|α. All remaining edges in L must

have both endpoints in SL, and even if they formed a complete graph there, their number would

be bounded by |SL|2
2 . Thus e(L) < |L|α + |SL|2

2 . Combining this with a similar estimate for e(R),

and with inequality (11), we find that

e(G) < (|L|+ |R|)α+
|SL|2

2
+
|SR|2

2
+
|L||R|

2
− |SL|

(cn
40

)
− |SR|

(cn
40

)
+
αn

2

=
|L||R|

2
+

3αn

2
+
|SL|

2

(
|SL| −

cn

20

)
+
|SR|

2

(
|SR| −

cn

20

)
. (15)

Inequality (14) shows that the quadratics in |SL| and |SR| are nonpositive. The maximum possible

value of |L||R|2 is n2

8 . This contradicts our given e(G) ≥ n2

8 + 3αn
2 , thereby completing the proof.

6 Putting everything together

Now we finish the proofs by putting the parts together. Combining the results of Sections 3 and

5, we obtain Theorem 1.6 which involves an application of regularity with an absolute constant

regularity parameter as input.

Proof of Theorem 1.6. Let γ be the result of feeding c = 1
51200 into Lemma 3.2, and let γ0 = 4γ.

We are given an n-vertex graph with m ≥ n2

8 + 3
2αn edges, with no K4 and with all independent

sets of size at most α, where α < γ0n. By Lemma 3.4, we may extract a subgraph G′ on n′ vertices

which has at least n′mn ≥ n
′
(
n2

8 + 3
2αn

)
/n ≥ (n′)2

8 + 3
2αn

′ edges, no K4, independence number at

most α < γn′, and also minimum degree at least m
n > n′

8 .

By Lemma 3.2, G′ has a cut with at most (n′)2

51200 non-crossing edges. Finally, the minimum

degree condition of n′

8 allows us to apply Lemma 5.3 with c = 1
8 , as 1

51200 = (1/8)2

800 then is the

corresponding c′. This completes the proof.

Next, by combining the results of Sections 4 and 5, we prove Theorem 1.5 without any regularity

at all.
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Proof of Theorem 1.5. By Lemma 4.2, we may assume that the minimum degree is at least n
4 +

(1010−1)α. Lemma 4.1 lets us assume that α ≤ n/(2 ·1010). This satisfies the conditions of Lemma

5.3 with c = 1
4 , so it suffices to show that the max-cut leaves only at most c′n2 = (1/4)2

800 ·n
2 = n2

12800

crossing edges. To establish this, we use Lemma 4.12, with c∗ = 1
12800 . This requires that α < c∗n

50 ,

which we have, as well as a sparse set X of
(

1
2 − c

)
n vertices, where c = c∗/4 = 1

51200 . This

is provided by Lemma 4.11, which then requires that all degrees are at least n
4 + Cα, with C =

9
8 ·51200 ·105 +1 < 6 ·109, as well as requiring that α ≤ 10−5 · n

3·51200 . As 10−5 · n
3·51200 ≈ 6.5 ·10−11,

our bound from Lemma 4.1 is indeed sufficient.

7 Dependent random choice

In this section, we use the good cut discovered by our constant-parameter regularity approach

to find a pair of large disjoint sets of vertices which has density extremely close to 1
2 . Then,

we introduce our variant of the dependent random choice technique, and use this to find a large

independent set or a K4.

Lemma 7.1. For any constant c > 0, there is a constant c′ > 0 such that the following holds.

Suppose that α ≤ c2n
1600 . Let G be a graph with at least n2

8 edges, minimum degree at least cn, no

K4, and independence number at most α. Suppose that the max-cut of G partitions the vertex set

into L ∪R such that e(L) + e(R) ≤ c′n2. Then all of the following hold:

(i) Each of |L| and |R| are between 0.4n and 0.6n.

(ii) At most α vertices of L have R-degree greater than |R|+α2 .

(iii) At most α vertices of R have L-degree greater than |L|+α2 .

(iv) Both induced subgraphs G[L] and G[R] have maximum degree at most
(

120
c + 1

)
α.

Proof. We may assume c < 1, or else there is nothing to prove. Let c′ = c2

3200 . Now proceed exactly

as in the proof of Lemma 5.3, and again obtain inequality (11). Note that along the way, parts

(i)–(iii) are established. But after reaching (11), this time, we only know e(G) ≥ n2

8 , so instead of

(12), we now have

e(L,R) ≥ n2

8
− c′n2 . (16)

Combining (11) and (16), we obtain the following instead of (13):

|SL|
(cn

40

)
+ |SR|

(cn
40

)
< c′n2 +

αn

2
,

so

|SL| <
40c′n

c
+

20α

c
≤ cn

40
,

since c′ = c2

3200 and α ≤ c2n
1600 . Note that this is twice as strong as (14). The same argument as in

the proof of Lemma 5.3 leads again to (15), which we copy here for the reader’s convenience.

e(G) <
|L||R|

2
+

3αn

2
+
|SL|

2

(
|SL| −

cn

20

)
+
|SR|

2

(
|SR| −

cn

20

)
.
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This time, we only have e(G) ≥ n2

8 . As before, the maximum possible value of |L||R|2 is n2

8 , so

the nonpositive quadratics in |SL| and |SR| are permitted to cost us up to 3αn
2 of slack. However,

as we established in (7) that |SL| < cn
40 , the value of

(
cn
20 − |SL|

)
is between cn

40 and cn
20 . Therefore,

we must have
|SL|

2

(cn
40

)
≤ |SL|

2

(cn
20
− |SL|

)
<

3αn

2

and hence |SL| < 120α
c .

By Lemma 5.2, every vertex of L has at most α neighbors in L \ SL. Therefore, every vertex

of L has at most |SL|+ α < 120α
c + α neighbors in L. A similar argument holds in R, establishing

part (iv) of this theorem, and completing the proof.

Corollary 7.2. There is an absolute constant γ0 such that for every γ < γ0, every n-vertex graph

with at least n2

8 edges, no copy of K4, and independence number at most γn, has two disjoint subsets

of vertices X and Y with |X| ≥ n
16 , |Y | ≥ n

10 , and where every vertex of X has Y -degree at least(
1
2 − 20000γ

)
|Y |.

Proof. Let α = γn. We begin in the same way as in our proof of Theorem 1.6 in Section 6, except

we use Lemma 7.1 instead of Lemma 5.3. Indeed, let γ1 be the result of feeding c = 1
204800 into

Lemma 3.2, and let γ0 = γ1/4. We are given an n-vertex graph with at least n2

8 edges, with no K4

and with all independent sets of size at most α, where α < γ0n. By Lemma 3.4, we may extract

a subgraph G′ on n′ ≥ n
4 vertices which has at least (n′)2

8 edges, no K4, independence number at

most γn < γ1n
′, and also minimum degree at least n′

8 .

By Lemma 3.2, G′ has a cut with at most (n′)2

204800 non-crossing edges. Finally, the minimum

degree condition of n′

8 allows us to apply Lemma 7.1 with c = 1
8 , as 1

204800 = (1/8)2

3200 then is the

corresponding c′. This gives a bipartition L ∪ R of G′. Without loss of generality, assume that

|L| ≥ |R|, so that |L| ≥ n′

2 ≥
n
8 . Part (i) of that Lemma gives |R| ≥ 0.4n′ ≥ n

10 . Part (iv) establishes

that all degrees in G[L] and G[R] are at most
(

120
1/8 + 1

)
α = 961α. Hence

e(L,R) ≥ (n′)2

8
− 961αn′

2
≥ |L||R|

2
− 961αn′

2
≥ |L||R|

2
− 961α|L| . (17)

By part (ii), at most α vertices of L can have R-degree greater than |R|+α
2 . Let Y = R, and let

X ⊂ L be the vertices that have R-degree at least |R|2 − 1923.5α. We claim that |X| ≥ |L|2 . Indeed,

if this were not the case, then by summing up the R-degrees of the vertices of L, we would find

e(L,R) ≤ |L|
2

(
|R|
2
− 1923.5α

)
+

(
|L|
2
− α

)(
|R|
2

+ 0.5α

)
+ α|R|

=
|L||R|

2
− 961.5α|L|+ α|R|

2
− α2

2

<
|L||R|

2
− 961α|L| ,

contradicting (17). Thus |X| ≥ |L|2 ≥
n′

4 ≥
n
16 . Finally, observe that since α = γn and |R| ≥ n

10 as

noted above, we have

1923.5α = 1923.5γn ≤ 19235γ|R| ,

and so every vertex of X indeed has Y -degree at least
(

1
2 − 20000γ

)
|Y |.
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We now use a twist of the Dependent Random Choice technique to find either a K4 or a large

independent set in G[X ∪ Y ]. The traditional technique is to select a random subset T ⊂ Y by

sampling t vertices of Y uniformly at random, with replacement, and then to define U ⊂ X as

those vertices that are adjacent to every single vertex of T . Straightforward analysis establishes

the following lemma, which was used in this precise setting by Sudakov [35] to prove a lower bound

of ne−O(
√

logn) for this Ramsey-Turán problem.

Lemma 7.3 (As formulated in [19]). For every n, d, s, and k, every n-vertex graph with average

degree d contains a subset U of at least

max

{
dt

nt−1
−
(
n

s

)(
k

n

)t
: t ∈ Z+

}
vertices, such that every subset S ⊂ U of size s has at least k common neighbors.

The significance of this lemma is that if it is applied to G[X ∪ Y ] with s = 2 and a suitably

chosen t, one immediately finds a moderately sized subset U from which every pair of vertices has

many common neighbors. Then, either U is an independent set, or it contains an edge uv. The

common neighborhood of u and v is now guaranteed to be large, and it is either an independent

set, or it contains an edge, creating a K4. It is worth noting that this approach works even if

the density between X and Y is only bounded away from zero by an arbitrarily small constant.

However, the lower bound on the independence number that it gives is only ne−Θ(
√

logn).

Yet one might suspect that there is room for improvement, because, for example, if every vertex

of X had Y -degree greater than
(

1
2 + 5γ)|Y | ≥ |Y |+α2 , then it is already even guaranteed that every

pair of vertices in X has common neighborhood larger than α, finishing the argument outright.

Our minimum Y -degree condition is very close, at
(

1
2 − 20000γ

)
|Y |.

It turns out that we can indeed capitalize on this, by adjusting the Dependent Random Choice

procedure. We will still sample t vertices of Y with replacement, but this time we will place a vertex

u ∈ X into U if and only if at least
(

1
2 + ε

)
t of the sampled vertices are adjacent to u. Relaxing our

common adjacency requirement from t to just over half of t allows us to take many more vertices

into U . In order to analyze this procedure, we will use the usual Chernoff upper bounds on large

Binomial deviations, but we will also need lower bounds on Binomial tail probabilities. The second

type guarantees “dispersion,” in addition to the usual “concentration.”

Lemma 7.4. For any constant C > 0, there are ε0 > 0 and n0 <∞ such that the following holds

for all ε < ε0 and n > n0:

P
[
Bin

(
n,

1

2
− Cε

)
≥
(

1

2
+ ε

)
n

]
>
ε
√
n

2
· e−nε2(4C2+20C+16) .

Proof. Throughout, we will implicitly assume that n is large and ε is small. Define

pi =

(
n

i

)(
1

2
− Cε

)i(1

2
+ Cε

)n−i
.

Observe that (
n
i+1

)(
n
i

) =

n!
(i+1)!(n−i−1)!

n!
i!(n−i)!

=
n− i
i+ 1

,
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and therefore
pi+1

pi
=
n− i
i+ 1

·
1
2 − Cε
1
2 + Cε

.

Since the following inequalities are equivalent:

(n− i)
(

1

2
− Cε

)
≤ (i+ 1)

(
1

2
+ Cε

)
n

(
1

2
− Cε

)
−
(

1

2
+ Cε

)
≤ i
[(

1

2
+ Cε

)
+

(
1

2
− Cε

)]
= i ,

we know that in particular, pi is a decreasing sequence for all i ≥ n
2 . Hence

P
[
Bin

(
n,

1

2
− Cε

)
≥
(

1

2
+ ε

)
n

]
> εnp( 1

2
+2ε)n

= εn

(
n

(1
2 + 2ε)n

)(
1

2
− Cε

)( 1
2

+2ε)n(1

2
+ Cε

)( 1
2
−2ε)n

.

By Stirling’s formula,(
n

(1
2 + 2ε)n

)
= (1 + o(1))

√
2πn

(
n
e

)n√
2π(1

2 + 2ε)n
(

( 1
2

+2ε)n

e

)( 1
2

+2ε)n√
2π(1

2 − 2ε)n
(

( 1
2
−2ε)n

e

)( 1
2
−2ε)n

,

so our Binomial probability is at least

P >
ε
√
n

2
· en[(

1
2

+2ε) log(1−2Cε)+( 1
2
−2ε) log(1+2Cε)−( 1

2
+2ε) log(1+4ε)−( 1

2
−2ε) log(1−4ε)] .

Since log(1 + x) ≤ x, we have(
1

2
+ 2ε

)
log(1 + 4ε) +

(
1

2
− 2ε

)
log(1− 4ε) ≤

(
1

2
+ 2ε

)
(4ε) +

(
1

2
− 2ε

)
(−4ε) ≤ 16ε2 .

Also, since log(1− x) > −2x for all sufficiently small positive x, we have(
1

2
+ 2ε

)
log(1− 2Cε) +

(
1

2
− 2ε

)
log(1 + 2Cε) =

1

2
log(1− 4C2ε2) + 2ε log

1− 2Cε

1 + 2Cε

> −4C2ε2 + 2ε log(1− 5Cε)

> −4C2ε2 − 20Cε2 .

This completes the proof.

We are now ready to prove that every sufficiently large graph with more than n2

8 edges contains

either a copy of K4, or an independent set of size Ω
(
n · log logn

logn

)
.

Proof of Theorem 1.8. Define

C = 2000 , K = 4C2 + 20C + 16 , γ =
log logn

200K log n
, t =

200K log2 n

log logn
, and ε = 10γ .
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We will show that as long as n is sufficiently large, there must be an independent set larger than

γn. Assume for the sake of contradiction that there is no K4 and all independent sets have size at

most γn. By Corollary 7.2, there are disjoint subsets of vertices A and B with |A| ≥ n
16 , |B| ≥ n

10 ,

where every vertex of A has B-degree at least
(

1
2 − Cε

)
|B|.

Select a random multiset T of t vertices of B by independently sampling t vertices uniformly at

random. Let U0 ⊂ A be those vertices who each have at least
(

1
2 + ε

)
t neighbors in T . Note that

different vertices of U0 are permitted to have different neighborhoods in T . Next, for each pair of

vertices of U0 which has at most ε|B| common neighbors in B, remove one of the vertices, and let

U be the resulting set.

We claim that U must be an independent set. Indeed, if not, then there is an edge in U ,

whose endpoints must have more than ε|B| ≥ γn common neighbors, and hence their common

neighborhood contains an edge, which creates a K4. It remains to show that U can be large.

Define the random variable X = |U0|, and let Y be the number of pairs of vertices in U0 that have

at most ε|B| common neighbors in B.

We start by estimating E [Y ]. Let u, v ∈ A be a pair of vertices whose common neighborhood

in B has size at most ε|B|. The only way in which they could both enter U0 is if both u and v had

at least
(

1
2 + ε

)
t elements of T in their neighborhoods. In particular, this requires that at least 2εt

elements of T fell in their common neighborhood. Since elements of T are sampled uniformly from

B with replacement, the probability of this is at most

P [Bin (t, ε) ≥ 2εt] < e−
1
3
tε < e−3γt .

Here, we used the well-known Chernoff bound (see, e.g., Appendix A of the book [1] for a reference).

Therefore, by linearity of expectation,

E [Y ] < n2e−3γt =
1

n
.

Next, we move to estimate E [X]. Since every vertex of A has B-degree at least
(

1
2 − Cε

)
|B|,

the probability that a particular vertex of A is selected for U0 is at least

P
[
Bin

(
t,

1

2
− Cε

)
≥
(

1

2
+ ε

)
t

]
>
ε
√
t

2
· e−tε2K =

ε
√
t

2
· e−100Kγ2t ,

by Lemma 7.4. As |A| ≥ n
16 , linearity of expectation gives

E [X] >
n

16
· ε
√
t

2
· e−100Kγ2t =

n

16
· 5γ ·

√
200K log2 n

log logn
· e−

1
2

log logn ,

which has higher order than γn. Therefore, a final application of linearity of expectation gives

E [X − Y ] > γn, and hence there is an outcome of our random sampling which produces |U | ≥
X − Y > γn, so U is too large to be an independent set, a contradiction.

8 Quantitative bounds on the Bollobás-Erdős construction

Recall that Bollobás and Erdős [5] constructed a K4-free graph on n vertices with (1 − o(1))n
2

8

edges with independence number o(n). The various presentations of the proof of this result in the

23



literature [3], [4], [5], [13], [14], [33] do not give quantitative estimates on the little-o terms. In this

section, we present the proof with quantitative estimates. It shows that the Bollobás-Erdős graph

gives a good lower bound for the Ramsey-Turán numbers in the lower part of the critical window,

nearly matching the upper bounds established using dependent random choice. The presentation

here closely follows the proof sketched in [33]. The next result is the main theorem of this section,

which gives the quantitative estimates for the Bollobás-Erdős construction. Call a graph G = (V,E)

on n vertices nice if it is K4-free and there is a bipartition V = X ∪ Y into parts of order n/2 such

that each part is K3-free.

Theorem 8.1. There exists some universal constant C > 0 such that for every 0 < ε < 1, positive

integer h ≥ 16 and even integer n ≥ (C
√
h/ε)h, there exists a nice graph on n vertices, with

independence number at most 2ne−ε
√
h/4, and minimum degree at least (1/4− 2ε)n.

This graph comes from the Bollobás-Erdős construction, which we describe now. Let µ = ε/
√
h.

Feige and Schechtman [16] show that, for every even integer n ≥ (C/µ)h, the unit sphere Sh−1 in Rh

can be partitioned into n/2 pieces D1, . . . , Dn/2 of equal measure so that each piece has diameter

at most µ/4.2 Choose a vertex xi ∈ Di and an yi ∈ Di for each i. Let X = {x1, . . . , xn/2} and

Y = {y1, . . . , yn/2}. Construct the graph BE(n, h, ε) on vertex set X ∪ Y as follows:

(a) Join xi ∈ X to yj ∈ Y if |xi − yj | <
√

2− µ.

(b) Join xi ∈ X to xj ∈ X if |xi − xj | > 2− µ.

(c) Join yi ∈ Y to yj ∈ Y if |yi − yj | > 2− µ.

Theorem 8.1 then follows from next four claims.

Claim 8.2. The subsets X and Y both induce triangle-free subgraphs in BE(n, h, ε).

Claim 8.3. The graph BE(n, h, ε) is K4-free.

Claim 8.4. The independence number of the graph BE(n, h, ε) is at most 2ne−ε
√
h/4.

Claim 8.5. The minimum degree of the graph BE(n, h, ε) is at least (1/4− 2ε)n.

Proof of Claim 8.2. Suppose xi, xj , xk ∈ X form a triangle. Then

0 ≤ |xi + xj + xk|2 = 9− |xi − xj |2 − |xi − xk|2 − |xj − xk|2 < 9− 3(2− µ)2 < 0 ,

which is a contradiction. So the subgraph induced by X is triangle-free, and similarly with Y .

Proof of Claim 8.3. By Claim 8.2, any K4 must come from four vertices x, x′ ∈ X and y, y′ ∈ Y ,

and if they do form a K4, then

0 ≤ |x+ x′ − y − y′|2

= |x− y|2 + |x− y′|2 + |x′ − y|2 + |x′ − y′|2 − |x− x′|2 − |y − y′|2

< 4(
√

2− µ)2 − 2(2− µ)2

= (2µ+ 8− 8
√

2)µ

< 0 ,

which is impossible.

2Lemma 21 in their paper states this for a single value of n0, but their proof actually shows it for all n ≥ n0.
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The following isoperimetric theorem on the sphere shows that, of all subsets of the sphere of

a given diameter, the cap has the largest measure. It plays a crucial role in the proof, as any

independent set which is a subset of X or Y will have diameter at most 2− µ.

Theorem 8.6 (Schmidt [31], see also [33]). Let ` ∈ [0, 2] and h be a positive integer. If A ⊂ Sh−1

is an arbitrary measurable set with diameter at most ` and B a spherical cap in Sh−1 with diameter

`, then λ(A) ≤ λ(B) (where λ is the Lebesgue measure).

We have the following corollary of this theorem and a standard concentration of measure in-

equality for spherical caps (see, e.g., Lemma 2.2 in [2]).

Corollary 8.7 (Corollary 30 in [33]). Let µ ∈ [0, 1). If A ⊂ Sh−1 is any measurable set with

diameter at most 2− µ, then λ(A) ≤ 2e−µh/2 (here λ is normalized to 1 on Sh−1).

Proof of Claim 8.4. We show that the largest independent set contained in each of X and Y has

size at most ne−ε
√
h/4. Let XI ⊂ X be an independent set. Then the diameter of XI on Sh−1 is at

most 2− µ. Let DI =
⋃
i∈XI

Di. Since the regions Di all have diameter at most µ/4, the diameter

of DI is at most 2 − µ/2. By Corollary 8.7 we have λ(DI) ≤ 2e−µh/4. Since λ(DI) = |XI |/(n/2),

we have |XI | ≤ ne−µh/4.

The next lemma gives a lower bound on the measure of spherical caps.

Lemma 8.8. Let h ≥ 5 be positive integer, and ε > 0. Let B be the spherical cap in Sh−1 consisting

of all points with distance at most
√

2− ε√
h

from some fixed point. Then λ(B) ≥ 1
2 −
√

2ε.

Proof. Let δ = ε
√

2/h−ε2/(2h) so that (1−δ)2 +(1−δ2) = (
√

2−ε/
√
h)2, and thus B can be taken

to be Sh−1 ∩ {x1 ≥ δ}. Let A be the intersection of the (h-dimensional) unit ball with the cone

determined by the origin and the boundary Sh−1∩{x1 = δ} of our spherical cap. Note that A is the

convex hull of the origin and the spherical cap B. Since we have normalized the total surface area

of the sphere to be 1, and the cone contains the same fraction of each concentric sphere around the

origin, the surface area of this spherical cap B is precisely the ratio between the (h-dimensional)

volumes of A and the entire unit ball. We may lower bound this by replacing A with the simpler

intersection of the unit ball and the half-space x1 ≥ δ. It therefore suffices to show that the volume

of the part of the unit ball within the slice 0 ≤ x1 ≤ δ is at most
√

2ε times the volume of the entire

unit ball. This final ratio is exactly ∫ δ

0

(√
1− x2

)h−1
dx∫ 1

−1

(√
1− x2

)h−1
dx

,

because the (h − 1)-dimensional intersection between any hyperplane x1 = c and the unit ball is

always an (h− 1)-dimensional ball, whose measure is an absolute constant multiplied by its radius

to the (h− 1)-st power, and the constants cancel between the numerator and denominator.

The numerator is at most δ. Using 1− t ≥ e−2t for t ∈ [0, 1/2], we see that the denominator is

at least ∫ 1/2

−1/2
e−(h−1)x2 dx =

1√
h− 1

∫ √h−1/2

−
√
h−1/2

e−x
2
dx ≥ 1√

h

∫ 1

−1
e−x

2
dx >

1√
h
.
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Thus

λ(Sh−1 ∩ {0 ≤ x1 ≤ δ}) ≤
δ

1/
√
h
≤
√

2ε.

Proof of Claim 8.5. Take any x ∈ X. We show that x is joined to at least (1/4 − 2ε)n vertices in

Y . The spherical cap containing all points within distance at most
√

2− 2µ from x has measure at

least 1/2− 4ε by applying Lemma 8.8 with 2ε. Thus this cap must intersect at least (1/2− 4ε)n/2

regions Di, and we have |yi − x| <
√

2 − µ for each Di that the cap intersects, so that xyi is an

edge of the graph BE(n, h, ε).

Having completed the proof of Theorem 8.1, we may now easily obtain Theorem 1.10.

Proof of Theorem 1.10. We apply Theorem 8.1 with h = log n/ log log n and ε tending to 0 suffi-

ciently slowly with n, so that n ≥ (C
√
h/ε)h is satisfied for sufficiently large n. Theorem 1.10 then

follows as an immediate corollary.

We next formulate another useful corollary of Theorem 8.1. As the applications in the next

section will rely on it, it will be helpful to to study a variant of the Ramsey-Turán numbers

RT(n,K4,m). Recall that a graph G = (V,E) on n vertices is nice if it is K4-free and there is a

bipartition V = X ∪ Y into parts of order n/2 such that each part is K3-free. Let S(n,m) be the

maximum number of edges of a nice graph on n vertices with independence number less than m.

Note that

RT(n,K4,m) ≥ S(n,m).

Also note that Theorem 8.1 provides a lower bound on S(n,m), as the Bollobás-Erdős graph is

nice.

For our next corollary, we will pick h to be the largest positive integer so that n ≥ hh, and hence

h > logn
log logn . Then, by picking ε = 4(log log n)h−1/2, the condition n ≥ (C

√
h/ε)h in Theorem 8.1

is satisfied. In this case, 2ne−ε
√
h/4 = 2n/(log n) and the minimum degree (1/4− 2ε)n implies that

the graph has at least (1/4− 2ε)n2/2 = (1/8− ε)n2 edges.

Corollary 8.9. For n sufficiently large and δ = 4(log log n)3/2/(log n)1/2, we have RT(n,K4, δn) ≥
S(n, δn) ≥ (1/8− δ)n2.

Corollary 8.9 will be used in combination with the densifying construction in the next section

to prove Theorems 1.7 and 1.9, which give lower bounds on Ramsey-Turán numbers that are

significantly larger than the number of edges in the Bollobás-Erdős graph.

9 Above the Bollobás-Erdős density

If G is a nice graph with edge density less than 1/2, we will find another nice graph G′ on the same

vertex set which is a hybrid of G and a complete bipartite graph. The graph G′ is denser than G,

and its independence number is not much larger than that of G. Specifically, with V1, V2 being the

triangle-free parts of G of equal size, we will take some U1 ⊂ V1 and U2 ⊂ V2, and, for i = 1, 2, we

add all edges between Ui and V3−i and delete all edges in Vi which contain at least one vertex in

Ui. Starting with G being a Bollobás-Erdős graph, we will be able to get a denser nice graph G′

without increasing the independence number too much.

26



Lemma 9.1. For positive integers d, m, n with n ≥ 6 even and d ≤ n/2, we have

S(n,m+ d) ≥
(

1− 2d

n

)2

S(n,m) + dn− d2 − n.

Proof. Let G = (V,E) be a nice graph on n vertices and S(n,m) edges with independence number

less than m. So there is a bipartition V = V1 ∪ V2 into parts of order n/2 with each part K3-free.

Let Ui ⊂ Vi for i = 1, 2 be such that |Ui| = d and the induced subgraph of G with vertex

set V \ (U1 ∪ U2) has the maximum number of edges. Denote this induced subgraph by G0. By

deleting randomly chosen vertex subsets of V1 and V2 each of order d, each edge of G survives in

this resulting induced subgraph with probability at least
(
n/2−d

2

)
/
(
n/2
2

)
. Hence, the number of edges

of G0 satisfies

e(G0) ≥ S(n,m)

(
n/2− d

2

)
/

(
n/2

2

)
= S(n,m)

(
1− 2d

n

)(
1− 2d

n− 2

)
≥

(
1− 2d

n

)2

S(n,m)− n,

where in the last inequality we used S(n,m) ≤ n2/3, which follows from Turán’s theorem for

K4-free graphs, d ≤ n/2, and n ≥ 6.

Modify G to obtain G′ by first deleting all edges in Vi which contain at least one vertex in Ui,

and then adding all edges from Ui to V3−i. The number of edges of G′ satisfies

e(G′) = e(G0) + |U1||V2|+ |U2||V1 \ U1| = e(G0) + dn− d2 ≥
(

1− 2d

n

)2

S(n,m) + dn− d2 − n.

We next show that G′ is nice. Since, for i = 1, 2, the induced subgraph of G′ with vertex set

Vi is a subgraph of the induced subgraph of G on the same vertex set, then the induced subgraph

of G′ with vertex set Vi is triangle-free. Assume for the sake of contradiction that G′ contained a

K4. As G is K4-free, the K4 must contain at least one vertex in U1 ∪ U2. If the K4 contained a

vertex u in Ui, as all the neighbors of u are in V3−i, then the other three vertices in the K4 must

be contained in V3−i, contradicting that it is triangle-free. Hence G′ is K4-free, and hence nice.

As U1 is complete to U2 in G′, any independent set in G′ cannot contain a vertex in both U1

and U2. As also |U1| = |U2| = d and G has independence number less than m, the independence

number of G′ is less than m+ d.

We have the following simple corollaries.

Corollary 9.2. For even n ≥ 6, if S(n,m) ≥
(

1
8 − δ

)
n2 with n−1/2 ≤ δ ≤ 1

4 , then S(n,m+2δn) ≥
n2

8 .

Proof. Let d = 2δn. By Lemma 9.1, we have

S(n,m+ d) ≥
(

1− 2d

n

)2

S(n,m) + dn− d2 − n

= (1− 4δ)2

(
1

8
− δ
)
n2 + 2δn2 − 4δ2n2 − n

=
n2

8

(
1 + 48δ2 − 8

n
− 128δ3

)
≥ n2

8
,
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where the last inequality uses n−1/2 ≤ δ ≤ 1
4 .

Proof of Theorem 1.9. This is an immediate consequence of Corollary 8.9, Corollary 9.2, and

RT(n,K4,m) ≥ S(n,m).

The next corollary allows us to get a lower bound on Ramsey-Turán numbers greater than n2/8.

Corollary 9.3. For even n ≥ 6, if S(n,m) ≥
(

1
8 − δ

)
n2 and 1

δn ≤ a ≤ 1
2 , then S(n,m + an) ≥

n2

8

(
1 + 4a− 4a2 − 8δ

)
.

Proof. Let d = an. By Lemma 9.1, we have

S(n,m+ d) ≥
(

1− 2d

n

)2

S(n,m) + dn− d2 − n

= (1− 2a)2

(
1

8
− δ
)
n2 + an2 − a2n2 − n

=
n2

8

(
1 + 4a− 4a2 − 8δ + 32δa− 32δa2 − 8

n

)
≥ n2

8

(
1 + 4a− 4a2 − 8δ

)
,

where the last inequality uses 1
δn ≤ a ≤

1
2 .

When a� δ, Corollary 9.3 produces a construction with substantially more than n2

8 edges.

Proof of Theorem 1.7. This is an immediate consequence of Corollary 8.9, Corollary 9.3, and

RT(n,K4,m) ≥ S(n,m).

10 Concluding remarks

In this paper, we solve the Bollobás-Erdős problem of providing estimates on the independence

number of K4-free graphs in the critical window; see Theorem 1.11. There is still some room to

improve the bounds further. For example, in the third part of Theorem 1.11 we showed that for m

just o(n), we have RT(n,K4,m) − n2/8 = Θ(mn), where the implied constants in the lower and

upper bound are within a factor 3 + o(1). It would be interesting to close the gap.

The asymptotic behavior for the Ramsey-Turán numbers for odd cliques were determined by

Erdős and Sós [15] in 1969. They proved, if q is odd, then

RT(n,Kq, o(n)) =
1

2

(
1− 2

q − 1

)
n2 + o(n2).

Even after the Bollobás-Erdős-Szemerédi result, it still was years before it was generalized by Erdős,

Hajnal, Sós, and Szemerédi [12] to all even cliques. They proved, if q is even, then

RT(n,Kq, o(n)) =
1

2

(
1− 6

3q − 4

)
n2 + o(n2).

It would be nice to extend the results of this paper concerning the critical window for every even q.

28



Finally, it is quite remarkable that the old construction of Bollobás and Erdős can be tweaked

to produce lower bounds which nearly reach our new upper bounds. Perhaps a further variation

using high dimensional geometry (e.g., changing the underlying space or metric) could further close

the gap.

Acknowledgments. We would like to thank David Conlon for helpful comments.
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simple asymptotically extremal structures, Combinatorica 13 (1993), 31–56.

29
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[36] E. Szemerédi, On graphs containing no complete subgraph with 4 vertices (Hungarian), Mat.

Lapok 23 (1972) 113–116.
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