MAT 307: Combinatorics

Lecture 3: Sperner’s lemma and Brouwer’s theorem

Instructor: Jacob Fox

1 Sperner’s lemma

In 1928, young Emanuel Sperner found a surprisingly simple proof of Brouwer’s famous Fixed Point
Theorem: Every continous map of an n-dimensional ball to itself has a fized point. At the heart of
his proof is the following combinatorial lemma. First, we need to define the notions of simplicial
subdivision and proper coloring.

Definition 1. An n-dimensional simplex is a convex linear combination of n+1 points in a general
position. Le., for given vertices vy, ...,vnt1, the simplex would be

n+1 n+1
S = {Z%‘Uz‘ Doy > O,Zai = 1}.
=1 i=1

A simplicial subdivision of an n-dimensional simplex S is a partition of S into small simplices
(“cells”) such that any two cells are either disjoint, or they share a full face of a certain dimension.

Definition 2. A proper coloring of a simplicial subdivision is an assignment of n+ 1 colors to the
vertices of the subdivision, so that the vertices of S receive all different colors, and points on each
face of S use only the colors of the vertices defining the respective face of S.

For example, for n = 2 we have a subdivision of a triangle T into triangular cells. A proper
coloring of T assigns different colors to the 3 vertices of T', and inside vertices on each edge of T’
use only the two colors of the respective endpoints. (Note that we do not require that endpoints of
an edge receive different colors.)

Lemma 1 (Sperner, 1928). Every properly colored simplicial subdivision contains a cell whose
vertices have all different colors.

Proof. Let us call a cell of the subdivision a rainbow cell, if its vertices receive all different colors.
We actually prove a stronger statement, namely that the number of rainbow cells is odd for any
proper coloring.

Case n = 1. First, let us consider the 1-dimensional case. Here, we have a line segment (a,b)
subdivided into smaller segments, and we color the vertices of the subdivision with 2 colors. It is
required that a and b receive different colors. Thus, going from a to b, we must switch color an
odd number of times, so that we get a different color for b. Hence, there is an odd number of small
segments that receive two different colors.



Case n = 2. We have a properly colored simplicial subdivision of a triangle T. Let () denote
the number of cells colored (1, 1,2) or (1,2,2), and R the number of rainbow cells, colored (1,2, 3).
Consider edges in the subdivision whose endpoints receive colors 1 and 2. Let X denote the
number of boundary edges colored (1,2), and Y the number of interior edges colored (1,2) (inside
the triangle T'). We count in two different ways:

e Over cells of the subdivision: For each cell of type @, we get 2 edges colored (1,2), while for
each cell of type R, we get exactly 1 such edge. Note that this way we count internal edges
of type (1,2) twice, whereas boundary edges only once. We conclude that 2Q + R = X + 2Y.

e Over the boundary of T: Edges colored (1,2) can be only inside the edge between two vertices
of T colored 1 and 2. As we already argued in the 1-dimensional case, between 1 and 2 there
must be an odd number of edges colored (1,2). Hence, X is odd. This implies that R is also
odd.

General case. In the general n-dimensional case, we proceed by induction on n. We have a
proper coloring of a simplicial subdivision of S using n + 1 colors. Let R denote the number of
rainbow cells, using all n + 1 colors. Let ) denote the number of simplicial cells that get all the
colors except n + 1, i.e. they are colored using {1,2,...,n} so that exactly one of these colors is
used twice and the other colors once. Also, we consider (n — 1)-dimensional faces that use exactly
the colors {1,2,...,n}. Let X denote the number of such faces on the boundary of S, and Y the
number of such faces inside S. Again, we count in two different ways.

e Each cell of type R contributes exactly one face colored {1,2,...,n}. Each cell of type Q
contributes exactly two faces colored {1,2,...,n}. However, inside faces appear in two cells
while boundary faces appear in one cell. Hence, we get the equation 2Q) + R = X + 2Y.

e On the boundary, the only (n — 1)-dimensional faces colored {1,2,...,n} can be on the face
F C S whose vertices are colored {1,2,...,n}. Here, we use the inductive hypothesis for
F', which forms a properly colored (n — 1)-dimensional subdivision. By the hypothesis, F
contains an odd number of rainbow (n — 1)-dimensional cells, i.e. X is odd. We conclude
that R is odd as well.
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2 Brower’s Fixed Point Theorem

Theorem 1 (Brouwer, 1911). Let B™ denote an n-dimensional ball. For any continuous map
f:B™ — B", there is a point © € B™ such that f(x) = z.

We show how this theorem follows from Sperner’s lemma. It will be convenient to work with
a simplex instead of a ball (which is equivalent by a homeomorphism). Specifically, let S be a
simplex embedded in R""! so that the vertices of S are v; = (1,0,...,0), vo = (0,1,...,0), ...
Unt+1 = (0,0,...,1). Let f: S — S be a continuous map and assume that it has no fixed point.

We construct a sequence of subdivisions of S that we denote by &1,852,53,.... Each §; is a
subdivision of §;_1, so that the size of each cell in S; tends to zero as j — oo.



Now we define a coloring of S;. For each vertex z € S;, we assign a color ¢(z) € [n+1] such that
(f(%))e(z) < Te(z)- To see that this is possible, note that for each point z € S, > x; = 1, and also
> f(x); = 1. Unless f(x) = x, there are coordinates such that (f(z)); < z; and also (f(x))y > z;.
In case there are multiple coordinates such that (f(z)); < z;, we pick the smallest i.

Let us check that this is a proper coloring in the sense of Sperner’s lemma. For vertices of
S, v = (0,...,1,...,0), we have ¢(z) = i because ¢ is the only coordinate where (f(z)); < x;
is possible. Similarly, for vertices on a certain faces of S, e.g. = = conv{v; : i € A}, the only
coordinates where (f(z)); < x; is possible are those where i € A, and hence c¢(x) € A.

Sperner’s lemma implies that there is a rainbow cell with vertices (1), ... 2t ¢ S;. In

other words, (f(zU")); < xgj’l) for each i € [n+1]. Since this is true for each S;, we get a sequence
of points {x(jvl)} inside a compact set S which has a convergent subsequence. Let us throw away
all the elements outside of this subsequence - we can assume that {01} itself is convergent. Since
the size of the cells in S; tends to zero, the limits lim;_, 20+ are the same in fact for all i € [n4 1]
- let’s call this common limit point z* = lim; 20,

We assumed that there is no fixed point, therefore f(z*) # «*. This means that (f(z*)); > «
for some coordinate 7. But we know that (f(29)); < xz(“) for all j and lim;_, 29 = 2*, which
implies (f(x*)); < «} by continuity. This contradicts the assumption that there is no fixed point.



