
MAT 307: Combinatorics

Lecture 3: Sperner’s lemma and Brouwer’s theorem

Instructor: Jacob Fox

1 Sperner’s lemma

In 1928, young Emanuel Sperner found a surprisingly simple proof of Brouwer’s famous Fixed Point
Theorem: Every continous map of an n-dimensional ball to itself has a fixed point. At the heart of
his proof is the following combinatorial lemma. First, we need to define the notions of simplicial
subdivision and proper coloring.

Definition 1. An n-dimensional simplex is a convex linear combination of n+1 points in a general
position. I.e., for given vertices v1, . . . , vn+1, the simplex would be

S =

{
n+1∑

i=1

αivi : αi ≥ 0,
n+1∑

i=1

αi = 1

}
.

A simplicial subdivision of an n-dimensional simplex S is a partition of S into small simplices
(“cells”) such that any two cells are either disjoint, or they share a full face of a certain dimension.

Definition 2. A proper coloring of a simplicial subdivision is an assignment of n + 1 colors to the
vertices of the subdivision, so that the vertices of S receive all different colors, and points on each
face of S use only the colors of the vertices defining the respective face of S.

For example, for n = 2 we have a subdivision of a triangle T into triangular cells. A proper
coloring of T assigns different colors to the 3 vertices of T , and inside vertices on each edge of T
use only the two colors of the respective endpoints. (Note that we do not require that endpoints of
an edge receive different colors.)

Lemma 1 (Sperner, 1928). Every properly colored simplicial subdivision contains a cell whose
vertices have all different colors.

Proof. Let us call a cell of the subdivision a rainbow cell, if its vertices receive all different colors.
We actually prove a stronger statement, namely that the number of rainbow cells is odd for any
proper coloring.

Case n = 1. First, let us consider the 1-dimensional case. Here, we have a line segment (a, b)
subdivided into smaller segments, and we color the vertices of the subdivision with 2 colors. It is
required that a and b receive different colors. Thus, going from a to b, we must switch color an
odd number of times, so that we get a different color for b. Hence, there is an odd number of small
segments that receive two different colors.
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Case n = 2. We have a properly colored simplicial subdivision of a triangle T . Let Q denote
the number of cells colored (1, 1, 2) or (1, 2, 2), and R the number of rainbow cells, colored (1, 2, 3).
Consider edges in the subdivision whose endpoints receive colors 1 and 2. Let X denote the
number of boundary edges colored (1, 2), and Y the number of interior edges colored (1, 2) (inside
the triangle T ). We count in two different ways:

• Over cells of the subdivision: For each cell of type Q, we get 2 edges colored (1, 2), while for
each cell of type R, we get exactly 1 such edge. Note that this way we count internal edges
of type (1, 2) twice, whereas boundary edges only once. We conclude that 2Q+R = X +2Y .

• Over the boundary of T : Edges colored (1, 2) can be only inside the edge between two vertices
of T colored 1 and 2. As we already argued in the 1-dimensional case, between 1 and 2 there
must be an odd number of edges colored (1, 2). Hence, X is odd. This implies that R is also
odd.

General case. In the general n-dimensional case, we proceed by induction on n. We have a
proper coloring of a simplicial subdivision of S using n + 1 colors. Let R denote the number of
rainbow cells, using all n + 1 colors. Let Q denote the number of simplicial cells that get all the
colors except n + 1, i.e. they are colored using {1, 2, . . . , n} so that exactly one of these colors is
used twice and the other colors once. Also, we consider (n− 1)-dimensional faces that use exactly
the colors {1, 2, . . . , n}. Let X denote the number of such faces on the boundary of S, and Y the
number of such faces inside S. Again, we count in two different ways.

• Each cell of type R contributes exactly one face colored {1, 2, . . . , n}. Each cell of type Q
contributes exactly two faces colored {1, 2, . . . , n}. However, inside faces appear in two cells
while boundary faces appear in one cell. Hence, we get the equation 2Q + R = X + 2Y .

• On the boundary, the only (n− 1)-dimensional faces colored {1, 2, . . . , n} can be on the face
F ⊂ S whose vertices are colored {1, 2, . . . , n}. Here, we use the inductive hypothesis for
F , which forms a properly colored (n − 1)-dimensional subdivision. By the hypothesis, F
contains an odd number of rainbow (n − 1)-dimensional cells, i.e. X is odd. We conclude
that R is odd as well.

2 Brower’s Fixed Point Theorem

Theorem 1 (Brouwer, 1911). Let Bn denote an n-dimensional ball. For any continuous map
f : Bn → Bn, there is a point x ∈ Bn such that f(x) = x.

We show how this theorem follows from Sperner’s lemma. It will be convenient to work with
a simplex instead of a ball (which is equivalent by a homeomorphism). Specifically, let S be a
simplex embedded in Rn+1 so that the vertices of S are v1 = (1, 0, . . . , 0), v2 = (0, 1, . . . , 0), ...,
vn+1 = (0, 0, . . . , 1). Let f : S → S be a continuous map and assume that it has no fixed point.

We construct a sequence of subdivisions of S that we denote by S1,S2,S3, . . .. Each Sj is a
subdivision of Sj−1, so that the size of each cell in Sj tends to zero as j →∞.
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Now we define a coloring of Sj . For each vertex x ∈ Sj , we assign a color c(x) ∈ [n+1] such that
(f(x))c(x) < xc(x). To see that this is possible, note that for each point x ∈ S,

∑
xi = 1, and also∑

f(x)i = 1. Unless f(x) = x, there are coordinates such that (f(x))i < xi and also (f(x))i′ > xi′ .
In case there are multiple coordinates such that (f(x))i < xi, we pick the smallest i.

Let us check that this is a proper coloring in the sense of Sperner’s lemma. For vertices of
S, vi = (0, . . . , 1, . . . , 0), we have c(x) = i because i is the only coordinate where (f(x))i < xi

is possible. Similarly, for vertices on a certain faces of S, e.g. x = conv{vi : i ∈ A}, the only
coordinates where (f(x))i < xi is possible are those where i ∈ A, and hence c(x) ∈ A.

Sperner’s lemma implies that there is a rainbow cell with vertices x(j,1), . . . , x(j,n+1) ∈ Sj . In
other words, (f(x(j,i)))i < x

(j,i)
i for each i ∈ [n+1]. Since this is true for each Sj , we get a sequence

of points {x(j,1)} inside a compact set S which has a convergent subsequence. Let us throw away
all the elements outside of this subsequence - we can assume that {x(j,1)} itself is convergent. Since
the size of the cells in Sj tends to zero, the limits limj→∞ x(j,i) are the same in fact for all i ∈ [n+1]
- let’s call this common limit point x∗ = limj→∞ x(j,i).

We assumed that there is no fixed point, therefore f(x∗) 6= x∗. This means that (f(x∗))i > x∗i
for some coordinate i. But we know that (f(x(j,i)))i < x

(j,i)
i for all j and limj→∞ x(j,i) = x∗, which

implies (f(x∗))i ≤ x∗i by continuity. This contradicts the assumption that there is no fixed point.
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