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1 Layout of Final Paper

If I end up writing a paper on this, then this might be what it looks like?

Possible Title: On Sets of Non-Negative Integers Irreducible as Sumsets.

Topic: Studying the number of irreducible sets by considering the metric of the size of the set as well.
Connections to irreducible boolean polynomials and dismal arithmetic, as well as finding maximum indepen-
dent sets for certain families of graphs. Studying more general properties of P(N0) as well.

Layout:

• Abstract

• Introduction

• Pushing past results to the maximum – original open problem, unimodality results.

• Strongly irreducible sets and lower bounding.

• Upper bounding by looking at multiples of {0, d}.

• Miscellaneous things (plan later as the results stack up).

• Conclusion/Acknowledgements.

• References.

• Appendices with binomial coefficient asymptotics and empirical computations.

2 Solution to Original Open Problem

This is trivial by [1]. Here’s a rough sketch: we can first bound

E[Xn] ≤
∑

kαn,k

αn
≤

∑
k
(
n
k

)
2n(1− exp(−Ω(n)))

=
n

2

1

1− exp(−Ω(n))
=

n

2
(1 + o(1)) =

n

2
+ o(n).

And then lower bound

E[Xn] ≥
∑

kαn,k

αn
≥
∑(

k
(
n
k

)
− k · 2n exp(−Ω(n))

)
αn

.

Because
∑

k · 2n exp(−Ω(n)) = O(n22n exp(−Ω(n))) ≪ O(2n) = αn, we get the lower bound is n
2 + o(n) as

well, so

E[Xn] =
n

2
+ o(n).

Remark 2.1. The reason that [1] doesn’t kill all our problems about αn,k is because looking at the subsets
of [n] turns out to be a lot easier. In fact, the method employed is to define random variables and generate
the subsets randomly, then bound probabilistically. Unfortunately, sampling a fixed number of elements from
[n] is a lot more difficult to describe (we’ll need something like Reservoir Sampling, but even this turns out
to be difficult), so this is a lot harder. Solving problems about αn,k asymptotically will require new thinking,
different from [1] and [2]. I’m pessimistic about a recursion for αn,k, but perhaps some sort of recursive
bound on the αn,k is possible.

3 Empirical Results

I’ve written code to compute many things, from αn,k to E[Xn] to the number of strong irreducible sets (more
on that later). For brevity, I do not paste my code here. One can conjecture many things based on empirical
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evidence, such as that f(n) = E[Xn]
n is decreasing with limit 1

2 . However, one should be wary of empirical
evidence because it is misleading in computation of |An| for small values of n.

4 Bijection to Boolean Polynomials and Applications to Open
Problems

There’s a bijection between sets and boolean polynomials: If S ⊂ [n],

S ↔
⊕

0≤a≤n

1a∈Sx
a.

This is mentioned in Shitov’s paper [2], cited in [1]. This paper computes |An| = 2n(1 − o(1)). As Susie
mentions, [1] extends this. The arguments in [2] are quite elementary and seem adaptable. This bijection
presents another method of attack. Additionally, with this bijection, the 2005 paper [3] implies that

Theorem 4.1 ([3]). Determining whether or not a set S is irreducible is NP-complete.

Be careful to note that this does NOT imply that the problem of computing αn,k is NP-hard directly.
Additionally, one should note that the open problem involving the set of lengths of P(N0) could benefit from
a Shitov-like argument. In particular, to bound τ(f) one should generalize Lemma 2.2 of [2].

5 Lower Bounding Partial Sums

One can bound partial sums of the αn,k using Shitov’s lemmas. With some work one can prove

Theorem 5.1. For any integer k with 1 ≤ k ≤ n,

∑
t≤k

αn,t ≥

∑
i≤k

(
n

i

)− min
d∈Z,0≤d≤k

(
n2d+32n/2 + n2n exp

(
− (n+ 2d− 2k)2

2n

))
.

In particular, if k ≥ n/2−
√
n,∑

t≤k

αn,t ≥ Θ(2n)− min
d∈Z,0≤d≤k

(
n2d+32n/2 + n2n exp

(
− (n+ 2d− 2k)2

2n

))
,

and if k ≤ n/2−
√
n,

∑
t≤k

αn,t ≥ Θ

((
n

k

)(
1− 2k

n

)−1
)

− min
d∈Z,0≤d≤k

(
n2d+32n/2 + n2n exp

(
− (n+ 2d− 2k)2

2n

))
.

Asymptotics on the min term seem to be difficult but make for a very interesting problem. I have a hunch
one should take something of the form d ∼ Cn

lnn . One should also note that because

αnE[Xn] =

n∑
k=1

kαn,k = nαn −
n∑

k=1

∑
t≤k

αn,t,

this gives us an upper bound on E[Xn]. In particular, one can show that the min term is o(2n) without
much difficulty (pick d = Cn

lnn when k = O(n) and d = O(1) otherwise). Hence this gives us the bound
E[Xn] ≤ n

2 + o(n). The reason we do this is that it perhaps allows for tightening of the o(n) term. This
tightening may allow us to make further progress on the front of proving unimodality. In terms of direct
application to unimodality, this doesn’t contribute anything more than [1] as is, we’ll need some more smart
thinking. In the next section we’ll get some heuristics that will allow us to push theorem 4.1 as far as
possible. It turns out that this bound is essentially always trivial.
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6 Pushing Past Results To Unimodality

As far as I know, there are only two proofs that the atoms are dense in the literature. One is due to Shitov,
[2], and the other is due to Geroldinger and Bienvenu, [1]. As we will soon see, a slight optimization of
Shitov’s argument allows us to get a precise asymptotic on αn,k for a large interval of k. While Geroldinger
and Bienvenu’s bound is stronger, it seems difficult to transfer their probabilistic argument over. This is
because when we fix the number of ones, independence is lost, so simple arguments don’t work (without
significantly weakening the bound). However, we can slightly modify their argument to give full unimodality
with a little trick.

Before we present our results, we need a few lemmas:

Lemma 6.1.
∑

t≤k

(
n
t

)
≥ Θ

((
n
k

) (
1− 2k

n

)−1
)

Proof. I’ll write it later. I saw it on math overflow.

Lemma 6.2. If k = Ω(n),

log

(
n

k

)
= (1 + o(1))n

(
k

n
log

n

k
+

n− k

n
log

n

n− k

)
Proof. By Stirling’s approximation,(

n

k

)
=

n!

k!(n− k)!
= (1 + o(1))

√
2πn(n/e)n√

2πk(k/e)k
√
2π(n− k)((n− k)/e)n−k

.

Hence (
n

k

)
= (1 + o(1))

√
n

2πk(n− k)

(n
k

)k ( n

n− k

)n−k

.

Taking logarithms,

log

(
n

k

)
= O(1) + log

√
n

2πk(n− k)
+ k log

n

k
+ (n− k) log

n

n− k
.

Because k = Ω(n), the second term in this sum can be swept under the rug. This implies the desired
result.

We transfer over the following lemma of Shitov from the language of Boolean Polynomials to our context:

Lemma 6.3. Let d > 0. Then there are at most n2d+32n/2 pairs of sets (A,B) such that maxA+maxB = n
and |A+B| ≤ |A|+ |B|+ d.

We can use this to prove the following result:

Theorem 6.1. For 0.11n < k < 0.5n, we have that αn,k =
(

n
k−1

)
(1− o(1)).

Proof. Assume k < n/2. Consider the number of sets A,B with |A+ B| = k and maxA+maxB = n. Let
d be a real that we will choose later. Then by the lemma there are at most n2d+32n/2 pairs (A,B) with
|A| + |B| ≥ k − d. To count the number of such sets with |A| + |B| < k − d, fix maxA = r. We may then
upper bound this count by

n−1∑
r=1

∑
a+b=k−d

(
r

a

)(
n− r

b

)
=

n−1∑
r=1

(
n

k − d

)
< n

(
n

k − d

)
.
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Therefore the number of sets |C| = k with maximum element n that are reducible is at most n2d+32n/2 +
n
(

n
k−d

)
. This implies that whenever log2

(
n
k

)
= n(1/2+c) for a constant c > 0, we have that almost all sets of

size k with maximum element n are irreducible. It is easy to see that this implies that αn,k =
(

n
k−1

)
(1−o(1)).

Now, if k = δn,

log2

(
n

k

)
= (1 + o(1))nH2(δ),

where H2(x) = −x log2 x − (1 − x) log2(1 − x). We hence require H2(δ) >
1
2 . Numerically solving this for

δ < 0.5, δ ≈ 0.11 is the “turning point”, as desired.

Pushing [1] directly gives the following:

Theorem 6.2. There are Ω(n) values of k such that the appropriate unimodality inequality holds, i.e.
αn,k < αn,k+1 if k < n/2 and αn,k > αn,k+1 otherwise.

Proof. Consider only k < n/2. The result follows simply by [1] and some calculations. We will sketch the
proof and not be strict about our calculations. We will replace any appearance of k ± 1 with k and any
appearance of n± 1 with n. This doesn’t matter asymptotically. If αn,k+1 =

(
n
k

)
− βn,k+1 < αn,k <

(
n

k−1

)
,

then by Pascal’s identity βn,k+1 >
(
n−1
k−1

)
∼
(
n
k

)
. Therefore, if there are δ(n) values for k for which this

inequality is true, we have that (asymptotically)

δ(n)∑
t=1

(
n

t

)
= O(cn),

for a constant c < 2. Because of the lower estimate

δ(n)∑
t=1

(
n

t

)
≥ Θ

((
n

δ(n)

)(
1− 2δ(n)

n

)−1
)

due to 6.1, this implies that (
n

δ(n)

)
= O(cn).

Set γ(n) := δ(n)
n . By 6.2, taking logarithms, we have that

γ(n) log
1

γ(n)
+ (1− γ(n)) log

1

1− γ(n)
< c+ ε

for every ε > 0. Because the function f(x) = −x log x− (1− x) log(1− x) is continuous on (0, 1) and attains
a maximum value of log 2 with x = 1

2 , this implies that the inequality is true for all γ ≤ γ(n) < 1
2 for some

constant γ < 1
2 . This implies that δ(n) = n− Ω(n), as desired.

Remark 6.1. One can explicitly upper bound the amount of k values this method gives using the lower bound
c > 1.754. Numerically, f(x) = log(1.754) holds for κ ≈ 0.2496 and 1− κ. Hence one can lower bound:

n− δ(n) > (1− 2κ)n ≈ 0.5008n.

Therefore we will need stronger asymptotics if we desired to prove this for more than 0.5008n values of k.

Remark 6.2. f(x) is the binary entropy function.

We can, however, slightly generalize a probabilistic lemma in [1] to our liking (we lose the strength of the
estimate, but the bound is still o(1)):
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Lemma 6.4. Let k = δn for a constant δ = O(1). Let r be a constant positive integer and let b =
(b1, b2, . . . , br) for some 0 < b1 < b2 < · · · < br < n such that n − br = Ω(n). Let z be some fixed binary
sequence of length r. Uniformly at random, choose a binary string (a1, a2, . . . , an) with exactly k ones. Let
A(b; z) be the random variable denoting the number of indices j such that aj+bi = zi for all i. Then for any
λ > 0,

P(|A(b; z)− E[A(b; z)]| > λE[A(b; z)]) = O(n−1).

Proof. By Chebyshev’s inequality,

P(|A(b; z)− E[A(b; z)]| > λE[A(b; z)]) ≤ Var(A(b; z))

λ2E[A(b; z)]2
.

It is clear that the denominator here is Θ(n2). We will show that the numerator is O(n), proving our claim.
One can split

A(b; z) =

n−br∑
i=1

Ai(b; z),

where Ai(b; z) is the indicator random variable for the equality (ai+bj ) = zj for all j. We hence have

Var(A(b; z)) =
∑

1≤i≤n−br

Var(Ai(b; z)) +
∑

1≤i1<i2≤n−br

Cov(Ai1(b; z), Ai2(b; z)).

The former term is O(n), it suffices to show that the latter is as well. This follows because the covariance is
0 whenever the sequences corresponding to indices i1 and i2 don’t intersect. Since each sequence intersects
O(1) other sequences, there are O(n) positive covariance terms, from which the result follows because each
term is O(1).

Now, we can prove the following in a very similar way to [1]:

Theorem 6.3. Let k = δn for some constant 0 < δ < 1. Then αn,k =
(

n
k−1

)
(1− o(1)).

Proof. Let γ be a positive constant that we will specify later. Let r be a constant positive integer that we
will specify later. We choose a set A ⊂ [n] of size k uniformly at random (such that A contains 0). We track
the probability that A = B + C for sets B,C with min(|B|, |C|) ≥ 2. We do this by splitting into cases:

• Let S1 be the set of such A with a decomposition A = B + C such that |B|+ |C| ≤ γn.

• Let S2 be the analogous set for min(|B|, |C|) ≤ r.

• Let S3 be the set for |B|+ |C| > γn and min(|B|, |C|) > r.

It suffices to show that there is o(1) probability that A ∈ S1 ∪ S2 ∪ S3. We will prove this by showing that
the probability that A ∈ Si is o(1) for all i (the result follows by union bound).

We have A ∈ S1 happens with probability at most(
n

k − 1

)−1 ∑
t≤γn

∑
b+c=t

(
n

b− 1

)(
n

c− 1

)
≲

(
n

k − 1

)−1

· n ·
(
2n

γn

)
,

by well-known binomial sums (follows from an easy generating functions argument). We will choose γ so
that this term is o(1).

To calculate P(A ∈ S2), let |B| ≤ r. Let ω ∈ (0, 1) that we will choose later. If maxB ≥ ωn then
C ⊆ [0, (1− ω)n] so there are at most nr2(1−ω)n possibilities for A. Now assume maxB ≤ ωn. Assume

B = {0, b1, b1 + b2, . . . , b1 + b2 + · · ·+ br}

6



where b1 > 0 and bi ≥ 0 for i > 1. Now for all n0 ∈ A, n0 + b1 ∈ A or some n0 − bi ∈ A. Therefore if
f := 1A, we have for all n0 that

(f(n0), f(n0 + b1), f(n0 − b1), . . . , f(n0 − br)) ̸= (1, 0, 0, . . . , 0).

By our lemma (with λ = 1), this happens with probability o(1). Choosing ω sufficiently close to 1 so that

(1− ω)n < log2

(
n

k

)
,

we get the desired o(1) overall probability for this case. This is possible by our binomial coefficient asymp-
totics.

For P(A ∈ S3), assume WLOG (by Pigeonhole and symmetry) that |B| ≥ γn/2 and |C| ≥ r. Let D ⊆ C
have |D| = r. Then ∀n0 ∈ B, n0 +D ⊆ A. Hence the number of n0 ≤ n such that n0 +D ⊆ A is at least
γn
2 . On the other hand, the expected amount is asymptotically at most (n −maxD)δr ≤ nδr. Therefore,
when γ > 2δr, this happens with probability o(1).

Finally, we need to choose r and γ such that log
(
n
k

)
− log

(
2n
γn

)
> nε for some positive ε = O(1), and γ > 2δr.

The first condition is equivalent to H(δ) > 2H(γ/2), so we choose r small enough that H(δ) > 2H(δr) and
then we may find an appropriate γ. This completes the proof.

Finally, this gives us the result we want:

Corollary 6.1. Let k = δn for a constant 0 < δ < 1. Then the appropriate unimodality inequality holds. In
other words, the sequence αn,k is unimodal for almost all k.

Proof. If k < n/2 then αn,k >
(

n
k−1

)
(1−O(1)) =

(
n

k−2

)
≥ αn,k−1. One can say the same thing if k ≥ n/2.

Currently, the best lower bound comes from looking at setsA that can be written asB+C with |B| = 2. There
is a nice recursive argument that gives an asymptotic here. I conjecture that looking at such decompositions
with |B| = 3 will give a better bound. For n = 2, 3, . . . , the number of sets with such decompositions are
2, 5, 13, 28, 55, 97, 169, 293, . . . (found via code).

7 A Notion of Strong Irreducibility

It has been noted in CrowdMath 2023 that sets that are 2-sparse and contain 1 are irreducible. One can
extend this notion more generally:

Definition 7.1. Let S ⊂ [n] have minimum nonzero element m. Suppose 2m /∈ S and for all s ∈ S>m there
is a t ∈ S<s such that s+ t /∈ S. Call such a t a nuller of S. Call S strongly irreducible.

We have the following lemma:

Lemma 7.1. All strongly irreducible sets are irreducible.

Proof. Suppose S is strongly irreducible and S = A + B. Clearly A,B ⊂ S as 0 ∈ A ∩ B. The minimum
element m cannot be written as the sum of two other elements of S, so m is in exactly one of A,B. WLOG
suppose m ∈ A. Then m /∈ B because 2m /∈ S. Now, suppose for the sake of contradiction that B contains
some element s ̸= 0. Let s be minimal. Let t be a nuller of s. Clearly t /∈ A because then A + B contains
an element not in S. But because s is minimal, t cannot be in B. Contradiction.

One should also note that there are irreducible sets that are not strongly irreducible, take [n] ∪ {2n + 1}.
Thus

Strongly Irreducible =⇒ Irreducible
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Irreducible ≠⇒ Strongly Irreducible

Hence the name strong irreducibility.

8 Computing the number of strongly irreducible sets

Strongly irreducible sets seem to make up for quite a large portion of irreducible sets empirically. Introduce
the following numbers:

Definition 8.1. Let sn be the number of strongly irreducible subsets of [n]. Let sn,k be the number of
strongly irreducible subsets of [n] with size k.

Remark 8.1. Nothing is on OEIS for sn nor sn,k for fixed k > 3.

Note sn,k ≤ αn,k, so we’re effectively creating a lower bound here. One has that equality holds in this
inequality for k = 3 and it does not hold for k > 3. The proof of this fact is easy so I omit it. This motivates
a conjecture:

Conjecture 8.1. We have that strongly irreducible sets are dense in the set of irreducible sets. In other
words,

lim
n→∞

sn
αn

= c,

where c = 1
2

∏
k≥1

(
1− 1

2k

)
≈ 0.144.

This notion allows us to identify a dense family of atoms, and hence work with them. These
bounds are good for when k is small because sparse sets tend to be more likely to be strongly irreducible.
They don’t work well for large k. We can prove density using the probabilistic method.

Theorem 8.1. We have that sn ≳ 2n · 49
768 .

Proof. Fix 1 ≤ m < k < n such that k + m ≤ n. Consider sets S with r /∈ S for 0 < r < m, m ∈ S,
m + r /∈ S for 0 < r < k − m, and k ∈ S. Add the additional conditions that 2m /∈ S and k + m ∈ S.
There are 2n · 1

2k
· 1
4 = 2n−k−2 such sets. Assign an even probability distribution among such sets. For all

k < i ≤ n, let Xi be the event that i ∈ S and i has no nuller. For i /∈ {k +m, 2m} we may compute

P(Xi) = P(i ∈ S)P(i+m ∈ S)P(i+ k ∈ S)

i−1∏
j=k+1

(1− P(j ∈ S, i+ j /∈ S)) =
1

8

i−1∏
j=k+1

(1− P(j ∈ S, i+ j /∈ S)).

All terms in this product are at most 3
4 except for potentially one that is 1 if j = 2m. Therefore we may

bound as follows:

P(Xi) ≤
1

8

(
3

4

)i−k−2

.

Then note that P(X2m) = 0 and by similar reasoning as above, P(Xk+m) ≤ 1
4

(
3
4

)m−1
. Notice that by

Bonferonni’s inequality,

P

(
n⋂

i=k+1

Xc
i

)
≥ 1−

n∑
i=k+1

P(Xi) ≥ 1−

(
1

4

(
3

4

)m−1

− 1

8

(
3

4

)m−2

+
1

8

n∑
i=k+1

(
3

4

)i−k−2
)
.

This bound comes out to

P

(
n⋂

i=k+1

Xc
i

)
≥ 1

3
− 3m−1

4m
+

3m−2

22m−1
+

3n−k−1

22n−2k−1
.
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Hence by the probabilistic method the number of sets is at least

2n−k−2

(
1

3
− 3m−1

4m
+

3m−2

22m−1
+

3n−k−1

22n−2k−1

)
.

We may handle m = 1 separately because everything is nicer in this case. Let us wait until the end. For
m > 1, the number of such sets is at least∑

1<m<k<n,k+m≤n

2n−k−2

(
1

3
− 3m−1

4m
+

3m−2

22m−1
+

3n−k−1

22n−2k−1

)
.

Summing over m, we can lower bound this by∑
5≤k≤n/2

2n−k−2

(
1

12
+

3n−k−1

4n−k
+

3n−k−1

22n−2k−1

)
∼ 1

768
· 2n.

The number of sets with m = 1 is at least

2n ·
n−2∑
k=3

1/2 + 1/8(3/4)n−k−2

2k+1
∼ 1

16
· 2n.

Adding implies the desired result.

We can also give an easy upper bound:

Lemma 8.1. We have that sn ≲ 3
16 · 2n,

Proof. If m is the smallest nonzero element, 2m /∈ S with probability 1
2 . If k is the second smallest nonzero

element, k +m ∈ S with probability 1
2 , and k < n/2 with probability 1 − o(1). Let t be the next smallest

element. Then one of t+m /∈ S, t+ k /∈ S with probability 3
4 , and t < n/2 with probability 1− o(1). This

yields the desired.

Remark 8.2. Based on the 2-sparse set ideas from Crowdmath, one can lower bound sn,k ≥
(
n−k
k

)
through

standard combinatorial arguments. This same bound gives sn = Ω(φn), which is quite weak.

Remark 8.3. I should contribute stuff to the OEIS.

We can easily bound sn,k when k is small using a weaker version of strong irreducibility:

Theorem 8.2. If k = o(
√
n), then

sn,k = (1− o(1))

(
n

k − 1

)
Proof. We tackle this probabilistically, as usual, assigning an even distribution on

(
[n]
k

)
. The minimum

nonzero element m of a random set from this distribution is ≪ n− o(n) with probability 1− o(1), and 2m
is not in the set with probability also 1− o(1). Now consider a random set from this distribution with fixed
minimum m. It suffices to show that, when m ≪ n − o(n), the set is strongly irreducible with probability
1−o(1). We prove the stronger result that there is no s > m in the set such that s+m is also in the set with
probability 1− o(1). In other words, m is a nuller for all elements. Let Z be the random variable denoting
the number of occurences of (s, s+m) both in S. By Markov,

P(Z ≥ 1) ≤ E[Z] =⇒ P(Z = 0) ≥ 1− E[Z].

We can compute E[Z] by linearity of expectation easily:

E[Z] ≤ (n−m)
k2

(n−m)2
.

This implies the result.
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In order to adapt our argument for lower bounding sn to lower bounds on sn,k (for larger k), we need to be
more careful about computing P(Xi). Things are not so easy because independence is lost. We define the
following:

Definition 8.2. For some 1 ≤ k ≤ n, assign an even probability distribution on the sets S ∈
(
[n]
k

)
such that

1 ∈ S, 2 /∈ S. For a randomly chosen set S from this distribution and a 1 ≤ i ≤ n, define the event X
(k)
i as

the event that i ∈ S and i has no nuller in S.

It is difficult to precisely bound the probabilities of these events without direct computation. However, we
can prove the following slightly weak bound:

Lemma 8.2. Let δ = k/n and j > 4. If 2j − 1 ≤ n,

P(X(k)
j ) ≲

δ − δ2 + δ3

(1− δ)(j − 3)
,

and if 2j − 1 > n,

P(X(k)
j ) ≲

δ − δ2 + δ3

(1− δ)(n− j − 2)
.

Proof. Suppose 2j − 1 ≤ n first. Let Y
(k)
i,j be the indicator variable for the event that i ∈ S and i + j /∈ S.

Let A be the event that j ∈ S. Let B be the event that j + 1 ∈ S. Then we have that

X
(k)
j = A ∩B ∩

(
j−1⋂
i=3

(Y
(k)
i,j = 0)

)
.

We have that P(A) ∼ P(B) ∼ δ, so by independence,

P(X(k)
j ) ∼ δ2P

(
j−1∑
i=3

Y
(k)
i,j = 0

)
.

Now, the idea is that rather than using the union bound (which is too weak), we use Chebyshev’s inequality.

Let µ = E
[∑j−1

i=3 Y
(k)
i,j

]
, then

P

(
j−1∑
i=3

Y
(k)
i,j = 0

)
≤ P

(∣∣∣∣∣
j−1∑
i=3

Y
(k)
i,j − µ

∣∣∣∣∣ ≥ µ

)
≤

Var
(∑j−1

i=3 Y
(k)
i,j

)
µ2

.

We can easily compute µ by linearity:

µ =

j−1∑
i=3

E[Y (k)
i,j ] ∼ (j − 3)δ(1− δ).

To compute the variance, we can write:

Var

(
j−1∑
i=3

Y
(k)
i,j

)
=

j−1∑
i=3

Var(Y
(k)
i,j ) + 2

∑
3≤i1<i2≤j−1

Cov(Y
(k)
i1,j

, Y
(k)
i2,j

).

We will show that the covariance is negative, i.e. our Y variables are pairwise negatively correlated. To do
this, we have to be a bit precise. Suppose t of the elements in {3, 4, . . . , j − 1} ∪ {j + 3, j + 4, . . . , 2j − 1}
are in our random set. Note that t is a random variable here, but we will show that the desired inequality
holds for any discrete value of t. We will show that

P(Y (k)
i2,j

= 1 | Y (k)
i1,j

= 1) ≤ P(Y (k)
i2,j

= 1).

10



Because the Y variables are indicators, this implies E[Y (k)
i1,j

Y
(k)
i2,j

] ≤ E[Y (k)
i1,j

]E[Y (k)
i2,j

], which is desired. Now,
note that, for j > 4,

P(Y (k)
i2,j

= 1 | Y (k)
i1,j

= 1) =
t− 1

2j − 7
· 2j − 7− t

2j − 8
,

P(Y (k)
i2,j

= 1) =
t

2j − 6
· 2j − 6− t

2j − 7
,

by first principles of probability. With the substitution x = 2j − 7, we wish to show that

(t− 1)(x− t)

x− 1
≤ t(x− t+ 1)

x+ 1
.

This is true because

t(x− t+ 1)(x− 1)− (t− 1)(x− t)(x+ 1) = (x− t)2 + (x− t) + t(t− 1) ≥ 0.

Therefore,

Var

(
j−1∑
i=3

Y
(k)
i,j

)
≤

j−1∑
i=3

Var(Y
(k)
i,j ) ∼ (j − 3)(δ(1− δ)− δ2(1− δ)2).

Putting everything together, we may bound

P(X(k)
j ) ≲

δ2(j − 3)(δ(1− δ)− δ2(1− δ)2)

(j − 3)2δ2(1− δ)2
=

δ − δ2 + δ3

(j − 3)(1− δ)
.

When 2j − 1 > n, everything is the same except we replace the upper bound j − 1 with n− j, so that

P(X(k)
j ) ≲

δ − δ2 + δ3

(1− δ)(n− j − 2)
,

as desired. The only minor detail is that negative correlation still holds, which is not an issue under the
transformation j − 1 7→ n− j, as all calculations are equivalent.

This gives us the following theorem:

Theorem 8.3. Let δ = k/n. When
δ − δ2 + δ3

1− δ
≪ 1

log n
,

we have that sn,k = (1− o(1))
(

n
k−1

)
.

Proof. Assume k is not O(1), this has been resolved earlier. Note that we have δ = o(1), so with 1 − o(1)
probability the minimum element is o(n). We can effectively assume the minimum is 1 for probability

computations, then. Quickly compute P(X(k)
3 ) ∼ δ2 and P(X(k)

4 ) ∼ δ2(1− δ(1− δ)) = δ2 − δ3 + δ4. Then by
our typical union-bound calculation,

sn,k ≥ (1− o(1))

(
n

k − 1

)1−
n∑

j=3

P(X(k)
j )

 .

Note that
n∑

j=5

P(X(k)
j ) ≲

δ − δ2 + δ3

1− δ
(2Hn),

so the result follows by the fact that Hn ∼ log n and the fact that the inequality in question implies
δ = o(1).

11



This reduces to the following wonderful corollary:

Corollary 8.1. If k ≪ n√
logn

, αn,k = (1− o(1))
(

n
k−1

)
.

Computing the probabilities of these events is difficult but still possible via generating functions. We have
the following theorem:

Theorem 8.4. We have that

P(X(k)
j ) =

{(
n−2
k−1

)−1∑j−3
i=0

(
j−3
i

)(
n−j−i−1
k−3−2i

)
2j ≤ n(

n−2
k−1

)−1∑n−j−2
i=0

(
n−j−2

i

)(
j−i−2
k−3−2i

)
2j > n

Proof. Generating Functions.

Theorem 8.5. We have that

sn,k+1 ≥
(
n− 2

k − 1

)
(1− S1 − S2) ,

where

S1 =

⌊n/2⌋∑
j=3

(
n− 2

k − 1

)−1 j−3∑
i=0

(
j − 3

i

)(
n− j − i− 1

k − 3− 2i

)
,

S2 =

n∑
j=⌊n/2⌋+1

(
n− 2

k − 1

)−1 n−j−2∑
i=0

(
n− j − 2

i

)(
j − i− 2

k − 3− 2i

)
.

Proof. Same as the computation of sn just adapted.

This is pretty difficult to assess in general, but there are some introductory facts we can prove about P(X(k)
j )

to make this more tractable:

Lemma 8.3. The sequence (P(X(k)
j ))nk=0 is unimodal with peak n/2.

Proof. Annoying.

This fact, coupled with the following, allows us to bound P(X(k)
j ) in a useful manner:

Lemma 8.4. For any k, P(X(k)
j ) = P(X(n−k−3)

j ).

Proof. Annoying.

Now, we can upper bound P(X(k)
j ). We can use this to get a weaker but more tractable bound on sn,k.

Conjecture 8.2. For all n, sn,k and αn,k are both unimodal.

Let us derive the constant mentioned in our conjecture. As mentioned above, the question of computing
sn should be attacked probabilistically with a similar scheme as in [1]. The first condition, 2m /∈ S, should
approximately restrict us by a factor of 1

2 . It is not too important. Then

sn ≈ 1

2
· 2n

(
1− P

(
n⋃

i=1

Xi

))
.

12



This can be made exact easily but let us not worry about that for now. Now, Xi and Xj are not independent
(generally), but we do intuitively expect them to be roughly independent (small covariance). With this
knowledge, one should expect

sn ≈ 1

2
· 2n

∏
k≥1

(
1− 1

2k

)
≈ 0.144 · 2n.

This is promising evidence for the truth of 8.1. Perhaps a graph theoretic scheme like in [1] (which is common
among many papers on sumsets, as mentioned) will give us better bounds. Indeed, the Cayley Sum Graph
seems like a useful structure to study here. Perhaps one can use the fact that S is strongly irreducible implies
(s+S)∩S ̸= ∅ for all s ∈ S and a similar graph theoretic approach. I’m not sure how good the upper bound
will be here, though. One may also try to use the Lovasz Local Lemma, this seems to be viable. One should
also expect the inequality

sn,k ≥
(

n

k − 1

)∏
t≥1

(
1 +

(
k

n

)t
)

=
n

n+ k

(
n

k − 1

)
to hold. This comes from assuming independence of the events that each element has a nuller. We make
this a conjecture:

Conjecture 8.3. For all n, k:

sn,k ≥ n

n+ k

(
n

k − 1

)
.

This lower bound would be quite nice to prove, as it would imply unimodality for many k. In particular, if
k = δn, (

n
k−1

)(
n

k−2

) ∼ 1− δ

δ
.

The inequality
1

1 + δ
>

1− δ

δ

is true when δ >
√
5−1
2 , so this lower bound would imply unimodality for

(
3−

√
5

2 − o(1)
)
n values of k. This

is more than 0.38n values!

Let us focus on specific cases of strongly irreducible sets. We will count the sets by looking at the set
of nullers. A very basic example of this gives us the following lower bound on αn,k:

Theorem 8.6. We have

αn,k ≥ max
d

∑
a1+a2+···+ad=k

d∏
i=1

(
⌊(n− 2d− i)/d⌋ − ai

ai

)
.

Proof. Consider the strongly irreducible sets with the set of nullers {d}. Consider the binary sequence of
indicator variables for elements of n, whether they are in the set or not. Truncate this sequence to only
contain indices over 2d. Split this sequence into d distinct sequences, based on residue classes modulo d.
Then let ai be the number of ones in the ith class. The result follows by noticing that each class can be
anything such that there are no two consecutive ones, and then using a well-known result.

The above bound is probably not that good, because it is easy to calculate the same way that the number
of strongly irreducible subsets of [n] with set of nullers {d} is O((φ+ ε)n) for any ε > 0.

Let us consider sets with a more general set of nullers D = {d1, d2, . . . , dt}.

13



Definition 8.3. We say that a set S is nulled by a subset D ⊆ S if S is strongly irreducible, and the nuller
of every element in S is in D.

We have the following nice theorem:

Theorem 8.7. Let D = {d1, d2, . . . , dt} with 0 < d1 < d2 < · · · < dt < n. Then there are at least

2n−2dt+1 − (n− 3dt + 1)2n−2dt−t+1

subsets of [n] containing 0 nulled by D.

Proof. We count the number of binary sequences of length n− 2dt + 1 that avoid subsequences

(an+d1 , an+d2 , . . . , an+dt) = (1, 0, 0, . . . , 0).

We approach this task probabilistically. Let XD be the number of “bad” subsequences. Then by Markov’s
inequality,

P(XD ≥ 1) ≤ E[XD].

By linearity of expectation, we can compute E[XD] = n−3dt+1
2t . Therefore, we have the lower bound

P(XD = 0) ≥ 1− n− 3dt + 1

2t
.

Therefore, there are at least

nD = 2n−2dt+1P(XD = 0) = 2n−2dt+1 − (n− 3dt + 1)2n−2dt−t+1

strongly irreducible sets nulled by D, as desired.

Corollary 8.2. There are at least 2n−O(lnn) strongly irreducible subsets of [n] containing 0. In other words,
sn ≥ 2n−O(lnn).

Tracking calculations more precisely, we have the following result:

Corollary 8.3. For any ε > 0,
sn
αn

≫ n−2+ε.

Of course, this was already known, but it’s interesting to see.

Remark 8.4. Lemma 6.5 of [1] upper bounds P(|XD − (n− 3dt + 1)2−dt | > δ(n− 2dt + 1)) by exp(−c(n−
2dt + 1)) for some positive constant c.

The wonderful thing about this argument is it is not hard to incorporate k into the mix:

Theorem 8.8. Let D = {d1, d2, . . . , dt} with 0 < d1 < d2 < · · · < dt < n. Then there are at least(
n− 2dt
k − dt

)(
1− (n− 3dt + 1)

(
n−k−dt

k−dt

)(
n−2dt

k−dt

) )

subsets of [n] containing 0 nulled by D, of size k + 1.

Proof. The proof is the same, this time we need to compute E[XD] more carefully, though. We again use
linearity of expectation. The probability that some particular (an+di

) sequence is (1, 0, 0, . . . , 0) is(
n−k−dt

k−dt

)(
n−2dt

k−dt

) .
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Hence we have

E[XD] = (n− 3dt + 1)

(
n−k−dt

k−dt

)(
n−2dt

k−dt

) ,

and therefore the amount of sets in question is at least(
n− 2dt
k − dt

)(
1− (n− 3dt + 1)

(
n−k−dt

k−dt

)(
n−2dt

k−dt

) ) .

Corollary 8.4. We have that

αn,k ≥ sn,k ≥ max
1<dt<k

(
n− 2dt

k − dt − 1

)(
1− (n− 3dt + 1)

(
n−k−dt−1
k−dt−1

)(
n−2dt

k−dt−1

) ) .

This is a bit intractable asymptotically, but I promise that the bound is quite good. We have the following
corollary:

Corollary 8.5. Let k0 be the minimum positive integer k such that

(n− k − 1)!2

(n− 2)!(n− 2k)!
<

1

n− 3
.

For all k ≫ k0, αn,k ≥ (1− o(1))
(
n−2
k−2

)
= Θ

((
n

k−1

))
.

In other words, this gives us the bound we want for k large enough.

9 Upper bounds on αn,k

To upper bound αn,k, we lower bound βn,k =
(

n
k−1

)
− αn,k. We do this in the same way that the current

best bound for βn has been achieved: By looking at multiples of {0, d}. We have the following lemma:

Lemma 9.1. A set S is a multiple of {0, d} iff i ∈ S =⇒ i− d ∈ S or i+ d ∈ S.

Proof. Easy.

Now, biject subsets of [n] with binary strings of length n representing the indicator variables 1i∈S for
1 ≤ i ≤ n. Then we have the following:

Definition 9.1. Let γ
(d)
n,k be the number of binary strings a of length n with exactly k ones such that

ai = 1 =⇒ ai−d = 1 or ai+d = 1.

Lemma 9.2.
βn,k ≥ max

d
γ
(d)
n,k

Proof. Easy.

Now, one can actually compute γ
(d)
n,k as a coefficient of a bivariate generating function:
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Theorem 9.1. Let f(a, b) be the number of binary strings with exactly a ones and exactly b zeroes such that
every 1 is adjacent to another 1. Then

γ
(d)
n,k =

∑
a1+a2+···+ad=k

d∏
i=1

f(ai, ⌊(n− i)/d⌋ − ai),

where the outer summation is over all (a1, a2, . . . , ad) ∈ Nd
0 with sum k.

Proof. One can decompose a binary string σ = (σ1, σ2, . . . , σn) into d disjoint subsequences: for each 1 ≤
i ≤ d, set iσ = (σi+dℓ) where ℓ ranges over all naturals such that i+dℓ ∈ [1, n]. Suppose the ith subsequence
has ai ones. It is then clear that the number of ways the ith subsequence can exist is f(ai, ⌊(n− i)/d⌋− ai),
from which the result follows.

The goal is to now estimate f(a, b). We can do this by first finding the corresponding generating function:

Theorem 9.2. We have that

F (x, y) =
∑
a≥0

∑
b≥0

f(a, b)xayb =
xy − x− 1

x2y − xy + x+ y − 1
.

Proof. One can derive the recursive relation

f(a, b) = f(a, b− 1) + f(a− 2, b− 1) + f(a− 3, b− 1) + f(a− 4, b− 1) + · · ·+ f(0, b− 1)

for a ≥ 2, b ≥ 1, by considering the last digits of the binary string as 0, 011, 0111, etc. One may write

f(a− 1, b) = f(a− 1, b− 1) + f(a− 3, b− 1) + f(a− 4, b− 1) + · · ·

which implies
f(a, b) = f(a, b− 1) + f(a− 2, b− 1) + f(a− 1, b)− f(a− 1, b− 1),

an equality that holds for a ≥ 2 and b ≥ 1. One can trivially compute the following base cases:

• f(a, 0) = 1.

• f(0, b) = 1.

• f(1, b) = 0 for b > 0.

Now write∑
a≥0

∑
b≥0

f(a, b)xayb −
∑
a≥2

∑
b≥1

f(a, b)xayb = −f(1, 1)xy − f(0, 0) +
∑
a≥0

f(a, 0)xa +
∑
b≥0

(f(1, b)xyb + f(0, b)yb)

= −1 +
1

1− x
+

1

1− y
+ x.

For convenience let
G(m,n) =

∑
a≥m

∑
b≥n

f(a, b)xayb.

Now compute using our recurrence

G(2, 1) = yG(2, 0) + x2yG(0, 0) + xG(1, 1)− xyG(1, 0) = G(0, 0) + 1− x− 1

1− x
− 1

1− y
.

Let us compute the following:

• G(1, 0) = G(0, 0)− 1
1−y
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• G(1, 1) = G(0, 0)− 1
1−y − 1

1−x + 1

• G(2, 0) = G(0, 0)− 1
1−y − x

Substituting and solving,

F (x, y) = G(0, 0) =
xy − x− 1

x2y − xy + x+ y − 1
,

as desired.

The goal is to now somehow extract coefficients from this generating function. The trick to do this is quite
clever: Observe the identity

− F (x, y)

xy − x− 1
=

1

(1− x)(1− y)
· 1

1− x2y
(1−x)(1−y)

.

From this, we may write by standard generating function identities

F (x, y)

1 + x− xy
=
∑
k≥0

x2k

(1− x)k+1
· yk

(1− y)k+1

=
∑
k≥0

∑
a≥0

(
a− k

k

)
xa

∑
b≥0

(
b

k

)
yb


=
∑
a≥0

∑
b≥0

∑
k≥0

(
a− k

k

)(
b

k

)
xayb.

In turn, we have that

f(a, b) =
∑
k≥0

((
a− k

k

)(
b

k

)
+ 1a≥1

(
a− 1− k

k

)(
b

k

)
− 1a≥11b≥1

(
a− 1− k

k

)(
b− 1

k

))
.

Corollary 9.1. We have that

βn,k ≥ max
d

∑
a1+a2+···+ad=k

d∏
i=1

∑
ℓ≥0

(
ai
ℓ

)(
⌊(n− i)/d⌋ − ai − ℓ

ℓ

)
and

αn,k ≤
(

n

k − 1

)
−max

d

∑
a1+a2+···+ad=k

d∏
i=1

∑
ℓ≥0

(
ai
ℓ

)(
⌊(n− i)/d⌋ − ai − ℓ

ℓ

)
.

Nice! This gives us the following theorem:

Theorem 9.3. Suppose k = δn. Let p, q ∈ (0, 1) solve the equations

p− p2 + p3

(1− p)2(1 + p)
=

1− δ

δ
,

(1− p)2(1− q) = pq.

Then
log βn,k ≥ −nδ log(1− p)− n(1− δ) log(1− q)−O(log n).
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Proof. Set all ai ∼ nδ
d and apply Petrov’s asymptotic for the summation

∑
k≥0

(
a

k

)(
b− k

k

)
.

The asymptotics will be put in the appendix.

Corollary 9.2. We have βn,n/2 ≥ Ω(3n/2) and hence αn,n/2 ≤
(

n
n/2

)
− Ω(3n/2). Additionally,

αn,0.6n ≤
(

n

0.6n

)
− exp(0.562n),

and
(

n
0.6n

)
∼ exp(0.67n).

Compare this asymptotic with the fact that
(

n
n/2

)
∼ 2n√

n
.

Corollary 9.3. When k = Ω(n),

αn,k ≤
(

n

k − 1

)
− exp(Ω(n)).

One can graph the relationship between δ and the factor c(δ) such that our bound is log βn,k ≥ c(δ)n:

This bound should be quite good, nearly sharp. This is due to a paper by Granville on the number of sunsets.

Remark 9.1. Fix so that we account for the extra term in f(a, b), and use Pascal. The bound is better!

We can prove without all this nonsense the following:

Theorem 9.4. If k = n− o(
√
n) then αn,k =

(
n

k−1

)
o(1).

Proof. Its almost always a multiple of {0, 1}.
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10 Miscellaneous Things

This work is essentially about what size means for irreducible sumsets, so it is important to consider the
question: What is the distribution of |A+B| for random sets A,B?. This allows us to get a sense for which
k the reducibles “mass towards”. We cannot make anything explicit, however, because there is not unique
factorization. This problem is studied for B = A and the case where B is correlated with A in [4]. In our
case, A and B are independent and hence the problem is much easier. We may obtain explicit results.

There are two main frameworks to consider:

• A,B are random subsets of [n], each described by n indicator variables.

• A,B are chosen randomly over all pairs of sets (A′, B′) with A′ +B′ ⊆ [n].

The former is less messy to analyze, but we will see that it is not that interesting. The latter is more closely
related to the general focus of this work. We have the following lemma:

Lemma 10.1. In the former case, E[|A+B|] = 2n− 1
3 − 1

3·16n .

Proof. Note

P(x ∈ A+B) = 1− P(x /∈ A,B)
∏

i+j=xi,j>0

P((i, j) /∈ A×B) = 1− 1

4x
.

Therefore by linearity of expectation,

E[|A+B|] =
2n∑
x=0

E[1x∈A+B ] =

2n∑
x=0

(
1− 1

4x

)
= 2n− 1

3
− 1

3 · 16n
.

In other words, A+B tends to be quite large. This is expected, as |A|+ |B| − 1 ≤ |A+B|. This case seems
to be studied quite a bit, so we shift our focus to the latter case. We can study this to some extent, and
bring results about divisors in from lunar arithmetic stuff.

We may ask a few more miscellaneous questions:

Conjecture 10.1. Goldbach’s conjecture holds: every non-irreducible A can be written as B + C for irre-
ducible B,C.

The Schirellmann density of such sets is 1, so this is almost always true. To see that it is always true requires
more work, though.

It is also interesting to study primes in this monoid. Here primes are different from irreducibles, an el-
ement A is prime if A | B +C implies A | B or A | C. We write A | B meaning B = A+D for some D. We
have a few basic results:

Lemma 10.2. If A is prime, A must be irreducible.

Proof. Suppose otherwise, that A = A1 +A2. Let D = A1 − {max(A1)}. Then

A+D = A1 + (A2 +D).

Clearly A ∤ A1, A2 + D by size. We’re done if |A1| > 2 or |A2| > 2. The case left to resolve is when
A = {0, a}+ {0, b} = {0, a, b, a+ b}. We must show that this is not prime. Note that

{0, a, b, a+ b}+ {0, c} = {0, a}+ ({0, b}+ {0, c}) = {0, a}+ {0, b, c, b+ c},
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so taking c < a proves the statement if a ̸= 1. If a = 1 but b ̸= 1, the same statement with c ̸= a does the
job. It suffices now to show that {0, 1, 2} is not prime. This follows because

{0, 1, 2}+ {0, 2} = {0, 1}+ {0, 2, 3}.

There also exist irreducibles that are not prime:

Example 10.1. {0, 2} is a non-prime irreducible, because {0, 2}+ {0, 2, 3} = {0, 1}+ {0, 2, 3, 4} and it can
be checked that {0, 2} ∤ {0, 2, 3, 4}.

Example 10.2. {0, d, d+ 1} is a non-prime irreducible for d > 1 because {0, d, d+ 1}+ {0, 2} = {0, d, d+
2}+ {0, 1}.

It turns out that there are no primes, as shown in [1]... Whoops!

11 Next Steps/Current Work

• Make corollary 7.2 precise by doing the dirty work (whole section more precise in general).

• Finish improving bounds on sn,k, order of probabilities and genfunc.

• New notion instead of strong irreducibility to capture more dense sets? More specific families besides
the sparse ones captured by strong irreducibility.

• Think about how many times a certain composite set gets hit, i.e. the number of divisors it has. Cite
dismal/lunar arithmetic, various papers talk about number of divisors in these systems which transfers
over.

• Cite Granville paper for non-improvement of upper bound. Remark that the lower bound c is probably
sharp, so upper bound that we do is also probably sharp.

• Ask more general questions about the system. Are there primes (in the strict sense of the definition)?
Does Goldbach hold?

• Write everything up all nice.
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