
ON THE ASCENT OF THE ALMOST AND QUASI-ACCP
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Abstract. The quasi-ACCP is a notion weaker than the ACCP that is defined in terms of certain

common divisors. On the other hand, the property of being almost ACCP refers to the property of
being atomic and satisfying the quasi-ACCP simultaneously. Motivated by extending the class of

atomic domains not satisfying the ACCP, the first author and Li recently studied the almost ACCP

in connection to atomicity. It is well known that if M is a submonoid of a rank-one torsion-free
abelian group, then the fact that M satisfies the ACCP implies that the monoid algebra F [M ] over

any field F also satisfies the ACCP (as an integral domain). In this paper we prove that, unlike the

ACCP, the quasi-ACCP and the almost ACCP properties do not ascend from rank-one torsion-free
commutative monoids to their corresponding monoid algebras over fields.

1. Introduction

The monoid M is atomic if every nonunit of M factors into finitely many atoms, also called irre-
ducible elements. One can readily verify that if M satisfies the ascending chain condition on principal
ideals (ACCP), then M must be atomic. The converse does not hold, and none of the known atomic
domains not satisfying the ACCP has been obtained in a trivial manner. The first of such integral
domains was constructed by Grams [24] back in the seventies. Since then, several alternative construc-
tions have appeared in the literature (see [27, 30] and the more recent constructions in [4, 5, 19, 20].
Atomic non-commutative rings not satisfying the ACCP have been recently constructed in [2]. One
of the properties we study here sits between atomicity and the ACCP, and will allow us to provide
interesting examples of atomic monoids not satisfying the ACCP. We say that a common divisor d ∈ M
of a nonempty S ⊆ M is a maximal common divisor (MCD) of S if the only common divisors of the
set

{
s
d : s ∈ S

}
are the invertible elements of M . Monoids where every nonempty finite subset has

an MCD are called MCD monoids, while monoids where every nonempty subset has an MCD were
recently called in [21] strongly MCD: it turns out that every monoid that satisfies the ACCP is strongly
MCD monoid [21, Proposition 3.1]. We devote this paper to study two conditions weaker than the
ACCP, the quasi-ACCP and the almost ACCP. We investigate these conditions in connection to both
atomicity and the existence of MCDs.

In Section 2 we introduce most of the notation and terminology we shall be using later. We also
provide a quick revision of the background needed to fully understand the results we establish here.

In Section 3, we start our investigation of two properties weaker than the ACCP: the quasi-ACCP
and the almost ACCP. These properties were recently introduced and investigated in [20]. We say
that the monoid M satisfies the quasi-ACCP if for every nonempty finite subset S of M there exists a
common divisor d ∈ M of S and an element s ∈ S such that s−d satisfies the ACCP in M . If a monoid
is atomic and satisfies the quasi-ACCP, then we say it satisfies the almost ACCP. As every monoid
satisfying the ACCP is atomic, every monoid satisfying the ACCP also satisfies the almost ACCP.
Also, it follows directly from the definitions that if a monoid satisfies the almost ACCP it also satisfies
the quasi-ACCP. In the study of these properties provided in [20], the emphasis is put on the setting
of integral domains. Here we focus on the larger class of commutative monoids, and the only class of
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integral domains we consider is that of monoid algebras over fields. In Section 3, we provide several
examples of monoids satisfying the quasi-ACCP (some of them not satisfying the almost ACCP), and
we connect these properties with the existence of MCDs, proving that every monoid satisfying the
quasi-ACCP must be an MCD monoid.

In Section 4 is dedicated to determine whether the quasi-ACCP and the almost ACCP ascend from
the class of rank-one torsion-free monoids to their corresponding monoid algebras (over fields). The
ascend of atomicity was first posed by Gilmer [15, page 189] in the eighties as the following question:
given a pair (M,R) of monoid and domain such that R[M ] is an integral domain, does the fact that
M and R are atomic suffices to ensure that the monoid algebra R[M ] is atomic. It first answer was
given by Roitman [27] ten years later with the construction of an atomic domain R whose polynomial
extension is not atomic. The dual question was not solved by Coykendall and the first author in
the more recent paper [11], where they constructed an atomic rank-one torsion-free monoid whose
monoid algebra over F2 (the field of two elements) is not atomic (this result was recently generalized
in [22]). We provide negative answers to the ascent of both quasi-atomicity (in Theorem 4.1) and
almost atomicity (Theorem 4.7) from rank-one torsion-free monoids to their corresponding monoid
algebras. The non-ascent of almost atomicity is more subtle, and our approach is highly motivated
by that one given in [11] to establish the non-ascent of atomicity. It is worth emphasizing that our
approach improve upon that given in [11] as we construct a rank-one torsion-free monoid satisfying
the almost ACCP (and so being atomic) whose monoid algebra over F2 is not even atomic.

2. Background

2.1. General Notation. Let us first introduce some general notation we shall be using throughout
this paper. We let N and N0 denote the set of positive integers and the set of nonnegative integers,
respectively. In addition, we let P denote the set of primes. As it is customary, we let Q and R stand
for the set of rational numbers and the set of real numbers, respectively. For a subset S of R and
r ∈ R, we set S≥r := {s ∈ S : s ≥ r} and S>r := {s ∈ S : s > r}. For b, c ∈ Z, we set

Jb, cK := {n ∈ Z : b ≤ n ≤ c},
allowing the discrete interval Jb, cK to be empty when b > c. For a nonzero q ∈ Q, we let n(q) and d(q)
denote, respectively, the unique n ∈ Z and d ∈ N such that q = n/d and gcd(n, d) = 1. For p ∈ P and
a nonzero n ∈ Z, we let vp(n) denote the maximum m ∈ N0 such that pm | n. Then for each p ∈ P, we
let vp : Q \ {0} → Z denote the p-adic valuation map, which means that for every nonzero q ∈ Q

vp(q) = vp(n(q))− vp(d(q)).

2.2. Commutative Monoids. Let us introduce now some terminology about commutative monoids.
Throughout this paper we tacitly assume that every monoid is commutative and cancellative. Let M
be a monoid that is additively written (and with identity element denoted by 0). We say that M is
nontrivial if M ̸= {0}. The group consisting of all the invertible elements of M (also called units)
will be denoted by U (M), and we say that M is reduced if U (M) is the trivial group. A subset N
of M is called a submonoid if N contains 0 and is closed under the operation of M . The arbitrary
intersection of submonoids of M is also a submonoid of M . If S is a subset of M , then we let ⟨S⟩
denote the submonoid of M generated by S; that is, ⟨S⟩ is the intersection of all the submonoids of M
containing S. The Grothendieck group of M , denoted by gp(M), is the abelian group consisting of all
the formal differences of elements of M . As M is assumed to be cancellative, we can identify M with a
submonoid of gp(M) (indeed, it turns out that gp(M) is the unique abelian group up to isomorphism
that minimally contains an isomorphic copy of M). The monoid M is called torsion-free provided
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that gp(M) is a torsion-free abelian group or, equivalently, for each n ∈ N and b, c ∈ M , the equality
nb = nc implies that b = c.

A non-invertible element a ∈ M is called an atom (or irreducible) if for all b, c ∈ M the equality
a = b + c implies that either b ∈ U (M) or c ∈ U (M). The set consisting of all the atoms of M
is denoted by A (M). Following Cohn [9], we say that the monoid M is atomic if every element in
M \ U (M) can be written as a sum of finitely many atoms (allowing repetitions). The monoid M is
called a unique factorization monoid (UFM) if it is atomic and every non-invertible element of M can
be written as a sum of finitely many atoms in a unique way (up to order and associates). For progress
on atomicity in the setting of integral domains, see the recent survey [10] by Coykendall and Gotti.
Ascending chains of principal ideals are often studied in connection to atomicity. A subset I of M is
called an ideal if

I +M := {b+ c : b ∈ I and c ∈ M} ⊆ I.

An ideal of M is called principal if it has the form b+M for some b ∈ M . The monoid M is called a
valuation monoid if for all b, c ∈ M either b+M ⊆ c+M or c+M ⊆ b+M . A sequence (In)n≥1 of
subsets of M is called ascending if In ⊆ In+1 for all n ∈ N, while a sequence (Jn)n≥1 of subsets of M is
said to stabilize if we can take N ∈ N such that Jn = JN for all n ∈ N with n ≥ N . Then we say that M
satisfies the ascending chain condition on principal ideals (ACCP) if every ascending chain of principal
ideals eventually stabilizes. Every monoid satisfying the ACCP is atomic [14, Proposition 1.1.4], but
the converse is not true in general. Some examples of atomic monoids that do not satisfy the ACCP,
along with recent progress on the connection between the ACCP and atomicity, are provided in [19].
Also, we will discuss further examples throughout this paper. Finally, nontrivial elementary examples
of monoids satisfying the ACCP are the additive submonoids of R≥0 whose corresponding sets of
nonzero elements are bounded below by a positive real number [17, Proposition 4.5].

Additive submonoids of Q≥0 are the most relevant algebraic objects in this paper; they are called
Puiseux monoids. The atomicity and arithmetic of factorizations of Puiseux monoids have been sys-
tematically investigated during the past decade ([7, 22] provides a friendly survey in this direction).
The rank of the monoid M is, by definition, the rank of its Grothendieck group or, equivalently, the
dimension of the vector space Q ⊗Z gp(M) over the field Q obtained by tensoring the Z-modules Q
and gp(M). Observe that every nontrivial Puiseux monoid has rank 1. It is known that nontrivial
Puiseux monoids account, up to isomorphism, for all rank-1 torsion-free monoids that are not abelian
groups [13, Theorem 3.12] (see also [12, Section 24] and [15, Theorem 2.9]). Finally, observe that
every finitely generated Puiseux monoid is an additive submonoid of N0 (or a numerical monoid) up
to isomorphism, and so it must satisfy the ACCP. More generally, every additive submonoid of R≥0

(and so every Puiseux monoid)

2.3. Divisibility. Even though it is more natural to write monoids multiplicatively when dealing
with notions related to divisibility (as we did in the introduction), we will keep writing the monoid
M additively. The reason for this is that the monoids we are primarily interested in the scope of this
paper are Puiseux monoids, which are additive by nature.

For b, c ∈ M , we say that c divides b and write c |M b provided that b = c + d for some d ∈ M .
For a nonempty subset S of M , an element d is called a common divisor of S if d |M s for all s ∈ S,
in which case, we let S − d denote the set {s − d : s ∈ S}. A greatest common divisor (GCD) of a
nonempty subset S of M is a common divisor d ∈ M of S such that any other common divisor of S
divides d in M . A maximal common divisor (MCD) of a nonempty subset S of M is a common divisor
d ∈ M of S such that the only common divisors of S−d are the invertible elements of M . In addition,
the monoid M is called a GCD monoid (resp., an MCD monoid) provided that every nonempty finite
subset of M has a GCD (resp., an MCD). It is clear that every greatest common divisor is a maximal
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common divisor, and so every GCD monoid is an MCD monoid. For k ∈ N, we say that M is a k-MCD
monoid if every subset of M of cardinality k has a maximal common divisor. Clearly, every monoid is
a 1-MCD monoid. Also, observe that M is an MCD monoid if and only if M is a k-MCD monoid for
every k ∈ N. The notion of k-MCD was introduced by Roitman in [27].

3. Two Weaker Notions of the ACCP

The almost ACCP was recently introduced and studied in [20]. In this section we consider the
quasi-ACCP property, which is a notion weaker than the almost ACCP.

Definition 3.1. Let M be a commutative monoid. We say that M satisfies the quasi-ACCP if for
every nonempty finite subset S of M there exists a common divisor d ∈ M of S and an element s ∈ S
such that s− d satisfies the ACCP in M .

If a monoid satisfies the ACCP, then it follows immediately from the previous definition that it
also satisfies the quasi-ACCP. Therefore we can consider the quasi-ACCP property a weaker notion of
the standard ACCP. As the following example illustrates, there are Puiseux monoids that satisfy the
quasi-ACCP but not the ACCP.

Example 3.2. Every totally orderable valuation monoid M satisfies the quasi-ACCP: indeed, if S is
a nonempty finite subset of M , then we can take both d and s to be minS to obtain that s − d = 0
satisfies the ACCP. Thus, the nonnegative cone of every linearly ordered abelian group is a quasi-
ACCP monoid. In particular, the additive monoids Z[ 1n ]≥0 and R≥0 are weak-ACCP monoids that are
not atomic.

3.1. A Class of Puiseux Monoids Satisfying the Quasi-ACCP. For each positive rational q,
the atomic structure and arithmetic of length of the Puiseux monoid N0[q] have been considered in
various recent papers, including [7]. In this section we prove that N0[q] satisfies the quasi-ACCP for
all q ∈ Q>0. Let us start by arguing the following lemma.

Lemma 3.3. Take q ∈ Q ∩ (0, 1), and consider the additive monoid N0[q]. For each b ∈ M , the
following statements hold.

(1) There exist unique nonnegative integer coefficients c0, c1, c2, . . . with cn < d(q) for every n ∈ N
and cn = 0 for all but finitely many n ∈ N such that

(3.1) b = c0 +
∑
n∈N

cnq
n.

(2) If the monoid N0[q] is atomic, then the following conditions are equivalent.
(a) |Z(b)| = 1.

(b) b = c0 +
∑m

n=1 cnq
n for some c0 ∈ J0, n(q)− 1K and c1, . . . , cn ∈ J0, d(q)− 1K.

Proof. (1) To prove the existence, take b ∈ M . As {qn : n ∈ N0} is a generating set of M , we can
choose nonnegative integer coefficients c0, c1, . . . such that b = c0 +

∑
n∈N cnq

n, where cn = 0 for all
but finitely many n ∈ N0. If for at least one choice of coefficients, cn < d for every n ∈ N0, we are
done. Thus, we can assume that the set S := {n ∈ N0 : cn ≥ d} is nonempty for any possible choice of
the coefficients c0, c1, . . .. Then we can further assume that we have chosen the coefficients c0, c1, . . .
minimizing m := maxS. We claim that m = 0. Suppose, by way of contradiction, that m ≥ 1.
Accordingly, we can write cm = cd(q) + r for some c ∈ N and r ∈ J0, d(q)− 1K. Because

cmqm = (cd(q) + r)qm = rqm + (cn(q))qm−1 + rqm,
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we can replace cm−1q
m−1 + cmqm by (cm−1 + cn(q))qm−1 + rqm in b =

∑
n∈N0

cnq
n to contradict the

minimality of m. Thus, m = 1, and so the decomposition r = c0 +
∑

n∈N cnq
n satisfies the conditions

of that in (3.1) with c0 = Nr. We proceed to argue the uniqueness of the same decomposition. Assume
that

b = Nb +
∑
n∈N

cnq
n and b = N ′

b +
∑
n∈N

dnq
n

are two sum decompositions of b satisfying the desired conditions on the coefficients. Consider the set
T := {n ∈ N : dn ̸= cn}, and observe that the given sum decomposition of b are the same if and only
if T is empty. Suppose, by way of contradiction, that T is not empty, and set m := maxT . Then we
can write

(cm − dm)n(q)m = (N ′
b −Nb)d(q)

m +

m−1∑
n=1

(dn − cn)n(q)
nd(q)m−n.

Since the left-hand side of the previous equality is divisible by d(q), so is (cm − dm)n(q)m, from which
we infer that d(q) | cm − dm. Thus, we obtain that cm = dm, which is a contradiction. Hence the sum
decomposition in (3.1) is unique.

(2) Now assume that N0[q] is an atomic monoid.

(a) ⇒ (b): Suppose that |Z(b)| = 1. It follows from part (1) that b = c0 +
∑m

n=1 cnq
n for some

c0, . . . , cm ∈ N0 such that c1, . . . , cm ∈ J1,mK. Thus, z :=
∑m

n=0 cnq
n is the only factorization of b in

N0[q]. Now observe that c0 < n(q) as, otherwise, we could replace c0+c1q by (c0−n(q))+(d(q)c0+c1)q
in c0 +

∑m
n=1 cnq

n to obtain a factorization of b different from z.

(b) ⇒ (a): Write b = c0+
∑m

n=1 cnq
n for some c0 ∈ J0, n(q)−1K and c1, . . . , cn ∈ J0, d(q)−1K. Then

z :=
∑m

n=0 cnq
n is a factorization of b in N0[q]. We proceed to show that z is the only factorization of b

in N0[q]. Assume, towards a contradiction, that |Z(b)| ≥ 2, and let z′ :=
∑m

n=0 dnq
n be a factorization

of b in N0[q] such that z′ ̸= z. Then it follows from the uniqueness in of part (1) that dn ≥ d(q) for some
n ∈ J1,mK. Set j := max{n ∈ J1,mK : dn ≥ d(q)}, and then write dj = kjd(q) + rj for some kj ∈ N
and rj ∈ J0, d(q)− 1K. Now observe that after replacing dj−1q

j−1 + djq
j by (dj−1 + kjn(q))q

j−1 + rjq
j

in
∑m

n=0 dmqm, we obtain a factorization z1 of b such that j − 1 := max{n ∈ J1,mK : dn ≥ d(q)} and
dj−1 ≥ n(q). After repeating this replacement process j times, we obtain a chain z′ = z0, z1, . . . , zj of
factorizations of b in N0[q] such that for each i ∈ J1, jK,

zi = di,0 +

m∑
n=1

di,nq
n

for some coefficients di,0, . . . , di,m ∈ N0 with di,j−i ≥ n(q) and di,n < d(q) for every n ∈ Jj − i+ 1,mK.
In particular, zj = dj,0 +

∑m
n=1 dj,nq

n is a factorization of b such that dj,0 ≥ n(q) and dj,n < d(q) for
every n ∈ J1,mK. Thus, it follows from the uniqueness in part (1) that z = zj and so c0 = d0 ≥ n(d).
However, this contradicts the fact that c0 ∈ J0, n(q)− 1K. Thus, |Z(b)| = 1. □

We are in position to show that the monoid N0[q] satisfies the quasi-ACCP for all q ∈ Q>0.

Proposition 3.4. For each q ∈ Q>0, the Puiseux monoid N0[q] satisfies the quasi-ACCP.

Proof. Take q ∈ Q>0, and set M := N0[q]. If q ≥ 1, then 0 is not a limit point of M \ {0}, and so it
follows from [17, Proposition 4.5] that M satisfies the ACCP and so the quasi-ACCP. Therefore we
assume that q ∈ (0, 1) ∩ Q. If q = 1

n for some n ∈ N with n ≥ 2, then M is a valuation monoid and,

as we have seen in Example 3.2, M satisfies the quasi-ACCP. Thus, we further assume that q ̸= 1
n

for any n ∈ N. In light of this assumption, it follows from [18, Theorem 6.2] that M is atomic with
A (M) = {qn : n ∈ N0}.
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To argue that M satisfies the quasi-ACCP, let S be a finite nonempty subset of M . By virtue of
part (1) of Lemma 3.3, for each s ∈ S, we can write

s = cs,0 +

m∑
n=1

cs,nq
n

for some cs,0, cs,1, . . . , cs,m ∈ N0 such that cs,n ∈ J0, d(q) − 1K for every n ∈ J1,mK. We can further
assume that cs,m ≥ 1 for some s ∈ S. Now for each n ∈ J0,mK, set cn := min{cs,n : s ∈ S} and then
consider the element

d :=

m∑
n=0

dnq
n ∈ M.

It is clear that d is a common divisor of S in M . On the other hand, we can take s ∈ S such that
d0 = cs,0. In this case, s − d =

∑m
n=1(cs,n − dn)q

n. Now because cs,n − dn ∈ J0, d(q) − 1K for every
n ∈ J1,mK, it follows from part (2) of Lemma 3.3 that |Z(s − d)| = 1. This, together with the fact
that M is atomic, guarantees that every ascending chain of principal ideals of M starting at s−d must
stabilize. Hence M satisfies the quasi-ACCP. □

3.2. Quasi-ACCP and MCDs. We proceed to prove that every monoid that satisfies the quasi-
ACCP is an MCD monoid.

Proposition 3.5. Let M be a commutative monoid. If M satisfies the quasi-ACCP, then M is an
MCD monoid.

Proof. Suppose that M satisfies the quasi-ACCP. Then assume, by way of contradiction, that M is
not an MCD monoid. Let S be a nonempty finite subset of M having no MCD, which means that for
every common divisor d of S in M there exists a non-invertible common divisor of S − d in M . Since
M satisfies the quasi-ACCP, we can take a common divisor d0 of S in M such that s0−d0 satisfies the
ACCP for some s0 ∈ S. As d0 is not an MCD of S, we can take a common divisor d1 ∈ M \U (M) of
S−d0, and so d0+d1 is a common divisor of S in M . Similarly, as d0+d1 is a common divisor of S in
M , we can take a common divisor d2 ∈ M \U (M) of S−(d0+d1) in M , and so d0+d1+d2 is a common
divisor of S in M . We can repeat this process indefinitely to obtain a sequence (dn)n≥1 with terms in
M \U (M) such that for each n ∈ N0 the element cn := d0+d1+ · · ·+dn is a common divisor of S in M
and, in particular, cn |M s0. Finally, from the fact that (s0−cn)− (s0−cn+1) = dn+1 ∈ M \U (M) for
every n ∈ N0, we obtain that (s0 − cn +M)n≥0 is an ascending chain of principal ideals of M starting
at s0 − d0 that does not stabilize. However, this contradicts that M satisfies the quasi-ACCP. □

The converse of Proposition 3.5 does not hold. Indeed, the monoid in the following example is a
GCD monoid that does not satisfy the quasi-ACCP.

Example 3.6. Consider the additive valuation monoids V2 := N0[
1
2 ] and V3 := N0[

1
3 ], and then set

S := V2 + V3. We first prove that each element q ∈ M can be written uniquely as follows

(3.2) q = b0 +
∑
n∈N

bn
2n

+
∑
n∈N

cn
3n

,

for nonnegative integer coefficients b0, b1, b2, . . . and c1, c2, . . . almost all being zero such that bn ≤ 1
and cn ≤ 2 for every n ∈ N. As

{
1
2n ,

1
3n : n ∈ N

}
is a generating set of S, we can express q as in (3.2)

only assuming that the coefficients b0, b1, b2, . . . and c1, c2, . . . are nonnegative integers almost all being
zero. We further assume that, among all choices of coefficients, we have picked one minimizing the sum∑

n∈N bn+
∑

n∈N cn. Then observe that bn ≤ 1 for every n ∈ N: indeed, if bm ≥ 2 for some m ∈ N, then
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replacing bm−1

2m−1 +
bm
2m by bm−1+1

2m−1 + bm−2
2m in (3.2) would contradict the minimality of

∑
n∈N bn+

∑
n∈N cn.

In a similar way, we can argue that cn ≤ 2 for every n ∈ N. For the uniqueness, suppose that

q = b′0 +
∑
n∈N

b′n
2n

+
∑
n∈N

c′n
3n

,

is also a sum decomposition of q satisfying the same conditions as the one in (3.2). If there is an index
m ∈ N such that b′m ̸= bm, after assuming that m is as large as it could possible be and applying the
2-adic valuation map to both sides of the equality

b′m − bm
2m

=

m−1∑
n=0

bn − b′n
2n

+
∑
n∈N

cn − c′n
3n

,

we obtain that 2 | b′m − bm, which is not possible. Thus, b′n = bn for every n ∈ N. Similarly, we can
check that c′n = cn for every n ∈ N. Thus, the sum decomposition in (3.2) is unique.

To argue that S is a GCD monoid, we fix nonzero q, r ∈ S and proceed to show that the set {q, r}
has a GCD in S. Write q as in (3.2) and set dq :=

∑
n∈N0

bn
2n ∈ V2. As V2 is a valuation monoid,

the uniqueness of (3.2) implies that dq = max{d ∈ V2 : d |S q}. Similarly, we can take dr to be the
maximum of {d ∈ V2 : d |S r}. Write q = dq + eq and r = dr + er, and observe that eq, er ∈ V3 ∩ [0, 1).
As dq, dr ∈ V2, which is a valuation monoid, d := max{dq, dr} is a common divisor of {dq, dr}, and so
after subtracting d from both q and r we can assume that 0 ∈ {dq, dr}. Similarly, as eq, er ∈ V3, which
is also a valuation monoid, we can assume that 0 ∈ {eq, er}. Since qr ̸= 0, one can assume, without
loss of generality, that q = dq and r = er. If 1 |V2

dq, then the fact that er ∈ V3 ∩ (0, 1) implies that
er |V3

1 and so r |S q, whence r is the GCD of {r, q} in S. If 1 ∤V2
dq, then dq < 1 (also, er < 1), so the

uniqueness of (3.2) ensures that 0 is the only common divisor of {dq, er} = {q, r} in S, which implies
that 0 is the GCD of {q, r} in S. Hence S is a GCD monoid and, therefore, an MCD monoid.

We proceed to argue that M does not satisfy the quasi-ACCP. By the uniqueness of (3.2), it follows
that the only common divisor of

{
1
2 ,

1
3} in S is 0. This, along with the fact that both

(
1
2n +S

)
n≥1

and(
1
3n + S

)
n≥1

are ascending chains of principal ideals of S respectively starting at 1
2 and 1

3 that do not

stabilize, implies that S does not satisfy the quasi-ACCP.

4. Ascent of Almost and Quasi-ACCP to Monoid Algebras

The primary purpose of this section is to decide whether the quasi-ACCP and the almost ACCP
properties ascend to monoid algebras over fields. First, we consider the quasi-ACCP, which is signifi-
cantly easier.

4.1. Ascent of Quasi-ACCP to Monoid Algebras. For a perfect field F, we proceed to prove that
the property of satisfying the quasi-ACCP does not ascend from rank-one torsion-free monoids to their
corresponding monoid algebras over F.

Theorem 4.1. For p ∈ P, let F be a perfect field of characteristic p ∈ P. Then there exists a rank-one
torsion-free monoid M that satisfies the quasi-ACCP such that F[M ] does not satisfy the quasi-ACCP.

Proof. Consider the Puiseux monoid M := N0[
1
p ]. Observe that M is also a valuation monoid; indeed,

for any q, r ∈ M the divisibility relation q |M r holds if and only if q ≤ r. Therefore M satisfies the
quasi-ACCP. We proceed to argue that the nonzero elements of the monoid algebra F[M ] that satisfy
the ACCP are precisely the nonzero constant polynomials, that is, the elements of F.
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The set consisting of all nonzero constant polynomial expressions of F[M ] is F[M ]×, and units clearly
satisfy the ACCP. For the converse, it suffices to show that for any nonconstant polynomial expression
g(x) ∈ F[M ], there exists a nonconstant polynomial expression f(x) ∈ F[M ] with deg f(x) < deg g(x)
such that g(x)F[M ] ⊊ f(x)F[M ]. For this, take a nonzero g(x) ∈ F[M ] \ F, and write

g(x) =

n∑
i=1

cix
ri ∈ Fp[M ]

with coefficients c1, . . . , cn ∈ F (not all zeros) and (pairwise distinct) exponents r1, . . . , rn ∈ M . The
fact that F is a perfect field guarantees the existence of b1, . . . , bn such that bpi = ci for every i ∈ J1, nK.
Now observe that M is a p-divisible monoid: therefore we can pick q1, . . . , qn ∈ M such that pqi = ri
for every i ∈ J1, nK. Now set f(x) :=

∑n
i=1 bix

qi ∈ F[M ] and note that

f(x)p =

( n∑
i=1

bix
qi

)p

=

n∑
i=1

bpi x
pqi =

n∑
i=1

cix
ri = g(x).

It is clear that f(x) is a nonconstant polynomial expression with deg f(x) = 1
p deg g(x) < deg g(x).

Therefore the only elements of F[M ] \ {0} that satisfy the ACCP are the constant polynomials.

It follows from Proposition 3.5 that the multiplicative monoid F[M ]∗ cannot be satisfy the quasi-
ACCP if it is not an MCD monoid. Thus, we are done once we prove the following claim.

Claim. For any common divisor d of {x, x + 1} in F[M ]∗, neither x
d nor x+1

d satisfy the ACCP in
F[M ]∗.

Proof of Claim. Suppose, towards a contradiction, that there exists a common divisor d of {x, x+1}
in the multiplicative monoid F[M ] such that either x

d or x+1
d satisfies the ACCP. From the relations

d |F[M ] x and d |F[M ] x + 1, we deduce that d |F[M ] 1, which implies that d ∈ F[M ]×F×. Therefore
either x or x+1 must satisfy the ACCP in F[M ]. However, this is not possible as we have already seen
that only constant polynomial expressions satisfy the ACCP in F[M ]. Hence the claim is established,
which concludes our proof. □

4.2. Ascent of Almost ACCP to Monoid Algebras. This section is devoted to show that the
almost ACCP property does not ascend to monoid algebras (over fields). We will produce a rank-one
torsion-free monoid M that satisfies the almost ACCP such that the monoid algebra F2[M ] does not.

4.2.1. An Atomic Monoid not Satisfying the ACCP. Let us introduce the primary ingredient of this
section, which is the following rank-one torsion-free commutative monoid

(4.1) M :=

〈
3n − (−2)n

5 · 6n
: n ∈ N≥2

〉
.

Now we set an := 3n−(−2)n

5·6n for each n ∈ N with n ≥ 2, and we observe that

an−2 + an−1 =
3n−2 − (−2)n−2

5 · 6n−2
+

3n−1 − (−2)n−1

5 · 6n−1

=
2 · 3n−1 + 3 · (−2)n−1 + 3n−1 − (−2)n−1

5 · 6n−1

=
3n − (−2)n

5 · 6n−1
= 6an

provided that n ≥ 4. We will record this recurrence for future reference:

(4.2) 6an = an−1 + an−2
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for every n ∈ N with n ≥ 4. Here is another preliminary fact we need.

Lemma 4.2. Z[ 12 ] ⊆ M ⊆ Z[ 12 ,
1
3 ].

Proof. Now, for each n ∈ N≥2, set an := 3n−(−2)n

5·6n . Let us start by verifying that Z[ 12 ] ⊆ M ⊆ Z[ 12 ,
1
3 ].

For the first inclusion, it suffices to verify that { 1
2n : n ∈ N≥3} ⊆ M , which amounts to observing that

for every n ∈ N≥2,

an + 3an+1 =
1

5

(
6 · 3n − 6(−2)n

6n+1
+

9 · 3n + 6(−2)n

6n+1

)
=

1

5

(
15 · 3n

6n+1

)
=

1

2n+1
.

To argue the second inclusion, we take n ∈ N≥2 and notice that the divisibility relation 5 | 3n − (−2)n

holds, and so an ∈ ⟨ 1
6n : n ∈ N≥2⟩. This implies that M ⊆ Z[ 12 ,

1
3 ]. □

Our next goal is to argue that the monoid M is atomic with set of atoms A (M) = {an : n ∈ N≥2}.
In order to do so, we need to describe how we can decompose canonically every element of M as a sum
of the defining generators {an : n ∈ N≥2}.

Proposition 4.3. Each q ∈ M can be uniquely written as follows:

(4.3) q =
∑
k≥2

ckak =
c2
62

+
∑
k≥3

ck
3k − (−2)k

5 · 6k
,

where c2 ∈ N0, ck ∈ J0, 5K for every k ∈ N≥3, and ck = 0 for almost all k ∈ N≥2. In addition, for each
n ∈ N≥3 the following identity holds:

(4.4) 6an = an−1 + an−2.

Proof. First, we argue the existence of the sum decomposition in (4.3). Fix q ∈ M . Since the set
{an : n ∈ N≥2} generates M , we can write

(4.5) q =
∑
k≥2

ckak

for some nonnegative integer coefficients c2, c3, . . . such that ck = 0 for almost all k ∈ N≥2. If there is
a choice of the coefficients c2, c3, . . . such that ck ≤ 5 for every k ∈ N≥3, then we are done. Suppose
otherwise, and assume that we have chosen the coefficients in (4.5) that minimize the index

m := max{k ∈ N≥2 : ck ≥ 6}.

In addition, we can further assume that among all the choices of coefficients in (4.5) minimizing m,
the one we picked yields the minimum possible cm. We claim that m = 2. Suppose, by way of
contradiction, that m ≥ 3. We split the rest of the existence into the following two cases.

Case 1: m = 3. In this case, we see that

(c2 + 7)a2 + (c3 − 6)a3 = c2a2 + c3a3 + 7
32 − (−2)2

5 · 62
− 6

33 − (−2)3

5 · 63
= c2a2 + c3a3.

Therefore, after replacing c2a2 + c3a3 by (c2 + 7)a2 + (c3 − 6)a3 in (4.5), we would obtain another
decomposition of q that generates a contradiction with either the minimality of m or the minimality
of cm.

Case 2: m ≥ 4. In light of (4.2), the equality 6am = am−1 + am−2 holds. As a consequence, since
cm ≥ 6 we can replace cm−2am−2+cm−1am−1+cmam by (cm−2+1)am−2+(cm−1+1)am−1+(cm−6)am
in (4.5) to obtain a decomposition of q that generates a contradiction with either the minimality of m
or the minimality of cm.
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Finally, we prove that the decomposition in (4.3) is unique. Suppose, towards a contradiction, that
there exists q ∈ M with two distinct decompositions q =

∑
k≥2 ckak =

∑
k≥2 dkak, where c2, d2 ∈ N0,

ck, dk ∈ J0, 5K for all k ∈ N≥3, and ck = dk = 0 for almost all k ∈ N≥2. Now set

N := max{k ∈ N : ck ̸= dk},

which must exist because ck = dk = 0 for almost all k ∈ N≥2. Observe that N ≥ 3. We can now
subtract the two given decomposition of q to obtain that

(4.6)

N∑
k=2

(ck − dk)
3k − (−2)k

5 · 6k
= 0.

After multiplying by 6N both sides of (4.6), we obtain that 6 | (cN − dN )(3N − (−2)N ). This, along
with the fact that 6 is relatively prime with 3N − (−2)N guarantees that 6 | cN − dN . Now the fact
that cN , dN ∈ J0, 5K guarantees that cN = dN , which is a contradiction. □

Now, we can readily deduce that M is an atomic monoid.

Corollary 4.4. The monoid M in (4.1) is atomic with A (M) = {an : n ∈ N≥2}.

Proof. This immediately follows from the uniqueness of the decomposition (4.3). □

The unique decomposition described in (4.3) plays a crucial role in what follows.

Definition 4.5. For each q ∈ M , we call the unique decomposition q =
∑

k≥2 ckak in (4.3) the
canonical sum decomposition of q in M . Then we say that the height of q is h provided that

h = max{k ∈ N≥2 : ck ̸= 0};

that is, the height of q is the maximum index n such that the atom an appears in the canonical sum
decomposition of q.

We conclude this section with the following lemma, which gives another interpretation of the height
of an element of M .

Lemma 4.6. Let M be the monoid in (4.1), and take a nonzero q ∈ M with height at least 3. Then
the height of q is min{k ∈ N : 6kq ∈ Z}.

Proof. Assume that the height of q is h, and write the canonical sum decomposition of q as follows:
q = c2a2 + · · · + chah, where c2 ∈ N0 and c3, . . . , ch ∈ J0, 5K with ch ̸= 0. Since h ≥ 3, it follows that
ch < 6 and so 6 ∤ ch. Now take k ∈ J1, hK such that m := 6kq ∈ Z. Then

(4.7) ch
3h − (−2)h

5
= 6h−km−

h−1∑
i=2

ci6
h−i 3

i − (−2)i

5
.

Observe that the inequality k < h cannot hold as, otherwise, each summand in the right-hand side
of (4.7) would be divisible by 6, and so 6 would also divide the coefficient ch. Hence k = h, which
means that h is the minimum k ∈ N such that 6kq ∈ Z. □
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4.2.2. A Monoid Algebra that Does not Satisfy the Almost ACCP. We are in a position to prove that
the almost ACCP property does not ascend to monoid algebras. Indeed, we will prove that M satisfies
the almost ACCP but its monoid algebra F2[M ] does not. Before establishing this, we need the
following known result.

Let us establish the main result of this section.

Theorem 4.7. For the monoid M introduced in (4.1), the following statements hold.

(1) M satisfies the almost ACCP but not the ACCP.

(2) F2[M ] does not satisfy the almost ACCP.

Proof. (1) First, observe that M does not satisfy the ACCP: indeed, it follow from Lemma 4.2 that
Z[ 12 ] ⊆ M , and so

(
1
2n +M)n≥2 is an ascending chain of principal ideals of M that does not stabilize.

Before proving that M satisfies the quasi-ACCP, we need to argue the following claim.

Claim 1. If an element q ∈ M does not satisfy the ACCP, then there exists N ∈ N such that an |M q
for every n ≥ N .

Proof of Claim 1. Take q ∈ M such that q does not satisfy the ACCP. Let (bn + M)n≥0 be an
ascending chain of principal ideals of M starting at q that does not stabilize. We can further assume
that bn +M ⊊ bn+1 +M for every n ∈ N0. As M is atomic with A (M) = {an : n ∈ N≥2}, for each
n ∈ N0 we can take in ∈ N such that ain |M bn− bn+1. As b0 = q, it follows that ai1 + · · ·+aij |M q for
every j ∈ N. As for each a ∈ A (M), the set {j ∈ N : aij = a} is finite, we can pick a strictly increasing

sequence (in)n≥1 such that ain |M q for every n ∈ N. Now set n := min{k ∈ N≥2 : 6kq ∈ Z}, and then
take N ∈ N such that N > n+ 5. We claim that an |M q for every n ≥ N .

Suppose, by way of contraction that ak ∤M q for some k ≥ N , and assume that k has been picked as
smallest as it could possibly be. As (in)n≥1 is a strictly increasing sequence such that ain |M q, we can
pick ℓ ∈ N with ℓ > k such that ai ∤M q for every i ∈ Jk, ℓ− 1K, but aℓ |M q. Take the maximum c ∈ N
such that caℓ |M q. Now observe that if c < 6, then 6ℓ(q − caℓ) is an integer that is not divisible by 6
and, therefore, ℓ := min{6k(q−caℓ) ∈ Z} and so it follows form Lemma 4.6 that aℓ |M q−caℓ, which is
not possible because of the maximality of c. Hence 6aℓ |M q.Then it follows that 6aℓ = aℓ−1+aℓ−2 and,
as a consequence, we obtain that aℓ−1 |M q, which is a contradiction. Hence the claim is established.

In order to argue that M satisfies the almost ACCP, fix a nonempty finite subset S of M . For each
s ∈ S, use the canonical sum decomposition of s to write

s =

n∑
i=2

ci,sai,

where c2,s ∈ N0 and ci,s ∈ J0, 5K for every i ∈ J2, nK. Now take the maximum common divisor of S of
the form

(4.8) d := d2a2 + · · ·+ dnan.

Claim 2. d is an MCD of S in M .

Proof of Claim 2. Suppose, towards a contradiction that this is not the case. Then there exists
k ∈ N such that d+ ak is a common divisor of S. It follows from the maximality of d that k ≥ n+ 1.
Now we take coefficients dn+1, . . . , dk ∈ N0 such that e := d + dn+1an+1 + · · · + dkak is a common
divisor of S in such a way that the value of c is as large as possible. In addition, among all the possible
choices of the coefficients dn+1, . . . , dk maximizing e, we can further assume that we have picked one
maximazing the sum dn+1 + · · · + dk. Since d + ak is a common divisor of S, the maximality of e
guarantees that dn+1 + · · ·+ dk ≥ 1. In addition, after replacing k by the smallest index j ∈ Jn+1, kK
with dj ̸= 0, we can further assume that dk ̸= 0. On the other hand, observe that dk ≤ 5 as otherwise
after replacing 6ak by ak−1 + ak−2 in (4.8) we would contradict the maximality of dn+1 + · · · + dk.
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For each s ∈ S, the fact that dk ≤ 5 implies that 6k(s − e) is an integer not divisible by 6, and so it
follows from Lemma 4.6 that ak |M s − e. As a consequence, e + ak is a common divisor of S, which
contradicts the maximality of e. Hence d is an MCD of S.

Because d is a common divisor of S, in order to conclude that M satisfies the weak-ACCP it suffices
to argue that s− d satisfies the ACCP for some s ∈ S. However, note that if s− d does not satisfy the
ACCP for any s ∈ S, then in light of Claim 1 we would be able to take an index ℓ ∈ N large enough
so that the atom aℓ divides s− d for every s ∈ S, which is not possible because, according to Claim 2,
the element d is a maximal common divisor of S.

(2) Finally, we prove that F2[M ] does not satisfy the almost ACCP. Indeed, we will argue that
F2[M ] is not even atomic. It suffices to prove that the polynomial expression x2 + x + 1 of F2[M ] is
not divisible by any irreducible. Suppose, by way of contradiction, that this is not the case, and let
f ∈ F[M ] be an irreducible dividing x2 + x+ 1. Now take g ∈ F2[M ] such that x2 + x+ 1 = f(x)g(x).
Since M ⊆ Z[ 12 ,

1
3 ], we can take m ∈ N sufficiently large so that f

(
x6m

)
and g

(
x6m

)
both belong to

the polynomial ring F2[x]. Now observe that

(4.9)
(
x2·3m + x3m + 1

)2m
= x2·6m + x6m + 1 = f

(
x6m

)
g
(
x6m

)
.

It follows from [11, Lemma 5.3] that the polynomial x2·3m + x3m + 1 is irreducible in F2[x]. Thus, by
virtue of (4.9) and the fact that F2[x] is a UFD, there exists k ∈ J1, 2mK such that

f
(
x6m

)
=

(
x2·3m + x3m + 1

)k
.

As a result, we can write

f(x) =
(
x2· 1

2m + x
1

2m + 1
)k

=
(
x2· 1

2m+1 + x
1

2m+1 + 1
)2k

in F2[Q≥0]. Now the inclusion Z[ 12 ] ⊆ M ensures that x2· 1

2m+1 + x
1

2m+1 + 1 ∈ F2[M ], and so the
inequality 2k > 1 contradicts the irreducibility of f in F2[M ]. Hence F2[M ] is not an atomic domain.

□
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