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Partially Ordered Sets

Definition (Posets)

A pair (S ,≤) is called partially ordered set (or poset) if S is a set
and ≤ is a binary relation on S satisfying the following conditions:

1. s ≤ s for all s ∈ S (reflexivity);

2. for all s, r ∈ S , if s ≤ r and s ≤ r then s = r (antisymmetry);

3. for all r , s, t, if s ≤ r and r ≤ t then s ≤ t (transitivity).

We say that a poset P is a chain or a totally (or linearly) ordered
set if for all r , s ∈ P either r ≤ s or s ≤ r .

Few more definitions:

I Let P be a poset and r , s ∈ P. If r ≤ s or s ≤ r , we say that
r and s are comparable; we write r ||s if r and s are not
comparable.

I We use the symbols ≥, <, and > in the obvious way; for
example, r > s if s ≤ r but s 6= r .
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Bounds, Minimal, and Maximal Elements

Definition

Let P be a poset.

I An upper bound (resp., lower bound) of a subset S of P is an
element b ∈ P such that s ≤ b (resp., s ≥ b) for all s ∈ S .

I If a lower bound of P as a subset of P exists, it must be
unique; we denote it by 0̂. Dually, if a global upper bound
exists it must be also unique, and we denote it by 1̂.

I An element m of P is minimal (resp., maximal) if s ≤ m
(resp., m ≤ s) for some s ∈ P implies that s = m.
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Posets (Examples)

Examples of posets:

1. For a set S the power set P(S) is a poset with respect to
inclusion. The sets ∅ and S are the 0̂ and 1̂, respectively.

2. For n ∈ N, the set Dn of all positive divisors of n is a poset if
we define d1 ≤ d2 if d1 divides d2. Notice that 1 and n are the
respective 0̂ and 1̂ of Dn.

3. For a set S , consider the set
∏

S of partitions of S . If for
σ, λ ∈

∏
S we define σ ≤ λ if every block of σ is contained in

a block of λ, i.e., σ ≤ λ if σ is a refinement of λ, then
∏

S is
a poset. Notice that 0̂ = {{s} | s ∈ S} and 1̂ = {S}.

4. Note that (0, 1) is a poset under the standard binary relation
≤. However, (0, 1) does not contain neither 0̂ nor 1̂.
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Subchains and Intervals

Definition

Let P be a poset.

I S ⊆ P is a subchain if S is a chain by itself.

I A subchain S of P is maximal if it is not properly contained in
any other subchain of P.

I A subchain S of P is saturated if r ≤ x ≤ s for r , s ∈ S and
x ∈ L implies that x = r or x = s.

I The length `(S) of a finite subchain S of P is |S | − 1.

I For r , s ∈ P such that r ≤ s we define the interval [r , s] to be
the set

{u ∈ P | r ≤ u ≤ s}.

I The length of a finite interval [r , s] of P is

`(r , s) := max{`(S) | S is a maximal subchain of [r , s]}.
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Graded Posets

Definition

I The poset P is graded of rank n if `(S) = n for each maximal
subchain S of P.

I For r , s ∈ P, we say that r covers s if s ≤ r and s ≤ t ≤ r
implies t ∈ {r , s}.

Theorem

If P is a graded poset of rank n, there exists a unique rank
function ρ : P → {0, . . . , n} such that ρ(m) = 0 if m is minimal
and ρ(r) = ρ(s) + 1 if r covers s.

Proof: Exercise.

Felix Gotti felixgotti@berkeley.edu Terminology of Posets



New Posets from Old

Let L and M be two posets.

I The dual of L is the pair L∗ = (L,≤d), where r ≤d s iff s ≤ r
in L.

I The disjoint union of L and M is the pair
L + M = (L ∪M,≤du), where r ≤du s iff r , s ∈ L and r ≤ s in
L, or r , s ∈ M and r ≤ s in M.

I The ordinal sum of L and M is the pair L⊕M = (L∪M,≤os),
where r ≤os s iff (a) r , s ∈ L and r ≤ s in L, (b) r , s ∈ M and
r ≤ s in M, or (c) r ∈ L and s ∈ M.

I The direct product of L and M is the pair
L×M = (L×M,≤dp), where (r , s) ≤dp (r ′, s ′) iff r ≤ r ′ in L
and s ≤ s ′ in M.

Theorem

If L and M are posets, so are L∗, L + M, L⊕M, and L×M.
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Morphisms of Posets

Definition

Let ϕ : R → S be a map between posets.

I ϕ is called order-preserving (resp.,order-reflecting if for all
r , r ′ ∈ R such that r ≤ r ′ we have ϕ(r) ≤ ϕ(r ′) (resp.,
ϕ(r) ≥ ϕ(r ′)).

I ϕ is an order-embedding if it is both order-preserving and
order-reflecting.

I ϕ is an isomorphism of posets if it is a bijective
order-embedding; in this case R and S are said to be
isomorphic.

Remarks:

I An order-embedding is injective.

I Two posets R and S are isomorphic iff there are
order-preserving maps ϕ : R → S and ψ : S → R such that
ϕ ◦ ψ = IdS and ψ ◦ ϕ = IdR .
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