Terminology of Posets

Felix Gotti felixgotti@berkeley.edu

UC Berkeley

January 31, 2016

Felix Gotti felixgotti@berkeley.edu

Terminology of Posets

Partially Ordered Sets

Definition (Posets)

A pair (S, \leq) is called *partially ordered set* (or *poset*) if S is a set and \leq is a binary relation on S satisfying the following conditions:

- 1. $s \leq s$ for all $s \in S$ (reflexivity);
- 2. for all $s, r \in S$, if $s \leq r$ and $s \leq r$ then s = r (antisymmetry);
- 3. for all r, s, t, if $s \leq r$ and $r \leq t$ then $s \leq t$ (transitivity).

We say that a poset P is a *chain* or a *totally* (or *linearly*) ordered set if for all $r, s \in P$ either $r \leq s$ or $s \leq r$.

Few more definitions:

- Let P be a poset and r, s ∈ P. If r ≤ s or s ≤ r, we say that r and s are comparable; we write r||s if r and s are not comparable.
- We use the symbols ≥, <, and > in the obvious way; for example, r > s if s ≤ r but s ≠ r.

Bounds, Minimal, and Maximal Elements

Definition

Let P be a poset.

- ▶ An upper bound (resp., lower bound) of a subset S of P is an element $b \in P$ such that $s \leq b$ (resp., $s \geq b$) for all $s \in S$.
- ► If a lower bound of P as a subset of P exists, it must be unique; we denote it by 0̂. Dually, if a global upper bound exists it must be also unique, and we denote it by 1̂.
- An element m of P is minimal (resp., maximal) if s ≤ m (resp., m ≤ s) for some s ∈ P implies that s = m.

Posets (Examples)

Examples of posets:

- 1. For a set S the power set $\mathcal{P}(S)$ is a poset with respect to inclusion. The sets \emptyset and S are the $\hat{0}$ and $\hat{1}$, respectively.
- 2. For $n \in \mathbb{N}$, the set D_n of all positive divisors of n is a poset if we define $d_1 \leq d_2$ if d_1 divides d_2 . Notice that 1 and n are the respective $\hat{0}$ and $\hat{1}$ of D_n .
- 3. For a set *S*, consider the set \prod_{S} of partitions of *S*. If for $\sigma, \lambda \in \prod_{S}$ we define $\sigma \leq \lambda$ if every block of σ is contained in a block of λ , i.e., $\sigma \leq \lambda$ if σ is a refinement of λ , then \prod_{S} is a poset. Notice that $\hat{0} = \{\{s\} \mid s \in S\}$ and $\hat{1} = \{S\}$.
- 4. Note that (0,1) is a poset under the standard binary relation \leq . However, (0,1) does not contain neither $\hat{0}$ nor $\hat{1}$.

Subchains and Intervals

Definition

Let P be a poset.

- $S \subseteq P$ is a *subchain* if S is a chain by itself.
- ► A subchain S of P is maximal if it is not properly contained in any other subchain of P.
- A subchain S of P is saturated if $r \le x \le s$ for $r, s \in S$ and $x \in L$ implies that x = r or x = s.
- The length $\ell(S)$ of a finite subchain S of P is |S| 1.
- For r, s ∈ P such that r ≤ s we define the interval [r, s] to be the set

$$\{u\in P\mid r\leq u\leq s\}.$$

• The *length* of a finite interval [r, s] of P is

 $\ell(r,s) := \max\{\ell(S) \mid S \text{ is a maximal subchain of } [r,s]\}.$

Felix Gotti felixgotti@berkeley.edu

Graded Posets

Definition

- ▶ The poset *P* is graded of rank *n* if $\ell(S) = n$ for each maximal subchain *S* of *P*.
- For r, s ∈ P, we say that r covers s if s ≤ r and s ≤ t ≤ r implies t ∈ {r, s}.

Theorem

If P is a graded poset of rank n, there exists a unique rank function $\rho: P \to \{0, ..., n\}$ such that $\rho(m) = 0$ if m is minimal and $\rho(r) = \rho(s) + 1$ if r covers s. **Proof:** Exercise.

New Posets from Old

Let L and M be two posets.

- ▶ The dual of L is the pair $L^* = (L, \leq_d)$, where $r \leq_d s$ iff $s \leq r$ in L.
- ▶ The disjoint union of L and M is the pair $L + M = (L \cup M, \leq_{du})$, where $r \leq_{du} s$ iff $r, s \in L$ and $r \leq s$ in L, or $r, s \in M$ and $r \leq s$ in M.
- ▶ The ordinal sum of L and M is the pair $L \oplus M = (L \cup M, \leq_{os})$, where $r \leq_{os} s$ iff (a) $r, s \in L$ and $r \leq s$ in L, (b) $r, s \in M$ and $r \leq s$ in M, or (c) $r \in L$ and $s \in M$.
- ▶ The direct product of L and M is the pair $L \times M = (L \times M, \leq_{dp})$, where $(r, s) \leq_{dp} (r', s')$ iff $r \leq r'$ in L and $s \leq s'$ in M.

Theorem

If L and M are posets, so are $L^*, L + M, L \oplus M$, and $L \times M$.

Felix Gotti felixgotti@berkeley.edu

Morphisms of Posets

Definition

Let $\varphi \colon R \to S$ be a map between posets.

- φ is called *order-preserving* (resp.,*order-reflecting* if for all $r, r' \in R$ such that $r \leq r'$ we have $\varphi(r) \leq \varphi(r')$ (resp., $\varphi(r) \geq \varphi(r')$).
- φ is an *isomorphism* of posets if it is a bijective order-embedding; in this case R and S are said to be *isomorphic*.

Remarks:

- An order-embedding is injective.
- ► Two posets R and S are isomorphic iff there are order-preserving maps φ: R → S and ψ: S → R such that φ ∘ ψ = Id_S and ψ ∘ φ = Id_R.

Felix Gotti felixgotti@berkeley.edu

References

- J. Neggers and H. S. Kim. *Basic Posets*. World Scientific, New Jersey, 1998.
- R. Stanley. Enumerative Combinatorics. Cambridge University Press, New York, 2012.