On Positroids Induced by Unit Interval Orders

Felix Gotti

UC Berkeley

University of Miami Combinatorics Seminar

April 3, 2017

Online reference: https://arxiv.org/abs/1611.09279

Main Results:

- We describe how every unit interval order induces a positroid (a special matroid coming from the totally nonnegative Grassmannian).
- In the positroids arising in this way.
- Specifically, there are Catalan-many unit interval orders, and we give a simple characterization of the decorated permutations of their associated positroids.
- We describe bijections from the set of unit interval positroids (and unit interval orders) to the set of 2n length Dyck paths.

1 Unit Interval Orders and Dyck Matrices

2 Unit Interval Positroids

Characterization of the Decorated Permutation

Interpretation of the f-vector of a Naturally Labeled Poset

Definition of Unit Interval Orders

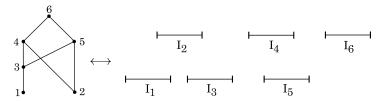
Definition

A poset *P* is a *unit interval order* if there exists a bijective map $i \mapsto [q_i, q_i + 1]$ from *P* to $S = \{[q_i, q_i + 1] \mid 1 \le i \le n, q_i \in \mathbb{R}\}$ such that for distinct $i, j \in P$,

$$i <_P j$$
 if and only if $q_i + 1 < q_j$. (1)

We then say that S is an *interval representation* of P.

Example: A unit interval order and its interval representation:



Felix Gotti

On Positroids Induced by Unit Interval Orders

- Unit interval orders were introduced by Robert D. Luce in the context of economic sciences.
- They were used to axiomatize a class of utilities in the theory of preferences.
- Unit interval orders provide a mathematical framework for the theory of decision patterns.
- There are $\frac{1}{n+1} \binom{2n}{n}$ non-isomorphic unit interval orders on [n].

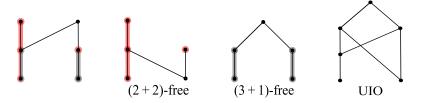
A Characterization of Unit Interval Orders

- A poset Q is an *induced* subposet of a poset P if there is an injective map f: Q → P such that a <_Q b iff f(a) <_P f(b).
- *P* is a *Q*-free poset if *P* does not contain any induced subposet isomorphic to *Q*.

Theorem (Scott-Suppes)

A poset is a unit interval order if and only if it is simultaneously (3+1)-free and (2+2)-free.

Examples:

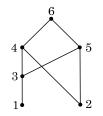


Natural and Canonical Labelings

Let P be a poset on [n].

- *P* is *naturally labeled* if $i <_P j$ implies that $i \le j$ as integers.
- The *altitude* of *P* is the map $\alpha \colon P \to \mathbb{Z}$ defined by $i \mapsto |\Lambda_i| |V_i|$.
- P is canonically labeled if α(i) < α(j) implies i < j (as integers).

Example: A canonically labeled poset:



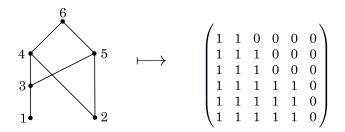
$$lpha(1)=-4$$
, $lpha(2)=-3$, $lpha(3)=-2, lpha(4)=lpha(5)=2$, $lpha(6)=5$.

Antiadjacency Matrices of Labeled Posets

Definition (Antiadjacency Matrix)

If P is a poset on [n], then the *antiadjacency matrix* of P is the $n \times n$ binary matrix $A = (a_{i,j})$ with $a_{i,j} = 0$ iff $i \neq j$ and $i <_P j$.

Example: A labeled poset and its antiadjacency matrix:



Dyck Matrices

A real square matrix is *totally nonnegative* if all its minors are ≥ 0 .

Definition (Dyck Matrix)

A binary square matrix is said to be a *Dyck matrix* if its zero entries are above the main diagonal and its one entries are separated from its zero entries by a 2n length Dyck path supported on the main diagonal. We let D_n denote the set of Dyck matrices of size n.

Example: A 6×6 Dyck matrix and its Dyck path:

$$\begin{pmatrix} \hline 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Observations:

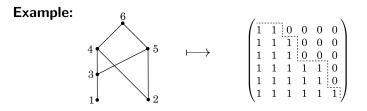
- Every Dyck matrix is totally nonnegative.
- $|\mathcal{D}_n| = \frac{1}{n+1} {\binom{2n}{n}}$, the *n*-th Catalan number.

Felix Gotti

Matrix Representation of Canonically Labeled Unit Interval Orders

Proposition (Reed-Skandera)

An n-labeled unit interval order is canonically labeled if and only if its antiadjacency matrix is a Dyck matrix.



Proposition (Chavez-G)

Let \mathcal{U}_n be the set of non-isomorphic unit interval orders of size n. The map $\psi: \mathcal{U}_n \to \mathcal{D}_n$ assigning to each canonically labeled unit interval order its antiadjacency matrix is a bijection.

Felix Gotti

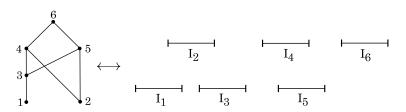
On Positroids Induced by Unit Interval Orders

Interval Representations of Canonically Labeled Unit Interval Orders

Proposition (Chavez-G)

Let P be an n-labeled unit interval order. Then the labeling of P is canonical if and only if there exists an interval representation $\{[q_i, q_i + 1] \mid 1 \le i \le n\}$ of P such that $q_1 < \cdots < q_n$.

Example:



Unit Interval Positroids

Definition (Matroid)

Let *S* be a finite set, and let β be a nonempty collection of subsets of *S*. The pair $M = (S, \beta)$ is a *matroid* if for all $A, B \in \beta$ and $a \in A \setminus B$, there exists $b \in B \setminus A$ such that $(A \setminus \{a\}) \cup \{b\} \in \beta$.

If $M = (S, \beta)$ is a matroid, then:

- the elements of β are said to be *bases* of *M*;
- the *rank* of *M* is the size of any basis (any two bases of *M* have the same cardinality).

Definition: A matroid $([n], \beta)$ of rank *d* is *representable* if there is $X \in Mat_{d,n}(\mathbb{R})$ with columns X_1, \ldots, X_n such that $B \subseteq [n]$ belongs to β iff $\{X_i \mid i \in B\}$ is a basis for \mathbb{R}^d .

Notation: Let $Mat^+_{d,n}(\mathbb{R})$ denote the set of all full rank $d \times n$ real matrices with nonnegative maximal minors.

Definition (Positroid)

A *positroid* on [n] of rank d is a matroid that can be represented by a matrix in $Mat^+_{d,n}(\mathbb{R})$. **Example:** Consider the 3×6 real matrix

$$X = egin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 \ 0 & 2 & 0 & -1 & -1 & 0 \ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

As X has rank 3 and all its maximal minors are nonnegative, it follows that $X \in \operatorname{Mat}_{3,6}^+(\mathbb{R})$. Therefore the matroid represented by X is a positroid ([6], β) whose collection of bases is

$$\beta = \big\{ \{2, 4, 6\}, \{2, 5, 6\} \big\}.$$

Postnikov's Map

For $A = (a_{i,j}) \in \mathsf{Mat}_n(\mathbb{R})$, let $B = \phi(A) \in \mathsf{Mat}_{n,2n}(\mathbb{R})$, where

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n-1,1} & \dots & a_{n-1,n} \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \stackrel{\phi}{\mapsto} \begin{pmatrix} 1 & \dots & 0 & 0 & \pm a_{n,1} & \dots & \pm a_{n,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & -a_{2,1} & \dots & -a_{2,n} \\ 0 & \dots & 0 & 1 & a_{1,1} & \dots & a_{1,n} \end{pmatrix}$$

Notation: If $K \subseteq [2n]$ and $I, J \subseteq [n]$ so that |K| = n and |I| = |J|,

- Δ_{I,J}(A) denotes the minor of A determined by the rows I and columns J;
- $\Delta_{\mathcal{K}}(B)$ is the maximal minor of B determined by columns K.

Lemma (Postnikov)

Under this correspondence ϕ , $\Delta_{I,J}(A) = \Delta_{(n+1-[n]\setminus I)\cup(n+J)}(B)$ for all $I, J \subseteq [n]$ satisfying |I| = |J|.

Observation: $\phi(\mathcal{D}_n) \subset \operatorname{Mat}_{n,2n}^+(\mathbb{R})$.

Postnikov's Map (continuation)

Example: Consider the minor $\Delta_{I,J}(A)$ of the 3 × 3 real matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

where $I = J = \{2, 3\}$. Then

$$\phi(A) = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

and $(4 - [3] \setminus I) \cup (3 + J) = \{3, 5, 6\}$. Notice that $\Delta_{\{2,3\},\{2,3\}}(A) = 1 = \Delta_{\{3,5,6\}}(\phi(A)).$

Definition (Unit Interval Positroid)

For $D \in \mathcal{D}_n$, the positroid on [2n] represented by $\phi(D)$ is called *unit interval positroid*. Let \mathcal{P}_n denote the set of all unit interval positroids on [2n].

Notation: Let $\rho: \operatorname{Mat}_{d,n}^+(\mathbb{R}) \to \mathcal{P}_n$ be the map sending each matrix in $\operatorname{Mat}_{d,n}^+(\mathbb{R})$ to the unit interval positroid it represents.

Theorem (Chavez-G)

The map $\rho \circ \phi \colon \mathcal{D}_n \to \mathcal{P}_n$ assigning to each Dyck matrix its corresponding unit interval positroid is a bijection.

Corollary

The map $\rho \circ \phi \circ \psi \colon \mathcal{U}_n \to \mathcal{P}_n$ is a bijection.

Decorated Permutation

Definition (Decorated Permutation)

- A decorated permutation of [n] is an element $\pi \in S_n$ whose fixed points j are marked either "clockwise" (denoted by $\pi(j) = \underline{j}$) or "counterclockwise" (denoted by $\pi(j) = \overline{j}$).
- A weak excedance (or excedance) of a decorated permutation $\pi \in S_n$ is an index $j \in [n]$ satisfying $j < \pi(j)$ or $\pi(j) = \overline{j}$.

Theorem (Postnikov)

There is natural bijection between rank d positroids on [n] and decorated permutations of [n] having exactly d excedances.

Decorated permutations of positroids in \mathcal{P}_n are 2*n*-cycles satisfying certain special properties.

Theorem (Chavez-G)

Decorated permutations associated to unit interval positroids on [2n] are 2n-cycles $(1 \ j_1 \ \dots \ j_{2n-1})$ satisfying the following two conditions:

- in the sequence (1, j₁,..., j_{2n-1}) the elements 1,..., n appear in increasing order while the elements n + 1,..., 2n appear in decreasing order;
- If or every 1 ≤ k ≤ 2n − 1, the set {1, j₁,..., j_k} contains at least as many elements of the set {1,..., n} as elements of the set {n + 1,..., 2n}.

Dyck Path Encoded in the Decorated Permutation of a Unit Interval Positroid

Example: The positroid represented by the 5×5 Dyck matrix

$$D=egin{pmatrix} 1&0&0&0&0\ 1&1&1&0&0\ 1&1&1&1&0\ 1&1&1&1&1\ 1&1&1&1\ 1&1&1&1\ \end{pmatrix}$$

has decorated permutation

$$\pi = (1 \ 2 \ 10 \ 3 \ 9 \ 4 \ 8 \ 7 \ 5 \ 6),$$

which has the following Dyck path encoded:

$$1^{2}$$
 10 3^{9} 4^{8} 7 5^{6}

Theorem (Chavez-G)

If we number the n vertical steps of the Dyck path of $D \in D_n$ from bottom to top with $1, \ldots, n$ and the n horizontal steps from left to right with $n + 1, \ldots, 2n$, then we get the decorated permutation of the unit interval positroid induced by D by reading Dyck path of D in northwest direction.

Example: The decorated permutation π associated to the positroid represented by the 5 × 5 Dyck matrix *D*

$$\begin{pmatrix} \frac{6}{5} & 0 \\ 1 & \frac{3}{2} \\ 1 & 1 \end{pmatrix}$$

can be read from the Dyck path of D, obtaining

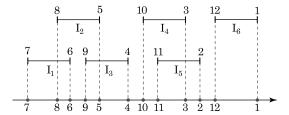
 $\pi = (1 \ 2 \ 10 \ 3 \ 9 \ 4 \ 8 \ 7 \ 5 \ 6).$

Decorated Permutation Read from Canonical Interval Representation

Theorem (Chavez-G)

Labeling the left and right endpoints of the intervals $[q_i, q_i + 1]$ by n + i and n + 1 - i, respectively, we obtain the decorated permutation of the positroid induced by P by reading the label set $\{1, ..., 2n\}$ from the real line from right to left.

Example: The decorated permutation (1 12 2 3 11 10 4 5 9 6 8 7) is obtained by reading the labels from right to left.



f-vector Interpretation

On f-vectors of Arbitrary (finite) Posets

Let P be a naturally labeled poset with antiadjacency matrix A_P .

Definition

If |P| = n, the *f*-vector of *P* is the sequence $f = (f_0, f_1, \ldots, f_{n-1})$, where f_k is the number of *k*-element chains of *P*.

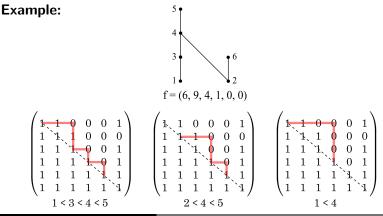
Definition

A valley Dyck path of A_P is a Dyck path drawn inside A_P that has its endpoints and all its valleys on the main diagonal and all its peaks in positions (i, j) such that $a_{i,j} = 0$.

Figure: A poset and its antiadjacency matrix showing a 3-peak valley Dyck path.

Proposition (Chavez-G)

The entries of the f-vector of P are $f_0 = n$ and f_k equals the number of valley Dyck paths of A_P having exactly k peaks.



Felix Gotti

On Positroids Induced by Unit Interval Orders

References

- F. Ardila, F. Rincón, and L. Williams. Positroids and non-crossing partitions, Trans. Amer. Math. Soc. 368 (2016) 337–363.
- A. Chavez and F. Gotti. *Dyck Paths and Positroids from Unit Interval Orders*. [arXiv:1611.09279]
- F. Gotti. Positroids Induced by Rational Dyck Paths. [arXiv:1706.09921]
- S. Oh. Positroids and Schubert matroids, Journal of Combinatorial Theory, Series A 118 (2011), no. 8, 2426–2435.
- A. Postnikov. *Total positivity, Grassmannian, and networks,* arXiv.org:math/0609764.
- M. Skandera and B. Reed. *Total nonnegativity and (3+1)-free posets*, J. Combin. Theory Ser. A 103 (2003), 237–256.
- R. P. Stanley. Catalan Numbers, Cambridge University Press, 2015.