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Introduction

Online reference: https://arxiv.org/abs/1611.09279

Main Results:

1 We describe how every unit interval order induces a positroid
(a special matroid coming from the totally nonnegative
Grassmannian).

2 Then, we characterize the positroids arising in this way.

3 Specifically, there are Catalan-many unit interval orders, and
we give a simple characterization of the decorated
permutations of their associated positroids.

4 We describe bijections from the set of unit interval positroids
(and unit interval orders) to the set of 2n length Dyck paths.
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Definition of Unit Interval Orders

Definition

A poset P is a unit interval order if there exists a bijective map
i 7→ [qi , qi + 1] from P to S = {[qi , qi + 1] | 1 ≤ i ≤ n, qi ∈ R}
such that for distinct i , j ∈ P,

i <P j if and only if qi + 1 < qj . (1)

We then say that S is an interval representation of P.

Example: A unit interval order and its interval representation:
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Some Words on Unit Interval Orders

Unit interval orders were introduced by Robert D. Luce in the
context of economic sciences.

They were used to axiomatize a class of utilities in the theory
of preferences.

Unit interval orders provide a mathematical framework for the
theory of decision patterns.

There are 1
n+1

(2n
n

)
non-isomorphic unit interval orders on [n].
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A Characterization of Unit Interval Orders

A poset Q is an induced subposet of a poset P if there is an
injective map f : Q → P such that a <Q b iff f (a) <P f (b).

P is a Q-free poset if P does not contain any induced
subposet isomorphic to Q.

Theorem (Scott-Suppes)

A poset is a unit interval order if and only if it is simultaneously
(3 + 1)-free and (2 + 2)-free.

Examples:
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Natural and Canonical Labelings

Let P be a poset on [n].

P is naturally labeled if i <P j implies that i ≤ j as integers.

The altitude of P is the map α : P → Z defined by
i 7→ |Λi | − |Vi |.
P is canonically labeled if α(i) < α(j) implies i < j (as
integers).

Example: A canonically labeled poset:

α(1) = −4, α(2) = −3, α(3) = −2, α(4) = α(5) = 2, α(6) = 5.
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Antiadjacency Matrices of Labeled Posets

Definition (Antiadjacency Matrix)

If P is a poset on [n], then the antiadjacency matrix of P is the
n × n binary matrix A = (ai ,j) with ai ,j = 0 iff i 6= j and i <P j .

Example: A labeled poset and its antiadjacency matrix:
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Dyck Matrices

A real square matrix is totally nonnegative if all its minors are ≥ 0.

Definition (Dyck Matrix)

A binary square matrix is said to be a Dyck matrix if its zero entries
are above the main diagonal and its one entries are separated from
its zero entries by a 2n length Dyck path supported on the main
diagonal. We let Dn denote the set of Dyck matrices of size n.

Example: A 6× 6 Dyck matrix and its Dyck path:

Observations:

Every Dyck matrix is totally nonnegative.

|Dn| = 1
n+1

(2n
n

)
, the n-th Catalan number.
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Matrix Representation of Canonically Labeled Unit
Interval Orders

Proposition (Reed-Skandera)

An n-labeled unit interval order is canonically labeled if and only if
its antiadjacency matrix is a Dyck matrix.

Example:

Proposition (Chavez-G)

Let Un be the set of non-isomorphic unit interval orders of size n.
The map ψ : Un → Dn assigning to each canonically labeled unit
interval order its antiadjacency matrix is a bijection.
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Interval Representations of Canonically Labeled Unit
Interval Orders

Proposition (Chavez-G)

Let P be an n-labeled unit interval order. Then the labeling of P is
canonical if and only if there exists an interval representation
{[qi , qi + 1] | 1 ≤ i ≤ n} of P such that q1 < · · · < qn.

Example:
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Unit Interval Positroids
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Matroids

Definition (Matroid)

Let S be a finite set, and let β be a nonempty collection of subsets
of S . The pair M = (S , β) is a matroid if for all A,B ∈ β and
a ∈ A \ B, there exists b ∈ B \ A such that (A \ {a}) ∪ {b} ∈ β.

If M = (S , β) is a matroid, then:

the elements of β are said to be bases of M;

the rank of M is the size of any basis (any two bases of M
have the same cardinality).
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Positroids

Definition: A matroid ([n], β) of rank d is representable if there is
X ∈ Matd ,n(R) with columns X1, . . . ,Xn such that B ⊆ [n]
belongs to β iff {Xi | i ∈ B} is a basis for Rd .

Notation: Let Mat+d ,n(R) denote the set of all full rank d × n real
matrices with nonnegative maximal minors.

Definition (Positroid)

A positroid on [n] of rank d is a matroid that can be represented
by a matrix in Mat+d ,n(R).
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Positroids (continuation)

Example: Consider the 3× 6 real matrix

X =

0 0 0 1 1 1
0 2 0 −1 −1 0
0 0 0 1 1 0

 .

As X has rank 3 and all its maximal minors are nonnegative, it
follows that X ∈ Mat+3,6(R). Therefore the matroid represented by
X is a positroid ([6], β) whose collection of bases is

β =
{
{2, 4, 6}, {2, 5, 6}

}
.
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Postnikov’s Map

For A = (ai ,j) ∈ Matn(R), let B = φ(A) ∈ Matn,2n(R), where
a1,1 . . . a1,n

...
. . .

...
an−1,1 . . . an−1,n
an,1 . . . an,n

 φ7→


1 . . . 0 0 ±an,1 . . . ±an,n
...

. . .
...

...
...

. . .
...

0 . . . 1 0 −a2,1 . . . −a2,n
0 . . . 0 1 a1,1 . . . a1,n

.
Notation: If K ⊆ [2n] and I , J ⊆ [n] so that |K | = n and |I | = |J|,

∆I ,J(A) denotes the minor of A determined by the rows I and
columns J;

∆K (B) is the maximal minor of B determined by columns K .

Lemma (Postnikov)

Under this correspondence φ, ∆I ,J(A) = ∆(n+1−[n]\I )∪(n+J)(B) for
all I , J ⊆ [n] satisfying |I | = |J|.

Observation: φ(Dn) ⊂ Mat+n,2n(R).
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Postnikov’s Map (continuation)

Example: Consider the minor ∆I ,J(A) of the 3× 3 real matrix

where I = J = {2, 3}. Then

and (4− [3] \ I ) ∪ (3 + J) = {3, 5, 6}. Notice that

∆{2,3},{2,3}(A) = 1 = ∆{3,5,6}(φ(A)).
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Unit Interval Positroids

Definition (Unit Interval Positroid)

For D ∈ Dn, the positroid on [2n] represented by φ(D) is called
unit interval positroid. Let Pn denote the set of all unit interval
positroids on [2n].

Notation: Let ρ : Mat+d ,n(R)→ Pn be the map sending each

matrix in Mat+d ,n(R) to the unit interval positroid it represents.

Theorem (Chavez-G)

The map ρ ◦ φ : Dn → Pn assigning to each Dyck matrix its
corresponding unit interval positroid is a bijection.

Corollary

The map ρ ◦ φ ◦ ψ : Un → Pn is a bijection.
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Decorated Permutation
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Decorated Permutations

Definition (Decorated Permutation)

A decorated permutation of [n] is an element π ∈ Sn whose
fixed points j are marked either “clockwise”(denoted by
π(j) = j) or “counterclockwise” (denoted by π(j) = j).

A weak excedance (or excedance) of a decorated permutation
π ∈ Sn is an index j ∈ [n] satisfying j < π(j) or π(j) = j .

Theorem (Postnikov)

There is natural bijection between rank d positroids on [n] and
decorated permutations of [n] having exactly d excedances.

Felix Gotti On Positroids Induced by Unit Interval Orders



Decorated Permutations of Unit Interval Positroids

Decorated permutations of positroids in Pn are 2n-cycles satisfying
certain special properties.

Theorem (Chavez-G)

Decorated permutations associated to unit interval positroids on
[2n] are 2n-cycles (1 j1 . . . j2n−1) satisfying the following two
conditions:

1 in the sequence (1, j1, . . . , j2n−1) the elements 1, . . . , n appear
in increasing order while the elements n + 1, . . . , 2n appear in
decreasing order;

2 for every 1 ≤ k ≤ 2n − 1, the set {1, j1, . . . , jk} contains at
least as many elements of the set {1, . . . , n} as elements of
the set {n + 1, . . . , 2n}.
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Dyck Path Encoded in the Decorated Permutation
of a Unit Interval Positroid

Example: The positroid represented by the 5× 5 Dyck matrix

D =


1 0 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 1 1 1 1


has decorated permutation

π = (1 2 10 3 9 4 8 7 5 6),

which has the following Dyck path encoded:

657

8
4

9
3

10
2

1
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Decorated Permutation from Dyck Matrix

Theorem (Chavez-G)

If we number the n vertical steps of the Dyck path of D ∈ Dn from
bottom to top with 1, . . . , n and the n horizontal steps from left to
right with n + 1, . . . , 2n, then we get the decorated permutation of
the unit interval positroid induced by D by reading Dyck path of D
in northwest direction.

Example: The decorated permutation π associated to the
positroid represented by the 5× 5 Dyck matrix D

can be read from the Dyck path of D, obtaining

π = (1 2 10 3 9 4 8 7 5 6).
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Decorated Permutation Read from Canonical
Interval Representation

Theorem (Chavez-G)

Labeling the left and right endpoints of the intervals [qi , qi + 1] by
n + i and n + 1− i , respectively, we obtain the decorated
permutation of the positroid induced by P by reading the label set
{1, . . . , 2n} from the real line from right to left.

Example: The decorated permutation (1 12 2 3 11 10 4 5 9 6 8 7)
is obtained by reading the labels from right to left.
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f-vector Interpretation
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On f-vectors of Arbitrary (finite) Posets

Let P be a naturally labeled poset with antiadjacency matrix AP .

Definition

If |P| = n, the f -vector of P is the sequence f = (f0, f1, . . . , fn−1),
where fk is the number of k-element chains of P.

Definition

A valley Dyck path of AP is a Dyck path drawn inside AP that has
its endpoints and all its valleys on the main diagonal and all its
peaks in positions (i , j) such that ai ,j = 0.

Figure: A poset and its antiadjacency matrix showing a 3-peak valley Dyck path.
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Characterization of f -vectors

Proposition (Chavez-G)

The entries of the f -vector of P are f0 = n and fk equals the
number of valley Dyck paths of AP having exactly k peaks.

Example:
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