Dyck Paths and Positroids from Unit Interval Orders

Anastasia Chavez and Felix Gotti

UC Berkeley

UC Berkeley Combinatorics Seminar

January 30, 2017

Anastasia Chavez and Felix Gotti

Dyck Paths and Positroids from Unit Interval Orders

Online reference: https://arxiv.org/abs/1611.09279

Motivation: Most of the initial questions motivating this project were provided by Alejandro Morales.

Main Results:

- We propose a natural bijection from the set of unit interval orders on [n] to a special subset P_n of positroids on [2n] of rank [n].
- **2** We also characterize the decorated permutations associated to the positroids in \mathcal{P}_n .
- We interpret the *f*-vector of a naturally labeled poset in terms of its antiadjacency matrix.

- 2 A Description of the Unit Interval Positroids
- **3** Unit Interval Orders
- Unit Interval Positroids from Unit Interval Orders

Definition (Matroid)

Let *S* be a finite set, and let β be a nonempty collection of subsets of *S*. The pair $M = (S, \beta)$ is a *matroid* if for all $A, B \in \beta$ and $a \in A \setminus B$, there exists $b \in B \setminus A$ such that $(A \setminus \{a\}) \cup \{b\} \in \beta$.

If $M = (S, \beta)$ is a matroid, then:

- the elements of β are said to be *bases* of *M*;
- the *rank* of *M*, denoted by r(M), is the size of any basis (any two bases of *M* have the same cardinality).

Definition: A matroid $([n], \beta)$ of rank *d* is *representable* if there is $X \in M_{d \times n}(\mathbb{R})$ with columns X_1, \ldots, X_n such that $B \subseteq [n]$ belongs to β iff $\{X_i \mid i \in B\}$ is a basis for \mathbb{R}^d .

Notation: Let $Mat_{d,n}^+$ denote the set of all full rank $d \times n$ real matrices with nonnegative maximal minors.

Definition (Positroid)

A *positroid* on [n] of rank d is a matroid that can be represented by a matrix in $Mat_{d,n}^+$. **Example:** Consider the 3×6 real matrix

$$X = egin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 \ 0 & 2 & 0 & -1 & -1 & 0 \ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

As X has rank 3 and all its minors are nonnegative, it follows that $X \in Mat_{3,6}^+$. Therefore the matroid represented by X is a positroid ([6], β) whose collection of bases is

$$\beta = \{\{2, 4, 6\}, \{2, 5, 6\}\}.$$

Decorated Permutations

Definition: The *i*-order on [n] is given by $i <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 1.$

Definition (Decorated Permutation)

- A decorated permutation of [n] is an element $\pi \in S_n$ whose fixed points j are marked either "clockwise" (denoted by $\pi(j) = \underline{j}$) or "counterclockwise" (denoted by $\pi(j) = \overline{j}$).
- A weak *i*-excedance (or excedance) of a decorated permutation $\pi \in S_n$ is an index $j \in [n]$ satisfying $j <_i \pi(j)$ or $\pi(j) = \overline{j}$.

Theorem (Postnikov)

There is natural bijection between rank d positroids on [2n] and decorated permutations of [n] having exactly d excedances.

Anastasia Chavez and Felix Gotti

Decorated Permutations (continuation)

Lemma

Let $X \in Mat^+_{d,n}$, and let π be the decorated permutation associated to the positroid represented by X.

- For i ∈ {1,..., n}, π(i) equals the minimum j ∈ [n] with respect to the i-order such that B_i ∈ span(B_{i+1},..., B_j).
- A fixed point j of π is marked clockwise iff B_j is zero.

Example: We have already seen that the 3×6 real matrix

$$X = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \in \mathsf{Mat}_{3,6}^+$$

represents the positroid $P = ([6], \{\{2, 4, 6\}, \{2, 5, 6\}\})$. The decorated permutation associated to P is

$$\pi = (\underline{1})(\overline{2})(\underline{3})(4\ 5)(\overline{6}).$$

Dyck Matrices

A square matrix is *totally nonnegative* if all its minors are ≥ 0 .

Definition (Dyck Matrix)

A binary square matrix is said to be a *Dyck matrix* if its zero entries are above the main diagonal and its one entries are separated from its zero entries by a Dyck path supported on the main diagonal. We let \mathcal{D}_n denote the set of Dyck matrices of size n.

Example: A 6×6 Dyck matrix and its Dyck path:

$$\begin{pmatrix} \hline 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Observations:

Every Dyck matrix is totally nonnegative.
|D_n| = 1/(²ⁿ/_n), the *n*-th Catalan number.

Postnikov's Map

In Postnikov's *Total positivity, Grassmannians, and networks* we find the next lemma:

Lemma

For an $n \times n$ real matrix $A = (a_{i,j})$, consider the $n \times 2n$ matrix $B = \phi(A)$, where

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n-1,1} & \dots & a_{n-1,n} \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \stackrel{\phi}{\mapsto} \begin{pmatrix} 1 & \dots & 0 & 0 & \pm a_{n,1} & \dots & \pm a_{n,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & -a_{2,1} & \dots & -a_{2,n} \\ 0 & \dots & 0 & 1 & a_{1,1} & \dots & a_{1,n} \end{pmatrix}$$

Under this correspondence, $\Delta_{I,J}(A) = \Delta_{(n+1-[n]\setminus I)\cup(n+J)}(B)$ for all $I, J \subseteq [n]$ satisfying |I| = |J| (here $\Delta_{I,J}(A)$ is the minor of A determined by the rows I and columns J, and $\Delta_K(B)$ is the maximal minor of B determined by columns K).

Anastasia Chavez and Felix Gotti

Postnikov's Map (continuation)

Example: Consider the minor $\Delta_{I,J}(A)$ of the 3 × 3 real matrix

$${oldsymbol{\mathcal{A}}=} egin{pmatrix} 1 & 1 & 0 \ 1 & 2 & 3 \ 3 & 0 & 5 \ \end{pmatrix}$$

determined by the set of index row $I = \{2,3\}$ and the set of index column $J = \{1,2\}$. As $(4 - [3] \setminus I) \cup (3 + J) = \{3,4,5\}$, it follows that $\Delta_{I,J}(A) = \Delta_{\{3,4,5\}}(\phi(A))$, where

$$\phi(A) = \begin{pmatrix} 1 & 0 & 0 & 3 & 0 & 5 \\ 0 & 1 & 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Note that $\Delta_{I,J}(A) = \Delta_{\{3,4,5\}}(\phi(A)) = -6.$

Anastasia Chavez and Felix Gotti

Unit Interval Positroids

Remark: $\phi(\mathcal{D}_n) \subset \operatorname{Mat}_{n,2n}^+$.

Definition (Unit Interval Positroid)

For $D \in \mathcal{D}_n$, the positroid on [2n] represented by $\phi(D)$ is called *unit interval positroid*. Let \mathcal{P}_n denote the set of all unit interval positroids on [2n].

Comment on the terminology: We shall see later that there is a natural bijection between unit interval orders and Dyck matrices, which justifies the terminology in the definition above.

Theorem (C-G)

The map $\varphi \colon \mathcal{D}_n \to \mathcal{P}_n$ assigning to each Dyck matrix its corresponding unit interval positroid is a bijection.

Corollary: There are $\frac{1}{n+1}\binom{2n}{n}$ unit interval positroids on [2n].

Decorated permutations of positroids in \mathcal{P}_n are 2*n*-cycles satisfying certain special properties.

Theorem (C-G)

Decorated permutations associated to unit interval positroids on [2n] are 2n-cycles $(1 \ j_1 \ \dots \ j_{2n-1})$ satisfying the following two conditions:

- in the sequence (1, j₁,..., j_{2n-1}) the elements 1,..., n appear in increasing order while the elements n + 1,..., 2n appear in decreasing order;
- If or every 1 ≤ k ≤ 2n − 1, the set {1, j₁,..., j_k} contains at least as many elements of the set {1,..., n} as elements of the set {n + 1,..., 2n}.

Dyck Path Encoded in the Decorated Permutation of a Unit Interval Positroid

Example: The positroid represented by the 5×5 Dyck matrix

$$D=egin{pmatrix} 1&0&0&0&0\ 1&1&1&0&0\ 1&1&1&1&0\ 1&1&1&1&1\ 1&1&1&1\ 1&1&1&1\ \end{pmatrix}$$

has decorated permutation

$$\pi = (1 \ 2 \ 10 \ 3 \ 9 \ 4 \ 8 \ 7 \ 5 \ 6),$$

which has the following Dyck path encoded:

$$1^{2}$$
 10 3^{9} 4^{4} 8 7 5^{6}

Theorem (C-G)

If we number the n vertical steps of the Dyck path of $D \in D_n$ from bottom to top with $1, \ldots, n$ and the n horizontal steps from left to right with $n + 1, \ldots, 2n$, then we get the decorated permutation of the unit interval positroid induced by D by reading Dyck path of D in northwest direction.

Example: The decorated permutation π associated to the positroid represented by the 5 × 5 Dyck matrix *D*

$$\begin{pmatrix} \frac{6}{5} & 0 \\ & \frac{4}{9} \\ 1 & \frac{3}{10} \\ & 1 \end{pmatrix}$$

can be read from the Dyck path of D, obtaining

 $\pi = (1 \ 2 \ 10 \ 3 \ 9 \ 4 \ 8 \ 7 \ 5 \ 6).$

Unit Interval Orders

Definition

A poset *P* is a *unit interval order* if there exists a bijective map $i \mapsto [q_i, q_i + 1]$ from *P* to $S = \{[q_i, q_i + 1] \mid 1 \le i \le n, q_i \in \mathbb{R}\}$ such that for distinct $i, j \in P$, $i <_P j$ if and only if $q_i + 1 < q_j$. We then say that *S* is an *interval representation* of *P*.

Example:

Unit Interval Orders

- A subset Q is an *induced* subposet of P if there is an injective map $f: Q \to P$ such that $r <_Q s$ if and only if $f(r) <_P f(s)$.
- *P* is a *Q*-free poset if *P* does not contain any induced subposet isomorphic to *Q*.

Theorem

A poset is a unit interval order if and only if it is simultaneously (3+1)-free and (2+2)-free.

Example:

Natural and Canonical Labelings

Let P be a poset on [n].

- *P* is *naturally labeled* if $i <_P j$ implies that $i \le j$ as integers.
- The *altitude* of *P* is the map $\alpha \colon P \to \mathbb{Z}$ defined by $i \mapsto |\Lambda_i| |V_i|$.
- P is canonically labeled if α(i) < α(j) implies i < j (as integers).
- An *n*-labeled poset if it respects altitude.

Figure: A canonically labeled poset on [6].

Antiadjacency Matrices of Labeled Posets

Definition (Antiadjacency Matrix)

If P is a poset [n], then the antiadjacency matrix of P is the $n \times n$ binary matrix $A = (a_{i,j})$ with $a_{i,j} = 0$ iff $i \neq j$ and $i <_P j$.

Proposition

An n-labeled unit interval order is canonically labeled if and only if its antiadjacency matrix is a Dyck matrix.

Example:

Proposition (C-G)

Let P be a unit interval order on [n]. Then the labeling of P is canonical if and only if there exists an interval representation $\{[q_i, q_i + 1] \mid 1 \le i \le n\}$ of P such that $q_1 < \cdots < q_n$.

Example:

Recall which are the maps ρ , ϕ ...

Proposition (C-G)

For every n, the map $\varphi \colon U_n \to D_n$ assigning to each unit interval order its associated matrix is a bijection.

- Recall that $Mat^+_{d,n}$ denotes the set of all full rank $d \times n$ real matrices with nonnegative maximal minors.
- Let ρ: Mat⁺_{d,n} → P_n denote the map mapping each matrix in Mat⁺_{d,n} the positroid it represents.

Theorem (C-G)

The map $\rho \circ \phi \circ \varphi \colon U_n \to \mathcal{P}_n$ is a bijection, where ϕ is the map in the Postnikov's lemma.

Decorated Permutation Read from Canonical Interval Representation

Theorem (C-G)

Labeling the left and right endpoints of the intervals $[q_i, q_i + 1]$ by n + i and n + 1 - i, respectively, we obtain the decorated permutation of the positroid induced by P by reading the label set $\{1, ..., 2n\}$ from the real line from right to left.

Example: The decorated permutation (1 12 2 3 11 10 4 5 9 6 8 7) is obtained by reading the labels from right to left.

Anastasia Chavez and Felix Gotti

Invervals to Positroids

Skandera and Reed posed the problem:

Characterize the f-vectors of unit interval orders.

With this in mind, we provide a description of the entries of the *f*-vector of any naturally labeled poset as the number of special Dyck paths arising from its associated antiadjacency matrix.

Definition

Let *P* be a naturally labeled poset on *n* elements. Define a *k*-chain in *P* to be the collection of k + 1 elements of *P* such that $x_1 <_P x_2 <_P \cdots <_P x_{k+1}$.

Definition (f-vector)

The *f*-vector of a naturally labeled poset is a sequence of integers such that f_k is the number of *k*-chains in *P*.

On f-vectors of Naturally Labeled Posets

Example: The naturally ordered poset *P*

has f-vector f = (7, 12, 8, 2, 0, 0, 0).

Here is a description of the *f*-vector.

Theorem (C-G)

Let P be a naturally labeled poset on [n]. Then $f_0 = n$ and f_k is the number of Dyck paths with k 0-peaks realized on the antiadjacency matrix of P for 0 < k < n.

Note: this theorem holds for all naturally labeled posets, so in particular it holds for unit interval orders.

On f-vectors of Naturally Labeled Posets

References

- F. Ardila, F. Rincón, and L. Williams. *Positroids and non-crossing partitions*, Trans. Amer. Math. Soc. 368 (2016) 337–363.
- A. Chavez and F. Gotti. *Dyck Paths and Positroids from Unit Interval Orders*. [arXiv:1611.09279]
- F. Gotti. Positroids Induced by Rational Dyck Paths. [arXiv:1706.09921]
- S. Oh. Positroids and Schubert matroids, Journal of Combinatorial Theory, Series A 118 (2011), no. 8, 2426–2435.
- A. Postnikov. *Total positivity, grassmannians, and networks,* arXiv.org:math/0609764.
- M. Skandera and B. Reed. *Total nonnegativity and (3+1)-free posets*, J. Combin. Theory Ser. A 103 (2003), 237–256.
- R. P. Stanley. Catalan Numbers, Cambridge University Press, 2015.