Incidence Algebra and Möbius Inversion Formula

Felix Gotti felixgotti@berkeley.edu

UC Berkeley

Combinatorics Seminar

Felix Gotti felixgotti@berkeley.edu

Incidence Algebras

Möbius Inversion Formula

Möbius Functions of Lattices (Examples)

Möbious Function of Distributive Lattices

Felix Gotti felixgotti@berkeley.edu

Definition of Incidence Algebra

Definition

Let P be a locally finite poset and k be a field.

- Int(P) denote the set of closed intervals of P.
- ► The incidence algebra of P over k, denoted by I(P, k) is the k-algebra of all functions Int(P) → k, where for f, g ∈ Int(P) multiplication is defined via the convolution

$$fg(s,t) = \sum_{s \leq x \leq t} f(s,x)g(x,t).$$

Remarks:

- 1. Multiplication in I(P, k) is well defined because P is locally finite.
- 2. I(P, k) is an associative algebra with identity denoted by δ , which satisfies that $\delta(s, t) = 1$ if s = t, and $\delta(s, t) = 0$ otherwise.

Felix Gotti felixgotti@berkeley.edu

Incidence Algebra (continuation)

Theorem

An element $f \in I(P, k)$ has a two-sided inverse iff $f(s, s) \neq 0$ for all $s \in P$.

Sketch of Proof: If $fg = \delta$ then, for $s \in P$, $f(s,s)g(s,s) = \delta(s,s) = 1$; so $f(s,s) \neq 0$ for all $s \in P$. Conversely, if $f(s,s) \neq 0$ for all $s \in P$, we define $g(s,s) = f(s,s)^{-1}$ and, inductively,

$$g(s,t) = -f(s,s)^{-1} \sum_{s < x \leq t} f(s,x)g(x,t)$$
 when $s < t$.

It follows immediately that g is a right inverse of f. Similarly, we can find a left inverse h of f. By associativity of I(P, k), g = h.

Felix Gotti felixgotti@berkeley.edu

The Zeta Function

Definition

The zeta function $\zeta \in I(P, k)$ is defined by $\zeta(s, t) = 1$ for all $s, t \in P$ such that $s \leq t$.

Theorem

If $n \in \mathbb{N}$ the following holds:

- 1. $\zeta^n(s,t) = \sum_{s=s_0 \le s_1 \le \dots \le s_n=t} 1$, the number of multichains of length n from s to t.
- 2. $(\zeta 1)^n(s, t) = \sum_{s=s_0 < s_1 < \dots < s_n = t} 1$, the number of chains of length n from s to t.
- 3. 2ζ is invertible, and $(2 \zeta)^{-1}(s, t)$ counts the number of chains from s to t.

Sketch of Proof: (1) and (2) follows by induction. For (3), choose $n = \ell([s, t])$ in the identity

$$(2-\zeta)^{-1}(s,t) = [1+(\zeta-1)+\cdots+(\zeta-1)^n](s,t).$$

Felix Gotti felixgotti@berkeley.edu

The Möbius Function

Since $\zeta(s,s) = 1$ for all $s \in P$, it is invertible.

Definition

In a locally finite poset P, the inverse of ζ , denoted by μ , is called Möbius function.

Theorem

The Möbius function is uniquely determined by the following recurrence: $\mu(s, s) = 1$ and $\mu(s, t) = -\sum_{s \le x < t} \mu(s, x)$. **Proof:** Exercise.

The Möbius Inversion Formula

Theorem

Let k be a field and let P be a poset whose principal order ideals are finite. For $f, g \in I(P, k)$, we have that $g(s) = \sum_{t \le s} f(t)$ for each $s \in P$ iff

$$f(s) = \sum_{t \leq s} g(t) \mu(t,s) \;\; ext{for each} \;\; s \in {\sf P}.$$

Sketch of Proof: The algebra I(P, k) acts on the right of the vector space V of functions $P \rightarrow k$ via

$$(g\varphi)(s) = \sum_{t \leq s} g(t)\varphi(t,s), \text{ for } g \in V \text{ and } \varphi \in I(P,k).$$

Then theorem then can be translated to $g = f\zeta$ iff $g\mu = f$.

Felix Gotti felixgotti@berkeley.edu

The Intersection Example

Example: Let *P* be the poset of all possible intersection of the finite sets S_1, \ldots, S_n . For $T \in P$ let $f(T) := |T \setminus (\bigcup_{T' < T} T')|$ and let g(T) = |T|. Note that $f(\hat{1}) = f(S_1 \cup \cdots \cup S_n) = 0$. Since $g(T) = \sum_{T' \leq T} f(T')$, by the Möbius Inversion Formula:

$$f(T) = \sum_{T' \leq T} g(T') \mu(T', T).$$

Evaluating the above equation at $\mathcal{T}=\hat{1}$, we obtain

$$0 = f(\hat{1}) = \sum_{I \in P} g(I) \mu(I, \hat{1}),$$

which translate to

$$|S_1 \cup \cdots \cup S_n| = -\sum_I \mu(I, S_1 \cup \cdots \cup S_n)|I|,$$

where I runs over all nonempty intersection of the S_i 's.

Felix Gotti felixgotti@berkeley.edu

The Product Theorem

Theorem (The Product Theorem)

Let P and Q be locally finite posets, and let $P \times Q$ be their direct product. If $(s, t) \leq (s', t')$ in $P \times Q$ then

$$\mu_{P\times Q}((s,t),(s',t'))=\mu_P(s,s')\mu_Q(t,t').$$

Sketch of Proof: It is enough to check that $F : Int(P \times Q) \rightarrow k$ defined by $F((s,t), (s',t')) = \mu_P(s,s')\mu_Q(t,t')$ satisfies the defining recurrence of the Möbius function.

Felix Gotti felixgotti@berkeley.edu

The Sieve Method from the MIF

Example 2: The Möbius function of [n] is given by $\mu(i, i) = 1$, $\mu(i, i+1) = -1$, and $\mu(i, j) = 0$ if j > i + 1.

Example 3: For $n \in \mathbb{N}$, the poset B_n is isomorphic to the boolean algebra 2^n via $S \mapsto (s_1, \ldots, s_n)$, where $s_i = 1$ iff $i \in S$. Then if $S, T \in B_n$ such that $S \subseteq T$ and $T \mapsto (t_1, \ldots, t_n)$, we have

$$\mu(S, T) = \mu((s_1, \ldots, s_n), (t_1, \ldots, t_n))$$

= $\prod_{i \in [n]} \mu_{[2]}(s_i, t_i) = (-1)^{|T \setminus S|}.$

Therefore the Möbius Inversion Formula on B_n translates to the Sieve Method: $f(T) = \sum_{S \subset T} g(S)$ iff

$$g(T) = \sum_{S \subseteq T} \mu(S, T)g(S) = \sum_{S \subseteq T} (-1)^{|T \setminus S|} g(S).$$

Felix Gotti felixgotti@berkeley.edu

The MIF in Number Theory

Example: Let $n = p_1^{n_1} \dots p_k^{n_k}$, where $n_i \in \mathbb{N}$ and p_1, \dots, p_k are different primes. Then D_n is isomorphic to $\mathbf{n_1} + \mathbf{1} \times \dots \times \mathbf{n_k} + \mathbf{1}$ via $n_i = p_1^{i_1} \dots p_k^{i_k} \mapsto (i_1 + 1, \dots, i_k + 1)$. Therefore if $n_j = (j_1 + 1, \dots, j_k + 1)$ such that n_i divides n_j , we have that

$$\mu_{D_n}(n_i, n_j) = \mu_{D_n}((i_1 + 1, \dots, i_k + 1), (j_1 + 1, \dots, j_k + 1))$$
$$= \prod_{t=1}^k \mu_{n_t+1}(i_t + 1, j_t + 1)$$

Therefore $\mu_{D_n}(n_i, n_j) = 0$ if n_j/n_i is not squarefree and $\mu_{D_n}(n_i, n_j) = (-1)^m$, where *m* is the number of primes dividing n_j/n_i , if n_j/n_i is squarefree. Note that $\mu_{D_n}(n_i, n_j) = \mu(n_j/n_i)$, where μ is the standard Möbius function defined in number theory. Also, the Möbius Inversion Formula translates to the corresponding formula in number theory.

Felix Gotti felixgotti@berkeley.edu

Möbius Algebra

Definition

Let *L* be a lattice and *k* be a field. The Möbius algebra, denoted by A(L, k), is the *k*-space with basis *L*, with multiplication given by $s \cdot t = s \wedge t$ for all $s, t \in L$.

Theorem

Let L be a finite lattice and let A'(L, k) be the algebra $\bigoplus_{s \in L} k_s$, where $k_s \cong k$ for all $s \in L$. If δ'_s is the identity of k_s then the map $\theta \colon A(L, k) \to A(L, k')$ defined by $\theta(\delta_s) = \delta'_s$ and extended by linearity is an algebra isomorphism.

Sketch of Proof: The map θ sends a basis to a basis, so it is a *k*-space isomorphism. Also for $s, t \in L$,

$$heta(s) heta(t) = (\sum_{x\leq s} \delta_x')(\sum_{y\leq t} \delta_y') = \sum_{x\leq s\wedge t} \delta_x' = heta(\sum_{x\leq s\wedge t} \delta_x) = heta(s\wedge t).$$

Felix Gotti felixgotti@berkeley.edu

Weisner's Theorem

Theorem (Weisner's Theorem)

Let L be a finite lattice with at least two elements, and let a \in L such that a \neq 1. Then

$$\sum_{t \wedge a = \hat{0}} \mu(t, \hat{1}) = 0.$$

Sketch of Proof: Note that

$$heta(a\delta_{\hat{1}}) = (\sum_{x \leq a} \delta'_x)\delta'_{\hat{1}} = 0,$$

which implies that $a\delta_{\hat{1}} = 0$. On the other hand,

t

$$\mathsf{a}\delta_{\hat{1}} = \mathsf{a}\sum_{t\in L}\mu(t,\hat{1})t = \sum_{t\in L}\mu(t,\hat{1})(\mathsf{a}\wedge t).$$

The coefficient of $\hat{0}$ in the right hand side of the above equality, $\sum_{t \wedge a} \mu(t, \hat{1})$, must be zero because $a\delta_{\hat{1}} = 0$.

Felix Gotti felixgotti@berkeley.edu

Crosscut Theorem

Theorem (Crosscut Theorem)

Let L be a finite lattice, and let X be a subset of L such that 1. $\hat{1} \notin X$,

2. if $s \in L$ and $s \neq \hat{1}$, then $s \leq t$ for some $t \in X$.

Then

$$\mu(\hat{0},\hat{1})=\sum_m(-1)^mN_m,$$

where N_m is the number of m-subsets of X whose meet is $\hat{0}$. Sketch of Proof: Since $\hat{1} - t = \sum_{s \not\leq t} \delta_s$, we have

$$\prod_{t\in X}(\hat{1}-t)=\sum_{s}\delta_{s},$$

where s runs over all the elements of L satisfying $s \leq t$ for all $t \in X$. Then $\prod_{t \in X} (\hat{1} - t) = \delta_{\hat{1}}$ and, by expanding and equaling the coefficients of $\hat{0}$, the proof follows.

Felix Gotti felixgotti@berkeley.edu

Möbius Function of Distributive Lattices

Remark: Note that $X \subseteq L$ satisfies conditions (1) and (2) in the previous theorem iff X contains the set of coatoms of L.

Theorem

If L is a finite lattice where $\hat{0}$ is not a meet of coatoms, then $\mu(\hat{0}, \hat{1}) = 0$. Dually, if $\hat{1}$ is not a join of atoms, then $\mu(\hat{0}, \hat{1}) = 0$. **Sketch of Proof:** Let $X \subset L$ such that $\hat{1} \notin X$. Then the conditions

- ▶ all $s \in L \setminus {\{\hat{1}\}}$ there is $x \in X$ such that $s \leq x$ and
- X contains all coatoms of L

are equivalent. Therefore the set X of coatoms of L satisfies the hypothesis of the Crosscut Theorem. Since $\hat{0}$ is not a meet of coatoms, $N_m = 0$ for each m in the Crosscut Theorem. Hence $\mu(\hat{0}, \hat{1}) = 0$.

Möbius Function of Distributive Lattices

Theorem

Let L = J(P) be a finite distributive lattice. If $[I, I'] \in Int(L)$, we have $\mu(I, I') = (-1)^{|I' \setminus I|}$ if $I' \setminus I$ is an antichain of P, and $\mu(I, I') = 0$ otherwise.

Sketch of Proof: Let $n = |I' \setminus I|$. The interval [I, I'] is a sublattice of J(P), which is isomorphic to B_n iff $I' \setminus I$ is an antichain of P. Therefore if $I' \setminus I$ is an antichain of P, we have $\mu(I, I') = (-1)^n$. On the other hand, if $I' \setminus I$ is not an antichain of P then there exist $a, b \in I' \setminus I$ such that a < b. Since atoms of [I, I'] are of the form $I \cup \{m\}$, where m is minimal in $I' \setminus I$, the element b is not contained in any atom of [I, I']. Therefore I' is not the join (union) of atoms of [I, I']. Hence, $\mu(I, I') = 0$ when $I' \setminus I$ is not an antichain of P.

References

- M. Bona. A Walk Through Combinatorics. World Scientific, New Jersey, 2012.
- G. Grätzer. *Lattice Theory*. Dover Publication, Inc., New Jersey, 2009.
- R. Stanley. Enumerative Combinatorics. Cambridge University Press, New York, 2012.
- J. H. van Lint and R. M. Wilson. *A Course in Combinatorics*. Cambridge University Press, Cambridge, 1994.