Lattices: An Introduction

Felix Gotti felixgotti@berkeley.edu

UC Berkeley

Student Combinatorics Seminar

Felix Gotti felixgotti@berkeley.edu

General Lattices

Modular Lattices

Distributive Lattices

Felix Gotti felixgotti@berkeley.edu

Joins and Meets

Definition (Joins and Meets)

Let P be a poset.

• If $S \subseteq P$ a *join* (or *supremum*) of *S*, denoted by

$$\bigvee_{s\in S} s,$$

is an element of $u \in P$ that is an upper bound of S satisfying that if u' is any other upper bound of S, then $u \leq u'$.

▶ The definition of a *meet* (or *infimum*) of $S \subseteq P$, denoted by

$$\bigwedge_{s\in S} s_{s}$$

is dual to the definition of join.

Remark: Note that if a join (resp., meet) exists then it is unique.

Felix Gotti felixgotti@berkeley.edu

Definition of Lattice

Definition

- ► A join-semilattice (resp., meet-semilattice) is a poset such that any pair of elements have a join (resp., meet).
- A *lattice* is a poset that is both a join-semilattice and a meet-semilattice.
- ▶ If *L* is a lattice and *S* ⊂ *L* such that $r \lor s, r \land s \in S$ for all $r, s \in S$, we say that *S* is a *sublattice* of *L*.

Example of lattices:

- Every totally ordered set is a lattice.
- If L and M are lattices, so are L*, L ⊕ M, and L × M. While L + M is not a lattice, at least L or M is empty, (L + M) ∪ {0, 1} is always a lattice.
- ▶ The lattices *L* and *M* are sublattices of *L* \oplus *M* and $(L + M) \cup \{\hat{0}, \hat{1}\}.$

Complete Lattices

Theorem

If L is a lattice, the join (resp., the meet) of any finite subset of L exists.

Proof: It follows by induction.

Remark:

- If L is a lattice and S ⊆ L is an infinite subset, the join (resp., meet) of S might not exists. Consider an open interval of ℝ.
- A finite lattice always contains $\hat{0}$ and $\hat{1}$.

Definition

A lattice L is said to be *complete* if every subset of L has a join and a meet.

Felix Gotti felixgotti@berkeley.edu

Lattices (continuation)

Theorem

A finite join-semilattice containing $\hat{0}$ is a lattice.

Sketch of proof: Let *L* be a join-semilattice with $\hat{0}$. For $u, v \in L$ consider the set $S = \{ s \in L \mid s \leq u \text{ and } s \leq v \}$. Take *m* to be the join of the finitely many elements of *S*. Check that $m = u \wedge v$.

Remark: The above theorem fails when the join-semilattice is not finite. Example?

Morphism of Lattices

Definition

Let $\varphi \colon L \to L'$ be map between lattices.

- φ is a *lattice homomorphism* if $\varphi(r \lor s) = \varphi(r) \lor \varphi(s)$ and $\varphi(r \land s) = \varphi(r) \land \varphi(s)$ for all $r, s \in L$.
- A lattice homomorphism φ: L → L' is said to be an isomorphism if it is a bijection. In this case, we say that the lattices L and L' are isomorphic.

Remarks:

- It is easy to check that a homomorphism of lattices is an order-preserving map.
- A homomorphism of lattices φ: L → L' is an isomorphism iff there exists a homomorphism of lattices ψ: L' → L such that φ ∘ ψ = Id_{L'} and ψ ∘ φ = Id_L.

Finite Semimodular Lattices

Theorem

For a finite lattice L, the following conditions are equivalent:

- 1. If $r, s \in L$ both cover $r \wedge s$ then $r \vee s$ covers both r and s.
- 2. L is graded, and the rank function ρ of L satisfies

$$ho(r)+
ho(s)\geq
ho(ree s)+
ho(r\wedge s) \quad ext{for all } r,s\in L.$$

Sketch of proof: (2) \implies (1): If r and s cover $r \land s$ then $\rho(r) = \rho(s) = \rho(r \land s) + 1$ and $\rho(r \lor s) > \rho(r) = \rho(s)$. Apply inequality (2).

(1) \implies (2): If *L* is not graded there is a nongraded interval [u, v] with minimal length. Take r_1, r_2 covering *u* such that $[r_1, v]$ and $[r_2, v]$ are both graded with different lengths. The saturated chains $r_i < r_1 \lor r_2 = t_1 < \cdots < t_n = v$ have lengths *n*. Contradiction. If the inequality in (2) does not hold, take $r, s \in L$ with $(\ell(r \land s, r \lor s), \rho(r) + \rho(s))$ minimal (lexicographically) such that $\rho(r) + \rho(s) < \rho(r \land s) + \rho(r \lor s)$. If $s \land r < s' < s$, take the pair $(R, S) = (s' \lor r, s)$ to contradict the minimality of the pair (r, s).

Finite Semimodular Lattices

Definition (Modular Lattice)

- A lattice satisfying any of the above conditions is said to be finite upper semimodular. A finite lattice is called *lower* semimodular if its dual is upper semimodular.
- ► A lattice *L* is *modular* if it is upper and lower semimodular.

Example of modular lattices:

- 1. For every $n \in \mathbb{N}$, the lattice [n] is modular.
- 2. If S is finite then $\mathcal{P}(S)$ is modular.
- 3. For which sets S is the lattice \prod_{S} modular?
- 4. Give an example of lower semimodular lattice that is not upper semimodular.

A Characterization of Modular Lattices

Theorem (Characterization of Modular Lattices)

A lattice L is modular iff $r \lor (t \land s) = (r \lor t) \land s$ for all $r, s, t \in L$ such that $r \leq s$.

Sketch of proof: (Sufficiency) Since $r \le s$ we have $r \lor (t \land s) \le (r \lor t) \land s$. Using the modularity condition we can verify that $\rho(r \lor (t \land s)) = \rho((r \lor t) \land s)$. Hence $r \lor (t \land s) = (r \lor t) \land s$, as desired. (Necessity) Take $r, s \in L$ both covering $r \land s$. Take $u \in L$ such that $r \le u < r \lor s$, and let $v = u \land s$. Since $r \land s \le v \le s$ and $v \ne s$ (otherwise $r \lor s \le u$), we have $v = r \land s$. Using $r \le u$, we get

$$r = r \lor (r \land s) = r \lor (s \land u) = (r \lor s) \land u = u.$$

Hence *L* is upper semimodular. Dualizing we have $r \lor_* (t \land_* s) = (r \lor_* t) \land_* s$ for all $r, s, t \in L^*$ with $r \leq_* s$. Hence *L* is also lower semimodular, and so a modular lattice.

Complemented and Atomic Lattices

Definition (Complemented Lattice)

A lattice *L* having $\hat{0}$ and $\hat{1}$ is said to be *complemented* if for all $r \in L$ there exists a *complement* $s \in L$, meaning $r \land s = \hat{0}$ and $r \lor s = \hat{1}$. If each $t \in L$ has a unique complement we say that *L* is *uniquely* complemented.

Example of complemented lattices: For any set *S* its power is (uniquely) complemented. A totally ordered set *T* is complemented iff $|T| \le 2$. When is D_n complemented?

Definition

If L is a finite lattice with $\hat{0}$, an element $r \in L$ is an *atom* if it covers $\hat{0}$. If every element of L is the join of atoms, then L is said to be *atomic*. Dually, we can define *coatom* and *coatomic* lattice. **Example of atomic lattices:** $\mathcal{P}(S)$ is atomic. [n] is atomic iff $n \leq 2$.

Finite Geometric Lattice

Definition

If for all $r, s \in L$ such that $r \leq s$, the interval [r, s] is itself complemented, we say that L is *relatively complemented*.

Theorem

For a finite upper semimodular lattice L the following conditions are equivalent.

- 1. L is atomic.
- 2. L is relatively complemented.

Proof: Omitted.

Definition (Finite Geometric Lattice)

A finite semimodular lattice satisfying the above conditions is called *finite geometric lattice*.

Felix Gotti felixgotti@berkeley.edu

Definition (Distributive Lattice)

A lattice L is said to be distributive if the following conditions hold:

•
$$r \wedge (s \vee t) = (r \wedge s) \vee (r \wedge t)$$
 for all $r, s, t \in L$;

▶
$$r \lor (s \land t) = (r \lor s) \land (r \lor t)$$
 for all $r, s, t \in L$.

Remark: Both conditions in the above definition are equivalent.

Distributive Lattices (Examples)

Examples of distributive lattices:

- 1. Every totally ordered set is a distributive lattice.
- 2. For a set S its power set, $\mathcal{P}(S)$ is a distributive lattice.
- 3. For $n \in \mathbb{N}$, the lattice D_n is distributive.
- 4. If $n \ge 3$ the lattice \prod_n is NOT distributive.

Distributive Lattices (continuation)

Theorem

For a distributive lattice L, the following conditions hold.

- 1. L is modular.
- 2. The complement of each element, if exists, must be unique.

Sketch of proof:

1. For $r, t, s \in L$ such that $r \leq s$ we have

$$r \lor (t \land s) = (r \lor t) \land (r \lor s) = (r \lor t) \land s.$$

Therefore, by the characterization theorem of modular lattices, part (1) follows.

2. Let s such that $r, r' \in P$ are two complements of s. Then

$$r = r \lor ((s \land r) \lor (s \land r')) = r \lor (s \land (r \lor r')) = (r \lor s) \land (r \lor r') = r \lor r',$$

and so $r' \leq r$. Similarly $r \leq r'$. Hence r = r'.

Antichains and Order Ideals

Definition

Let P be a poset.

- 1. A subset A of P is an *antichain* if any two distinct elements of A are incomparable.
- 2. A subset I of P is an order ideal if $s \in I$ and $r \leq s$ implies that $r \in I$.

Theorem

Let P be a finite poset. There is a bijection between the set of antichain and the set of order ideals of P.

Sketch of proof: Assign to the order ideal *I* the antichain A_I consisting of all maximal elements of *I*. Conversely, assign to the antichain *A* the order ideal $I_A := \{ s \in P \mid s \le a \text{ for some } a \in A \}$.

The Lattice of Order Ideals

Definition

Let P be a poset.

- 1. An order ideal I is generated by the antichain A, if $I = I_A$.
- 2. If I is generated by $\{s\}$ it is called *principal* and denoted by Λ_s .
- 3. The set of all order ideals of P is denoted by J(P).

Theorem

If P is a poset J(P) is a distributive lattice.

Sketch of proof: J(P) is a poset under inclusion. If I and J are order ideals of P then so are $I \cap J$ and $I \cup J$; therefore J(P) is a lattice. Since intersection and union of sets distribute with each other, J(P) is distributive.

Join-irreducible Elements

Definition

Let *L* be a lattice and $s \in L$. We call *s* join-irreducible if $s \neq \hat{0}$ and *s* is not the join of two strictly smaller elements.

Theorem

Let P be a finite poset.

- 1. An order ideal I of P is join-irreducible in J(P) iff it is principal.
- 2. The set of join-irreducible of J(P), considered as a subposet of J(P), is isomorphic to P. Hence $J(P) \cong J(Q)$ iff $P \cong Q$.

Proof: Straightforward.

Fundamental Theorem of Finite Distributive Lattices

Theorem (Fundamental Theorem of FDL)

Let L be a finite distributive lattice (FDL). Then, up to isomorphism, there is a unique poset P such that $L \cong J(P)$.

Sketch of proof: Let *P* be the set of join-irreducibles of *L*. For $t \in L$ set $I_t = \{s \in P \mid s \leq t\}$. Define $\phi: L \to J(P)$ by $\phi(t) = I_t$. Since I_t is an order ideal for each $t \in L$, the map ϕ is well defined. The fact that J(P) is a lattice implies that ϕ is injective. To show that ϕ is surjective, take $I \in J(P)$ and check that $\phi(t) = I$, where $t = \bigvee_{s \in I} s$. Check that $I = I_t$. The inclusion $I \subseteq I_t$ follows immediately. Conversely, take $u \in I_t$. Since $\bigvee_{s \in I} s = \bigvee_{s \in I_t} s = t$ we have

$$u = \bigvee_{s \in I_t} u \wedge s = \bigvee_{s \in I} u \wedge s.$$

Since *u* is join-irreducible $u \wedge s = u$ for some $s \in I$. Then $u \leq s$, which means that $u \in I$. Therefore $I_t = I$ and so ϕ is onto.

FTFDL (consequences)

Theorem

If P is a poset of order n then J(P) is graded of rank n. Furthermore, if $I \in J(P)$ then $\rho(I) = |I|$.

Proof: Exercise.

Theorem

If L is a FDL, the following conditions are equivalent.

- 1. L is complemented.
- 2. L is relatively complemented.
- 3. L is atomic.
- 4. $\hat{1}$ is a join of atoms.

Proof: Exercise.

References

- M. Bona. A Walk Through Combinatorics. World Scientific, New Jersey, 2012.
- G. Grätzer. *Lattice Theory*. Dover Publication, Inc., New Jersey, 2009.
- R. Stanley. Enumerative Combinatorics. Cambridge University Press, New York, 2012.
- J. H. van Lint and R. M. Wilson. *A Course in Combinatorics*. Cambridge University Press, Cambridge, 1994.