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Joins and Meets

Definition (Joins and Meets)

Let P be a poset.

I If S ⊆ P a join (or supremum) of S , denoted by∨
s∈S

s,

is an element of u ∈ P that is an upper bound of S satisfying
that if u′ is any other upper bound of S , then u ≤ u′.

I The definition of a meet (or infimum) of S ⊆ P, denoted by∧
s∈S

s,

is dual to the definition of join.

Remark: Note that if a join (resp., meet) exists then it is unique.
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Definition of Lattice

Definition

I A join-semilattice (resp., meet-semilattice) is a poset such
that any pair of elements have a join (resp., meet).

I A lattice is a poset that is both a join-semilattice and a
meet-semilattice.

I If L is a lattice and S ⊂ L such that r ∨ s, r ∧ s ∈ S for all
r , s ∈ S , we say that S is a sublattice of L.

Example of lattices:

I Every totally ordered set is a lattice.

I If L and M are lattices, so are L∗, L⊕M, and L×M. While
L + M is not a lattice, at least L or M is empty,
(L + M) ∪ {0̂, 1̂} is always a lattice.

I The lattices L and M are sublattices of L⊕M and
(L + M) ∪ {0̂, 1̂}.
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Complete Lattices

Theorem

If L is a lattice, the join (resp., the meet) of any finite subset of L
exists.

Proof: It follows by induction.

Remark:

I If L is a lattice and S ⊆ L is an infinite subset, the join (resp.,
meet) of S might not exists. Consider an open interval of R.

I A finite lattice always contains 0̂ and 1̂.

Definition

A lattice L is said to be complete if every subset of L has a join
and a meet.
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Lattices (continuation)

Theorem

A finite join-semilattice containing 0̂ is a lattice.

Sketch of proof: Let L be a join-semilattice with 0̂. For u, v ∈ L
consider the set S = { s ∈ L | s ≤ u and s ≤ v }. Take m to be the
join of the finitely many elements of S . Check that m = u ∧ v .

Remark: The above theorem fails when the join-semilattice is not
finite. Example?
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Morphism of Lattices

Definition

Let ϕ : L→ L′ be map between lattices.

I ϕ is a lattice homomorphism if ϕ(r ∨ s) = ϕ(r) ∨ ϕ(s) and
ϕ(r ∧ s) = ϕ(r) ∧ ϕ(s) for all r , s ∈ L.

I A lattice homomorphism ϕ : L→ L′ is said to be an
isomorphism if it is a bijection. In this case, we say that the
lattices L and L′ are isomorphic.

Remarks:

I It is easy to check that a homomorphism of lattices is an
order-preserving map.

I A homomorphism of lattices ϕ : L→ L′ is an isomorphism iff
there exists a homomorphism of lattices ψ : L′ → L such that
ϕ ◦ ψ = IdL′ and ψ ◦ ϕ = IdL.
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Finite Semimodular Lattices

Theorem

For a finite lattice L, the following conditions are equivalent:
1. If r , s ∈ L both cover r ∧ s then r ∨ s covers both r and s.
2. L is graded, and the rank function ρ of L satisfies

ρ(r) + ρ(s) ≥ ρ(r ∨ s) + ρ(r ∧ s) for all r , s ∈ L.

Sketch of proof: (2) =⇒ (1): If r and s cover r ∧ s then
ρ(r) = ρ(s) = ρ(r ∧ s) + 1 and ρ(r ∨ s) > ρ(r) = ρ(s). Apply
inequality (2).
(1) =⇒ (2): If L is not graded there is a nongraded interval [u, v ]
with minimal length. Take r1, r2 covering u such that [r1, v ] and
[r2, v ] are both graded with different lengths. The saturated chains
ri < r1 ∨ r2 = t1 < · · · < tn = v have lengths n. Contradiction.
If the inequality in (2) does not hold, take r , s ∈ L with
(`(r ∧ s, r ∨ s), ρ(r) + ρ(s)) minimal (lexicographically) such that
ρ(r) + ρ(s) < ρ(r ∧ s) + ρ(r ∨ s). If s ∧ r < s ′ < s, take the pair
(R,S) = (s ′ ∨ r , s) to contradict the minimality of the pair (r , s).
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Finite Semimodular Lattices

Definition (Modular Lattice)

I A lattice satisfying any of the above conditions is said to be
finite upper semimodular. A finite lattice is called lower
semimodular if its dual is upper semimodular.

I A lattice L is modular if it is upper and lower semimodular.

Example of modular lattices:

1. For every n ∈ N, the lattice [n] is modular.

2. If S is finite then P(S) is modular.

3. For which sets S is the lattice
∏

S modular?

4. Give an example of lower semimodular lattice that is not
upper semimodular.
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A Characterization of Modular Lattices

Theorem (Characterization of Modular Lattices)

A lattice L is modular iff r ∨ (t ∧ s) = (r ∨ t) ∧ s for all r , s, t ∈ L
such that r ≤ s.

Sketch of proof: (Sufficiency) Since r ≤ s we have
r ∨ (t ∧ s) ≤ (r ∨ t) ∧ s. Using the modularity condition we can
verify that ρ(r ∨ (t ∧ s)) = ρ((r ∨ t) ∧ s). Hence
r ∨ (t ∧ s) = (r ∨ t) ∧ s, as desired.
(Necessity) Take r , s ∈ L both covering r ∧ s. Take u ∈ L such that
r ≤ u < r ∨ s, and let v = u ∧ s. Since r ∧ s ≤ v ≤ s and v 6= s
(otherwise r ∨ s ≤ u), we have v = r ∧ s. Using r ≤ u, we get

r = r ∨ (r ∧ s) = r ∨ (s ∧ u) = (r ∨ s) ∧ u = u.

Hence L is upper semimodular. Dualizing we have
r ∨∗ (t ∧∗ s) = (r ∨∗ t) ∧∗ s for all r , s, t ∈ L∗ with r ≤∗ s. Hence
L is also lower semimodular, and so a modular lattice.
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Complemented and Atomic Lattices

Definition (Complemented Lattice)

A lattice L having 0̂ and 1̂ is said to be complemented if for all
r ∈ L there exists a complement s ∈ L, meaning r ∧ s = 0̂ and
r ∨ s = 1̂. If each t ∈ L has a unique complement we say that L is
uniquely complemented.

Example of complemented lattices: For any set S its power is
(uniquely) complemented. A totally ordered set T is
complemented iff |T | ≤ 2. When is Dn complemented?

Definition

If L is a finite lattice with 0̂, an element r ∈ L is an atom if it
covers 0̂. If every element of L is the join of atoms, then L is said
to be atomic. Dually, we can define coatom and coatomic lattice.

Example of atomic lattices: P(S) is atomic. [n] is atomic iff
n ≤ 2.
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Finite Geometric Lattice

Definition

If for all r , s ∈ L such that r ≤ s, the interval [r , s] is itself
complemented, we say that L is relatively complemented.

Theorem

For a finite upper semimodular lattice L the following conditions
are equivalent.

1. L is atomic.

2. L is relatively complemented.

Proof: Omitted.

Definition (Finite Geometric Lattice)

A finite semimodular lattice satisfying the above conditions is
called finite geometric lattice.
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Distributive Lattices

Definition (Distributive Lattice)

A lattice L is said to be distributive if the following conditions
hold:

I r ∧ (s ∨ t) = (r ∧ s) ∨ (r ∧ t) for all r , s, t ∈ L;

I r ∨ (s ∧ t) = (r ∨ s) ∧ (r ∨ t) for all r , s, t ∈ L.

Remark: Both conditions in the above definition are equivalent.
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Distributive Lattices (Examples)

Examples of distributive lattices:

1. Every totally ordered set is a distributive lattice.

2. For a set S its power set, P(S) is a distributive lattice.

3. For n ∈ N, the lattice Dn is distributive.

4. If n ≥ 3 the lattice
∏

n is NOT distributive.
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Distributive Lattices (continuation)

Theorem

For a distributive lattice L, the following conditions hold.

1. L is modular.

2. The complement of each element, if exists, must be unique.

Sketch of proof:

1. For r , t, s ∈ L such that r ≤ s we have

r ∨ (t ∧ s) = (r ∨ t) ∧ (r ∨ s) = (r ∨ t) ∧ s.

Therefore, by the characterization theorem of modular
lattices, part (1) follows.

2. Let s such that r , r ′ ∈ P are two complements of s. Then

r = r∨((s∧r)∨(s∧r ′)) = r∨(s∧(r∨r ′)) = (r∨s)∧(r∨r ′) = r∨r ′,

and so r ′ ≤ r . Similarly r ≤ r ′. Hence r = r ′.
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Antichains and Order Ideals

Definition

Let P be a poset.

1. A subset A of P is an antichain if any two distinct elements of
A are incomparable.

2. A subset I of P is an order ideal if s ∈ I and r ≤ s implies
that r ∈ I .

Theorem

Let P be a finite poset. There is a bijection between the set of
antichain and the set of order ideals of P.

Sketch of proof: Assign to the order ideal I the antichain AI

consisting of all maximal elements of I . Conversely, assign to the
antichain A the order ideal IA := { s ∈ P | s ≤ a for some a ∈ A }.
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The Lattice of Order Ideals

Definition

Let P be a poset.

1. An order ideal I is generated by the antichain A, if I = IA.

2. If I is generated by {s} it is called principal and denoted by Λs .

3. The set of all order ideals of P is denoted by J(P).

Theorem

If P is a poset J(P) is a distributive lattice.

Sketch of proof: J(P) is a poset under inclusion. If I and J are
order ideals of P then so are I ∩ J and I ∪ J; therefore J(P) is a
lattice. Since intersection and union of sets distribute with each
other, J(P) is distributive.
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Join-irreducible Elements

Definition

Let L be a lattice and s ∈ L. We call s join-irreducible if s 6= 0̂ and
s is not the join of two strictly smaller elements.

Theorem

Let P be a finite poset.

1. An order ideal I of P is join-irreducible in J(P) iff it is
principal.

2. The set of join-irreducible of J(P), considered as a subposet
of J(P), is isomorphic to P. Hence J(P) ∼= J(Q) iff P ∼= Q.

Proof: Straightforward.
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Fundamental Theorem of Finite Distributive Lattices

Theorem (Fundamental Theorem of FDL)

Let L be a finite distributive lattice (FDL). Then, up to
isomorphism, there is a unique poset P such that L ∼= J(P).

Sketch of proof: Let P be the set of join-irreducibles of L. For
t ∈ L set It = { s ∈ P | s ≤ t }. Define φ : L→ J(P) by φ(t) = It .
Since It is an order ideal for each t ∈ L, the map φ is well defined.
The fact that J(P) is a lattice implies that φ is injective. To show
that φ is surjective, take I ∈ J(P) and check that φ(t) = I , where
t = ∨s∈I s. Check that I = It . The inclusion I ⊆ It follows
immediately. Conversely, take u ∈ It . Since ∨s∈I s = ∨s∈It s = t we
have

u = ∨s∈Itu ∧ s = ∨s∈Iu ∧ s.

Since u is join-irreducible u ∧ s = u for some s ∈ I . Then u ≤ s,
which means that u ∈ I . Therefore It = I and so φ is onto.
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FTFDL (consequences)

Theorem

If P is a poset of order n then J(P) is graded of rank n.
Furthermore, if I ∈ J(P) then ρ(I ) = |I |.
Proof: Exercise.

Theorem

If L is a FDL, the following conditions are equivalent.

1. L is complemented.

2. L is relatively complemented.

3. L is atomic.

4. 1̂ is a join of atoms.

Proof: Exercise.
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