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Ordinary Generating Functions (OGF)

Definition

The formal series

F (x) :=
∑
n≥0

f (n)xn ∈ C[[x ]]

associated to the counting map f : N0 → C is called ordinary
generating function. We also use the notation [xn]F (x) := f (n).
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Sum and Product of OGF
We recall that C[[x ]] is an integral domain (actually a PID). We
can perform sums and multiplications of OGF according to the way
we sum and multiply elemnents in C[[x ]].

Definition

Let F (x) =
∑

n≥0 f (n)xn and G (n) =
∑

n≥0 g(n)xn be two OGF.
Then their sum is the OGF

F (x) + G (x) :=
∑
n≥0

(f (n) + g(n))xn,

and their product, also called their convolution is the OGF

F (x)G (x) :=
∑
n≥0

( n∑
k=0

f (k)g(n − k)
)
xn.

Example: The OGF of the Fibonacci sequence is F (x) = 1
1−x−x2 .
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The Inverse of an OGF

Theorem

An OGF F (x) is invertible (meaning that there exists an OGF
G (x) such that F (x)G (x) = 1) iff is F (0) 6= 0.

Proof: If G (x) is the inverse of F (x) then F (0)G (0) = 1 and so
F (0) 6= 0. If F (0) 6= 0 then G (0) = F (0)−1, and we can
recurrently define the remaining coefficients of G (0) by using the
multiplication formula for OGF.

Example: The OGF F (x) = 1− x satisfies that F (0) = 1 6= 0.
Therefore, it is invertible. The inverse of F (x) is G (x) =

∑
n≥0 x

n.
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Convergence of OGF

Definition

The degree of an OGF F (x) =
∑

n≥0 f (n)xn, denoted by deg F (x)
is the smallest n such that f (n) 6= 0. A sequence of OGF
{Fi (x)}i∈N converges to the OGF F (x) if

lim
i→∞

deg(F (x)− Fi (x)) =∞.

We say that the infinite sum
∑

i≥0 Fi coverges to the OGF F (x) if
the sequence of partial sum converges to F (x).

Theorem

The infinite series
∑

i≥0 Fi (x) converges iff limi→∞ deg Fi (x) =∞.

Proof: It follows directly from the definition of convergence.
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Composition of OGF

Definition

Let F (x) =
∑

n≥0 f (n)xn and G (n) =
∑

n≥0 g(n)xn be two OGF
such that G (0) = 0. Then the composition of F (x) and G (x) is
the OGF

F (G (x)) :=
∑
n≥0

f (n)G (x)n.

Remarks:

I Notice that the condition G (0) = 0 guarantees that∑
n≥0 f (n)G (x)n converges. This is because

degG (x)n ≥ n degG (x), and so limi→∞ deg(f (i)G (x)i ) =∞.

I The expression e1+x =
∑

n≥0(x + 1)n/n! is not a valid OGF
because the series does not converge in the sense we defined
above.
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A Few Popular OGFs

Theorem

The following are popular and useful OGFs:

1.
∑

n≥0 x
n = 1

1−x ,

2.
∑

n≥0(−1)nxn = 1
1+x ,

3.
∑

n≥0 x
2n = 1

1−x2 ,

4.
∑

n≥0
(m
n

)
xn = (1 + x)m,

5.
∑

n≥0
(n+m

n

)
xn = 1

(1−x)m+1 ,

6.
∑

n≥0
(n
m

)
xn = xm

(1−x)m+1 .

Sketch of Proof: Pending...
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Exponential Generating Functions

Definition

The formal series

F (x) :=
∑
n≥0

f (n)
xn

n!

associated to the counting map f : N0 → C is called the
exponential generating function (EGF) of f . We also use the
notation [xn/n!]F (x) := f (n).
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Sum, Product, and Composition of EGFs

Definition

Let F (x) =
∑

n≥0 f (n)xn/n! and G (n) =
∑

n≥0 g(n)xn/n! be two
EGF. Then their sum is the EGF

F (x) + G (x) :=
∑
n≥0

(f (n) + g(n))xn/n!,

and their product, also called their convolution is the OGF

F (x)G (x) :=
∑
n≥0

( n∑
k=0

(
n

k

)
f (k)g(n − k)

)
xn/n!.

If, in addition, G (0) = 0, we composition of the EGFs F and G is
given by

F (G (x)) :=
∑
n≥0

f (n)G (x)n/n!.
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The formal derivative of a GF

Definition

I The derivative of the OGF F (x) =
∑

n≥0 f (n)xn is

F ′(x) :=
∑

n≥0 nf (n)xn−1.

I The derivative of the EGF F (x) =
∑

n≥0 f (n)xn/n! is

F ′(x) :=
∑

n≥0 f (n)xn−1.

Theorem

Let F (x) and G (x) be two OGF (EGF) then the following hold:

I (F (x) + G (x))′ = F ′(x) + G ′(x),

I F (x)G (x) = F ′(x)G (x) + F (x)G ′(x),

I (F (G (x))′ = F ′(G (x))G ′(x).
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The formal derivative of a GF

Theorem

Let F (x) and G (x) be two OGFs such that F (0) = 1 and
G (0) = 0. If G ′(x) = F ′(x)/F (x) then F (x) = exp(G (x)), where

exp(G (x)) =
∑

n≥0
G(x)n

n! .

Sketch of Proof: Pending...

Example 1: The EGF of the function f : N→ C given by f (0) = 1
and f (n + 1) = f (n) + nf (n − 1) if n ≥ 0
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General Newton Coefficients

Definition

I For λ ∈ C and k ∈ N0, set
(
λ
k

)
:= λ(λ− 1) . . . (λ− k + 1).

I For an OGF F (x) such that F (0) = 0, we define:

(1 + F (x))λ :=
∑
n≥0

(
λ

n

)
F (x)n.

Example 2: We want to find all f : N0 → R satisfying

n∑
k=0

f (k)f (n − k) = 1.
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A Practice Example

Example: Suppose that the function f : N→ C has EGF
F (x) = ex+x2/2.

I Find a recurrence formula for f .

I Find an explicit formula for f .
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Rational Generating Functions

Theorem

Let f : N0 → C and
Q(x) = 1 + c1x + · · ·+ cdx

d =
∏k

i=1(1− αix)di , where
c1, . . . , cd ∈ C (cd 6= 0). Then TFAE:

1. f (n+ d) + c1f (n+ d − 1) + · · ·+ cd f (n) = 0 for every n ∈ N0;

2. F (x) =
∑

n≥0 f (b)xn = P(x)/Q(x), where degP(x) < d ;

3. F (x) =
∑

n≥0 f (n)xn =
∑k

i=1 gi (x)/(1− αix)di ;

4. f (n) =
∑k

i=1 pi (n)αn
i , where pi (n) is a polynomial in n such

that deg pi < di for each i ∈ {1, . . . , k}.

Sketch of Proof: For each i ∈ {1, 2, 3, 4}, define the complex
space

Vi := {f : N0 → C | f satisfies (i)}.

Check that dimVi = d for each i . Use this to check that V1 = V2

and V3 = V4. Finally, show that V3 ⊆ V2.
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Rational Generating Functions (continuation)

Definition

A generating function F (x) =
∑

n≥0 f (n)xn satisfying any of the
four condition in the previous theorem is called a (proper) rational
generating function.
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Examples

Example 1: Let f (n) be the number of paths with n
non-intersecting steps starting from (0, 0) with directions east,
north, or west.

1. Find the generating function of F of f .

2. Find a close formula for f .

Hint: Count the paths of length n ending in EE, WW, and NE.

Example 2: Write (
√

2 +
√

3)1980 in decimal form. What is the
last digit before and the first digit after the decimal point?
Hint: Compute the generating function of (

√
2 +
√

3)2n.
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Putting Structures on Finite Sets

Theorem

Let f1, . . . , fn : N0 → C, and denote by Efi (x) the EGF of fi . For
every finite set S , let

h(|S |) =
∑

(T1,...,Tn)

f1(|T1|) . . . fn(|Tn|),

where the sum runs over every ordered n-partition of S . Then the
EGF Eh(x) of h satisfies that Eh(x) = Ef1(x) . . .Efn(x).

Sketch of Proof: Suppose first that n = 2. If |S | = s, the fact
that there are

(s
k

)
ordered partitions (T1,T2) such that |T1| = k of

S implies that

h(s) =
s∑

k=0

(
s

k

)
f1(k)f2(n − k).

Then Eh(x) = Ef1(x)Ef2(x). Now extend to n by induction. .
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The Compositional Formula

Theorem

Given f : N→ C and g : N0 → C with g(0) = 1, and for every
finite set S let

h(0) = h([n]) =
∑

{T1,...,Tk}∈π([n])

f (|T1|) . . . f (|Tk |)g(k)

if |S | > 0 and h(0) = 1. Then Eh(x) = Eg (Ef (x)).

Sketch of Proof: Defining, for every k ∈ {1, . . . , n}

hk(n) =
1

k!

∑
(T1,...,Tk )

f (|T1|) . . . f (|Tk |)g(k),

we have h(n) =
∑

hk(n). By the previous theorem,
Ehk (x) = g(k)/k!Ef (x)k . Hence

Eh(x) =
∑
k≥1

g(k)
Ef (x)k

k!
= Eg (Ef (x)).
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The Compositional Formula: An Example

Example: In how many ways h(n) we can form n people into
nonempty lines, and then arrange these lines in a circular order?

Explanation: Let f (n) and g(n) the number of ways to form n
people in a line and in a circle, respectively. Then f (n) = n! and
g(n) = (n − 1)!. So the EGFs of f and g are

Ef (x) =
∑
n≥1

xn =
x

1− x
and Eg (x) =

∑
n≥1

xn

n
= ln(1− x)−1.

Hence, using the previous theorem,

Eh(x) = Eg (Ef (x)) = ln(
1− x

1− 2x
) =

∑
n≥1

(2n − 1)(n − 1)!
xn

n!
.

Thus h(n) = (2n − 1)(n − 1)!.
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