Intro to Generating Functions

Felix Gotti felixgotti@berkeley.edu

UC Berkeley

April 10, 2016

Outline

Ordinary Generating Functions

Exponential Generating Functions (EGF)

Rational Generating Functions

The Exponential Formula

Ordinary Generating Functions (OGF)

Definition

The formal series

$$F(x) := \sum_{n \ge 0} f(n) x^n \in \mathbb{C}[[x]]$$

associated to the counting map $f: \mathbb{N}_0 \to \mathbb{C}$ is called *ordinary* generating function. We also use the notation $[x^n]F(x) := f(n)$.

Sum and Product of OGF

We recall that $\mathbb{C}[[x]]$ is an integral domain (actually a PID). We can perform sums and multiplications of OGF according to the way we sum and multiply elemnents in $\mathbb{C}[[x]]$.

Definition

Let $F(x) = \sum_{n \ge 0} f(n)x^n$ and $G(n) = \sum_{n \ge 0} g(n)x^n$ be two OGF. Then their *sum* is the OGF

$$F(x) + G(x) := \sum_{n \ge 0} (f(n) + g(n))x^n,$$

and their product, also called their convolution is the OGF

$$F(x)G(x) := \sum_{n>0} \left(\sum_{k=0}^{n} f(k)g(n-k) \right) x^{n}.$$

Example: The OGF of the Fibonacci sequence is $F(x) = \frac{1}{1-x-x^2}$.

The Inverse of an OGF

Theorem

An OGF F(x) is invertible (meaning that there exists an OGF G(x) such that F(x)G(x) = 1) iff is $F(0) \neq 0$.

Proof: If G(x) is the inverse of F(x) then F(0)G(0)=1 and so $F(0)\neq 0$. If $F(0)\neq 0$ then $G(0)=F(0)^{-1}$, and we can recurrently define the remaining coefficients of G(0) by using the multiplication formula for OGF.

Example: The OGF F(x) = 1 - x satisfies that $F(0) = 1 \neq 0$. Therefore, it is invertible. The inverse of F(x) is $G(x) = \sum_{n \geq 0} x^n$.

Convergence of OGF

Definition

The *degree* of an OGF $F(x) = \sum_{n \geq 0} f(n)x^n$, denoted by deg F(x) is the smallest n such that $f(n) \neq 0$. A sequence of OGF $\{F_i(x)\}_{i \in \mathbb{N}}$ *converges* to the OGF F(x) if

$$\lim_{i\to\infty}\deg(F(x)-F_i(x))=\infty.$$

We say that the infinite sum $\sum_{i\geq 0} F_i$ coverges to the OGF F(x) if the sequence of partial sum converges to F(x).

Theorem

The infinite series $\sum_{i>0} F_i(x)$ converges iff $\lim_{i\to\infty} \deg F_i(x) = \infty$.

Proof: It follows directly from the definition of convergence.

Composition of OGF

Definition

Let $F(x) = \sum_{n \geq 0} f(n)x^n$ and $G(n) = \sum_{n \geq 0} g(n)x^n$ be two OGF such that G(0) = 0. Then the composition of F(x) and G(x) is the OGF

$$F(G(x)) := \sum_{n>0} f(n)G(x)^n.$$

Remarks:

- Notice that the condition G(0)=0 guarantees that $\sum_{n\geq 0}f(n)G(x)^n$ converges. This is because $\deg G(x)^n\geq n\deg G(x)$, and so $\lim_{i\to\infty}\deg(f(i)G(x)^i)=\infty$.
- ▶ The expression $e^{1+x} = \sum_{n\geq 0} (x+1)^n/n!$ is not a valid OGF because the series does not converge in the sense we defined above.

A Few Popular OGFs

$\mathsf{Theorem}$

The following are popular and useful OGFs:

$$1. \sum_{n\geq 0} x^n = \frac{1}{1-x},$$

2.
$$\sum_{n\geq 0} (-1)^n x^n = \frac{1}{1+x}$$

3.
$$\sum_{n\geq 0} x^{2n} = \frac{1}{1-x^2}$$
,

4.
$$\sum_{n\geq 0} {m \choose n} x^n = (1+x)^m$$

5.
$$\sum_{n\geq 0} {n+m \choose n} x^n = \frac{1}{(1-x)^{m+1}}$$
,

6.
$$\sum_{n\geq 0} \binom{n}{m} x^n = \frac{x^m}{(1-x)^{m+1}}$$
.

Sketch of Proof: Pending...

Exponential Generating Functions

Definition

The formal series

$$F(x) := \sum_{n \ge 0} f(n) \frac{x^n}{n!}$$

associated to the counting map $f: \mathbb{N}_0 \to \mathbb{C}$ is called the exponential generating function (EGF) of f. We also use the notation $[x^n/n!]F(x) := f(n)$.

Sum, Product, and Composition of EGFs

Definition

Let $F(x) = \sum_{n \geq 0} f(n) x^n / n!$ and $G(n) = \sum_{n \geq 0} g(n) x^n / n!$ be two EGF. Then their *sum* is the EGF

$$F(x) + G(x) := \sum_{n \ge 0} (f(n) + g(n))x^n/n!,$$

and their product, also called their convolution is the OGF

$$F(x)G(x) := \sum_{n>0} \Big(\sum_{k=0}^{n} \binom{n}{k} f(k)g(n-k) \Big) x^{n} / n!.$$

If, in addition, G(0) = 0, we composition of the EGFs F and G is given by

$$F(G(x)) := \sum_{n>0} f(n)G(x)^n/n!.$$

The formal derivative of a GF

Definition

- ► The *derivative* of the OGF $F(x) = \sum_{n\geq 0} f(n)x^n$ is $F'(x) := \sum_{n\geq 0} nf(n)x^{n-1}$.
- ► The *derivative* of the EGF $F(x) = \sum_{n\geq 0} f(n)x^n/n!$ is $F'(x) := \sum_{n\geq 0} f(n)x^{n-1}$.

Theorem

Let F(x) and G(x) be two OGF (EGF) then the following hold:

- (F(x) + G(x))' = F'(x) + G'(x),
- ► F(x)G(x) = F'(x)G(x) + F(x)G'(x),
- (F(G(x))' = F'(G(x))G'(x).

The formal derivative of a GF

Theorem

Let F(x) and G(x) be two OGFs such that F(0) = 1 and G(0) = 0. If G'(x) = F'(x)/F(x) then $F(x) = \exp(G(x))$, where $\exp(G(x)) = \sum_{n \geq 0} \frac{G(x)^n}{n!}$.

Sketch of Proof: Pending...

Example 1: The EGF of the function $f: \mathbb{N} \to \mathbb{C}$ given by f(0) = 1 and f(n+1) = f(n) + nf(n-1) if $n \ge 0$

General Newton Coefficients

Definition

- ▶ For $\lambda \in \mathbb{C}$ and $k \in \mathbb{N}_0$, set $\binom{\lambda}{k} := \lambda(\lambda 1) \dots (\lambda k + 1)$.
- ▶ For an OGF F(x) such that F(0) = 0, we define:

$$(1+F(x))^{\lambda}:=\sum_{n\geq 0}\binom{\lambda}{n}F(x)^n.$$

Example 2: We want to find all $f: \mathbb{N}_0 \to \mathbb{R}$ satisfying

$$\sum_{k=0}^{n} f(k)f(n-k) = 1.$$

A Practice Example

Example: Suppose that the function $f: \mathbb{N} \to \mathbb{C}$ has EGF $F(x) = e^{x+x^2/2}$.

- Find a recurrence formula for f.
- ► Find an explicit formula for f.

Rational Generating Functions

Theorem

Let $f: \mathbb{N}_0 \to \mathbb{C}$ and $Q(x) = 1 + c_1 x + \dots + c_d x^d = \prod_{i=1}^k (1 - \alpha_i x)^{d_i}$, where $c_1, \dots, c_d \in \mathbb{C}$ $(c_d \neq 0)$. Then TFAE:

- 1. $f(n+d) + c_1 f(n+d-1) + \cdots + c_d f(n) = 0$ for every $n \in \mathbb{N}_0$;
- 2. $F(x) = \sum_{n>0} f(b)x^n = P(x)/Q(x)$, where deg P(x) < d;
- 3. $F(x) = \sum_{n>0} f(n)x^n = \sum_{i=1}^k g_i(x)/(1-\alpha_i x)^{d_i};$
- 4. $f(n) = \sum_{i=1}^{k} p_i(n)\alpha_i^n$, where $p_i(n)$ is a polynomial in n such that $\deg p_i < d_i$ for each $i \in \{1, \ldots, k\}$.

Sketch of Proof: For each $i \in \{1, 2, 3, 4\}$, define the complex space

$$V_i := \{ f : \mathbb{N}_0 \to \mathbb{C} \mid f \text{ satisfies } (i) \}.$$

Check that dim $V_i = d$ for each i. Use this to check that $V_1 = V_2$ and $V_3 = V_4$. Finally, show that $V_3 \subseteq V_2$.

Rational Generating Functions (continuation)

Definition

A generating function $F(x) = \sum_{n \geq 0} f(n)x^n$ satisfying any of the four condition in the previous theorem is called a (proper) *rational* generating function.

Examples

Example 1: Let f(n) be the number of paths with n non-intersecting steps starting from (0,0) with directions east, north, or west.

- 1. Find the generating function of F of f.
- 2. Find a close formula for f.

Hint: Count the paths of length n ending in EE, WW, and NE.

Example 2: Write $(\sqrt{2}+\sqrt{3})^{1980}$ in decimal form. What is the last digit before and the first digit after the decimal point? **Hint:** Compute the generating function of $(\sqrt{2}+\sqrt{3})^{2n}$.

Putting Structures on Finite Sets

Theorem

Let $f_1, \ldots, f_n \colon \mathbb{N}_0 \to \mathbb{C}$, and denote by $E_{f_i}(x)$ the EGF of f_i . For every finite set S, let

$$h(|S|) = \sum_{(T_1,...,T_n)} f_1(|T_1|) ... f_n(|T_n|),$$

where the sum runs over every ordered n-partition of S. Then the EGF $E_h(x)$ of h satisfies that $E_h(x) = E_{f_1}(x) \dots E_{f_n}(x)$.

Sketch of Proof: Suppose first that n=2. If |S|=s, the fact that there are $\binom{s}{k}$ ordered partitions (T_1, T_2) such that $|T_1|=k$ of S implies that

$$h(s) = \sum_{k=0}^{s} {s \choose k} f_1(k) f_2(n-k).$$

Then $E_h(x) = E_{f_1}(x)E_{f_2}(x)$. Now extend to n by induction.

The Compositional Formula

Theorem

Given $f: \mathbb{N} \to \mathbb{C}$ and $g: \mathbb{N}_0 \to \mathbb{C}$ with g(0) = 1, and for every finite set S let

$$h(0) = h([n]) = \sum_{\{T_1, \dots, T_k\} \in \pi([n])} f(|T_1|) \dots f(|T_k|) g(k)$$

if |S| > 0 and h(0) = 1. Then $E_h(x) = E_g(E_f(x))$.

Sketch of Proof: Defining, for every $k \in \{1, ..., n\}$

$$h_k(n) = \frac{1}{k!} \sum_{(T_1,...,T_k)} f(|T_1|) ... f(|T_k|) g(k),$$

we have $h(n) = \sum h_k(n)$. By the previous theorem, $E_{h_k}(x) = g(k)/k!E_f(x)^k$. Hence

$$E_h(x) = \sum_{k>1} g(k) \frac{E_f(x)^k}{k!} = E_g(E_f(x)).$$

The Compositional Formula: An Example

Example: In how many ways h(n) we can form n people into nonempty lines, and then arrange these lines in a circular order?

Explanation: Let f(n) and g(n) the number of ways to form n people in a line and in a circle, respectively. Then f(n) = n! and g(n) = (n-1)!. So the EGFs of f and g are

$$E_f(x) = \sum_{n \ge 1} x^n = \frac{x}{1-x}$$
 and $E_g(x) = \sum_{n \ge 1} \frac{x^n}{n} = \ln(1-x)^{-1}$.

Hence, using the previous theorem,

$$E_h(x) = E_g(E_f(x)) = \ln(\frac{1-x}{1-2x}) = \sum_{n>1} (2^n-1)(n-1)! \frac{x^n}{n!}.$$

Thus
$$h(n) = (2^n - 1)(n - 1)!$$
.

References

- M. Aigner. A Course in Enumeration. Springer, New York, 2007.
- M. Bona. A Walk Through Combinatorics. World Scientific, New Jersey, 2012.
- R. Stanley. *Enumerative Combinatorics, Volume 1*. Cambridge University Press, New York, 2012.
- R. Stanley. *Enumerative Combinatorics, Volume 2.* Cambridge University Press, New York, 1999.
- J. H. van Lint and R. M. Wilson. *A Course in Combinatorics*. Cambridge University Press, Cambridge, 1994.