Intro to Generating Functions

Felix Gotti felixgotti@berkeley.edu

UC Berkeley

April 10, 2016

Outline

[Ordinary Generating Functions](#page-2-0)

[Exponential Generating Functions \(EGF\)](#page-8-0)

[Rational Generating Functions](#page-14-0)

[The Exponential Formula](#page-17-0)

Ordinary Generating Functions (OGF)

Definition

The formal series

$$
F(x) := \sum_{n\geq 0} f(n)x^n \in \mathbb{C}[[x]]
$$

associated to the counting map $f: \mathbb{N}_0 \to \mathbb{C}$ is called *ordinary* generating function. We also use the notation $[x^n]F(x) := f(n)$.

Sum and Product of OGF

We recall that $\mathbb{C}[[x]]$ is an integral domain (actually a PID). We can perform sums and multiplications of OGF according to the way we sum and multiply elemnents in $\mathbb{C}[[x]]$.

Definition

Let $F(x) = \sum_{n\geq 0} f(n)x^n$ and $G(n) = \sum_{n\geq 0} g(n)x^n$ be two OGF. Then their $sum\$ is the OGF

$$
F(x)+G(x):=\sum_{n\geq 0}(f(n)+g(n))x^n,
$$

and their product, also called their convolution is the OGF

$$
F(x)G(x):=\sum_{n\geq 0}\big(\sum_{k=0}^n f(k)g(n-k)\big)x^n.
$$

Example: The OGF of the Fibonacci sequence is $F(x) = \frac{1}{1-x-x^2}$.

The Inverse of an OGF

Theorem

An OGF $F(x)$ is invertible (meaning that there exists an OGF $G(x)$ such that $F(x)G(x) = 1$) iff is $F(0) \neq 0$.

Proof: If $G(x)$ is the inverse of $F(x)$ then $F(0)G(0) = 1$ and so $\mathit{F}(0) \neq 0.$ If $\mathit{F}(0) \neq 0$ then $\mathit{G}(0) = \mathit{F}(0)^{-1},$ and we can recurrently define the remaining coefficients of $G(0)$ by using the multiplication formula for OGF.

Example: The OGF $F(x) = 1 - x$ satisfies that $F(0) = 1 \neq 0$. Therefore, it is invertible. The inverse of $F(x)$ is $G(x) = \sum_{n\geq 0} x^n$.

Convergence of OGF

Definition

The *degree* of an OGF $F(x) = \sum_{n\geq 0} f(n)x^n$, denoted by deg $F(x)$ is the smallest *n* such that $f(n) \neq 0$. A sequence of OGF ${F_i(x)}_{i \in \mathbb{N}}$ converges to the OGF $F(x)$ if

$$
\lim_{i\to\infty}\deg(F(x)-F_i(x))=\infty.
$$

We say that the infinite sum $\sum_{i\geq 0}F_i$ *coverges* to the OGF $F(x)$ if the sequence of partial sum converges to $F(x)$.

Theorem

The infinite series $\sum_{i\geq 0} F_i(x)$ converges iff $\lim_{i\to\infty} \deg F_i(x) = \infty$. Proof: It follows directly from the definition of convergence.

Composition of OGF

Definition

Let $F(x) = \sum_{n\geq 0} f(n)x^n$ and $G(n) = \sum_{n\geq 0} g(n)x^n$ be two OGF such that $G(0) = 0$. Then the composition of $F(x)$ and $G(x)$ is the OGF

$$
F(G(x)) := \sum_{n\geq 0} f(n)G(x)^n.
$$

Remarks:

- \blacktriangleright Notice that the condition $G(0)=0$ guarantees that $\sum_{n\geq 0} f(n) G(x)^n$ converges. This is because $\deg G(x)^n \geq n \deg G(x)$, and so $\lim_{i \to \infty} \deg(f(i)G(x)^i) = \infty$.
- ► The expression $e^{1+x} = \sum_{n\geq 0} (x+1)^n/n!$ is not a valid OGF because the series does not converge in the sense we defined above.

A Few Popular OGFs

Theorem

The following are popular and useful OGFs:

1.
$$
\sum_{n\geq 0} x^n = \frac{1}{1-x}
$$
,
\n2. $\sum_{n\geq 0} (-1)^n x^n = \frac{1}{1+x}$,
\n3. $\sum_{n\geq 0} x^{2n} = \frac{1}{1-x^2}$,
\n4. $\sum_{n\geq 0} {m \choose n} x^n = (1+x)^m$,
\n5. $\sum_{n\geq 0} {n+m \choose n} x^n = \frac{1}{(1-x)^{m+1}}$,
\n6. $\sum_{n\geq 0} {n \choose m} x^n = \frac{x^m}{(1-x)^{m+1}}$.

Sketch of Proof: Pending...

Exponential Generating Functions

Definition

The formal series

$$
F(x) := \sum_{n\geq 0} f(n) \frac{x^n}{n!}
$$

associated to the counting map $f: \mathbb{N}_0 \to \mathbb{C}$ is called the exponential generating function (EGF) of f . We also use the notation $[x^n/n!]F(x) := f(n)$.

Sum, Product, and Composition of EGFs

Definition

Let $F(x) = \sum_{n\geq 0} f(n)x^n/n!$ and $G(n) = \sum_{n\geq 0} g(n)x^n/n!$ be two EGF. Then their sum is the EGF

$$
F(x) + G(x) := \sum_{n \geq 0} (f(n) + g(n))x^{n}/n!,
$$

and their product, also called their convolution is the OGF

$$
F(x)G(x) := \sum_{n\geq 0} \Big(\sum_{k=0}^n {n \choose k} f(k)g(n-k)\Big) x^n/n!.
$$

If, in addition, $G(0) = 0$, we composition of the EGFs F and G is given by

$$
F(G(x)) := \sum_{n\geq 0} f(n)G(x)^n/n!.
$$

The formal derivative of a GF

Definition

- ► The *derivative* of the OGF $F(x) = \sum_{n\geq 0} f(n)x^n$ is $F'(x) := \sum_{n\geq 0} nf(n)x^{n-1}.$
- ► The *derivative* of the EGF $F(x) = \sum_{n\geq 0} f(n)x^n/n!$ is $F'(x) := \sum_{n\geq 0} f(n)x^{n-1}.$

Theorem

Let $F(x)$ and $G(x)$ be two OGF (EGF) then the following hold:

$$
\blacktriangleright (F(x) + G(x))' = F'(x) + G'(x),
$$

$$
\blacktriangleright F(x)G(x) = F'(x)G(x) + F(x)G'(x),
$$

$$
\blacktriangleright (F(G(x))' = F'(G(x))G'(x).
$$

The formal derivative of a GF

Theorem

Let $F(x)$ and $G(x)$ be two OGFs such that $F(0) = 1$ and $G(0) = 0$. If $G'(x) = F'(x)/F(x)$ then $F(x) = \exp(G(x))$, where $exp(G(x)) = \sum_{n\geq 0}$ $G(x)^n$ $\frac{(x)}{n!}$. Sketch of Proof: Pending...

Example 1: The EGF of the function $f : \mathbb{N} \to \mathbb{C}$ given by $f(0) = 1$ and $f(n+1) = f(n) + nf(n-1)$ if $n > 0$

General Newton Coefficients

Definition

- \blacktriangleright For $\lambda\in\mathbb{C}$ and $k\in\mathbb{N}_0$, set $\binom{\lambda}{k}$ λ_k^{λ} := $\lambda(\lambda-1)\ldots(\lambda-k+1).$
- For an OGF $F(x)$ such that $F(0) = 0$, we define:

$$
(1 + F(x))^{\lambda} := \sum_{n \geq 0} {\lambda \choose n} F(x)^n.
$$

Example 2: We want to find all $f: \mathbb{N}_0 \to \mathbb{R}$ satisfying

$$
\sum_{k=0}^n f(k)f(n-k)=1.
$$

A Practice Example

Example: Suppose that the function $f : \mathbb{N} \to \mathbb{C}$ has EGF $F(x) = e^{x + x^2/2}$.

- \blacktriangleright Find a recurrence formula for f.
- \blacktriangleright Find an explicit formula for f.

Rational Generating Functions

Theorem

Let
$$
f: \mathbb{N}_0 \to \mathbb{C}
$$
 and
\n $Q(x) = 1 + c_1x + \cdots + c_dx^d = \prod_{i=1}^k (1 - \alpha_i x)^{d_i}$, where
\n $c_1, \ldots, c_d \in \mathbb{C}$ $(c_d \neq 0)$. Then TFAE:
\n1. $f(n+d) + c_1f(n+d-1) + \cdots + c_df(n) = 0$ for every $n \in \mathbb{N}_0$;
\n2. $F(x) = \sum_{n\geq 0} f(b)x^n = P(x)/Q(x)$, where $\deg P(x) < d$;
\n3. $F(x) = \sum_{n\geq 0} f(n)x^n = \sum_{i=1}^k g_i(x)/(1 - \alpha_i x)^{d_i}$;
\n4. $f(n) = \sum_{i=1}^k p_i(n)\alpha_i^n$, where $p_i(n)$ is a polynomial in n such
\nthat $\deg p_i < d_i$ for each $i \in \{1, \ldots, k\}$.

Sketch of Proof: For each $i \in \{1, 2, 3, 4\}$, define the complex space

$$
V_i := \{f \colon \mathbb{N}_0 \to \mathbb{C} \mid f \text{ satisfies } (i)\}.
$$

Check that dim $V_i = d$ for each i. Use this to check that $V_1 = V_2$ and $V_3 = V_4$. Finally, show that $V_3 \subseteq V_2$. П

Rational Generating Functions (continuation)

Definition

A generating function $F(x) = \sum_{n\geq 0} f(n) x^n$ satisfying any of the four condition in the previous theorem is called a (proper) rational generating function.

Examples

Example 1: Let $f(n)$ be the number of paths with n non-intersecting steps starting from (0, 0) with directions east, north, or west.

- 1. Find the generating function of \overline{F} of f.
- 2. Find a close formula for f

Hint: Count the paths of length n ending in EE, WW, and NE.

Example 2: Write ($\sqrt{2} + \sqrt{3}$) 1980 in decimal form. What is the last digit before and the first digit after the decimal point? That alght before and the first digit after the decimal point
Hint: Compute the generating function of $(\sqrt{2} + \sqrt{3})^{2n}$.

Putting Structures on Finite Sets

Theorem

Let $f_1, \ldots, f_n: \mathbb{N}_0 \to \mathbb{C}$, and denote by $E_{f_i}(x)$ the EGF of f_i . For every finite set S, let

$$
h(|S|) = \sum_{(T_1,...,T_n)} f_1(|T_1|) \dots f_n(|T_n|),
$$

where the sum runs over every ordered n-partition of S. Then the EGF $E_h(x)$ of h satisfies that $E_h(x) = E_{f_1}(x) \dots E_{f_n}(x)$. **Sketch of Proof:** Suppose first that $n = 2$. If $|S| = s$, the fact

that there are $\binom{s}{k}$ $\binom{s}{k}$ ordered partitions (T_1, T_2) such that $|T_1| = k$ of S implies that

$$
h(s)=\sum_{k=0}^s {s \choose k} f_1(k) f_2(n-k).
$$

Then $E_h(x) = E_{f_1}(x) E_{f_2}(x)$. Now extend to *n* by induction. \square .

The Compositional Formula

Theorem

Given $f: \mathbb{N} \to \mathbb{C}$ and $g: \mathbb{N}_0 \to \mathbb{C}$ with $g(0) = 1$, and for every finite set S let

$$
h(0) = h([n]) = \sum_{\{T_1,\ldots,T_k\} \in \pi([n])} f(|T_1|) \ldots f(|T_k|)g(k)
$$

if
$$
|S| > 0
$$
 and $h(0) = 1$. Then $E_h(x) = E_g(E_f(x))$.
Sketch of Proof: Defining, for every $k \in \{1, ..., n\}$

$$
h_k(n) = \frac{1}{k!} \sum_{(T_1,...,T_k)} f(|T_1|) \dots f(|T_k|) g(k),
$$

we have $h(n) = \sum h_k(n)$. By the previous theorem, $E_{h_k}(x)=g(k)/k!E_f(x)^k$. Hence

$$
E_h(x)=\sum_{k\geq 1}g(k)\frac{E_f(x)^k}{k!}=E_g(E_f(x)).\quad \Box
$$

The Compositional Formula: An Example

Example: In how many ways $h(n)$ we can form *n* people into nonempty lines, and then arrange these lines in a circular order?

Explanation: Let $f(n)$ and $g(n)$ the number of ways to form n people in a line and in a circle, respectively. Then $f(n) = n!$ and $g(n) = (n-1)!$. So the EGFs of f and g are

$$
E_f(x) = \sum_{n\geq 1} x^n = \frac{x}{1-x}
$$
 and $E_g(x) = \sum_{n\geq 1} \frac{x^n}{n} = \ln(1-x)^{-1}$.

Hence, using the previous theorem,

$$
E_h(x) = E_g(E_f(x)) = \ln(\frac{1-x}{1-2x}) = \sum_{n\geq 1} (2^n - 1)(n-1)! \frac{x^n}{n!}.
$$

Thus $h(n) = (2^n - 1)(n - 1)!$.

Felix Gotti felixgotti@berkeley.edu [Intro to Generating Functions](#page-0-0)

 \mathbf{I}

References

- 暈 M. Aigner. A Course in Enumeration. Springer, New York, 2007.
- 螶 M. Bona. A Walk Through Combinatorics. World Scientific, New Jersey, 2012.
- 歸 R. Stanley. Enumerative Combinatorics, Volume 1. Cambridge University Press, New York, 2012.
- S. R. Stanley. Enumerative Combinatorics, Volume 2. Cambridge University Press, New York, 1999.
- R J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge University Press, Cambridge, 1994.