Friendly Introduction to the Factorization Theory of Numerical Semigroups

Felix Gotti felixgotti@berkeley.edu

UC Berkeley

Residents Symposium, PURE Math 2015

Felix Gotti felixgotti@berkeley.edu

Friendly Introduction to the Factorization Theory of Numerical Semigroups

2 Numerical Semigroups

3 Factorization Invariants

The Catenary Degree

Consider the pair (S, +), where S is a nonempty set and $+: S \times S \rightarrow S$ a binary operation.

- (S, +) is associative if a + (b + c) = (a + b) + c for all a, b, c ∈ S.
- $e \in S$ is called an *identity* if e + a = a + e = a for all $a \in S$.

Definition (Monoid)

If the pair (M, +) is associative and contains an identity, we say that (M, +) is a *monoid*.

With notation as before:

- (S, +) is commutative if a + b = b + a for all $a, b, c \in S$.
- A commutative pair (S, +) is cancellative if c + a = c + b implies a = b for all a, b, c ∈ S.

Remark: In Factorization Theory, we only study monoids that are commutative and cancellative, so we will omit to specify it.

Examples (Commutative Cancellative Monoid)

We have come across many monoids in elementary mathematics. For example:

Examples

- $(\mathbb{N}, +)$, whose identity is 0.
- $(\mathbb{N}^k, +)$, whose identity is $(0, \ldots, 0)$.

There are certainly other less standard monoids, such as the Hilbert monoid.

Example (Hilbert Monoid)

Consider The set $\mathcal{H} := \{1 + 4n \mid n \in \mathbb{N}\}$. Define the addition operation on \mathcal{H} to be (1 + 4n) + (1 + 4m) := (1 + 4n)(1 + 4m) = 1 + 4(n + m + 4nm). The identity of \mathcal{H} is 1.

Let M be a monoid.

- $u \in M$ is a *unit* if there exists $v \in M$ such that u + v = e. The set of units of M is denoted by M^{\times} .
- An element a ∈ M \ M[×] is said to be *irreducible* or an *atom* if a = u + v for some u, v ∈ M implies that either u or v is a unit. The set of irreducible elements of M is denoted by A(M).
- M is said to be *atomic* if any element in M \ M[×] can be written as the sum of irreducible elements.

Units and Irreducible Elements (Examples)

Example (1)

- The only unit of $(\mathbb{N}, +)$ is 0.
- The only irreducible element of $(\mathbb{N},+)$ is 1.
- (ℕ, +) is atomic.

Example (2)

- The only unit of $(\mathbb{N}^k, +)$ is $(0, \ldots, 0)$.
- If M = (ℕ^k, +) then A(M) = { e_i | 1 ≤ i ≤ k }, where e_i is the element of ℕ^k with 1 in the *i*-th coordinate and zeroes elsewhere.

•
$$(\mathbb{N}^k, +)$$
 is atomic.

Definition (Numerical Semigroup)

An additive submonoid $M \subseteq \mathbb{N}$ is said to be a *numerical monoid* if $\mathbb{N} \setminus M$ is finite.

If a submonoid $M \subseteq \mathbb{N}$ is generated by $\{a_1, \ldots, a_k\}$ we write $M = \langle a_1, \ldots, a_k \rangle$. We always assume that $a_1 < \cdots < a_k$. The following theorem hold.

Theorem

- Every numerical monoid is finitely generated.
- A submonoid M = ⟨a₁,..., a_k⟩ of N is a numerical monoid if and only if gcd(a₁,..., a_k) = 1.

Further definitions and notation:

- A numerical monoid M = (S) is minimally generated by S if no proper subset of S generates M.
- If M = ⟨a₁,..., a_k⟩ is minimally generated, then
 A(M) = {a₁,..., a_k}, and n is called the *embedding* dimension of M.
- **3** g is a gap of M if $g \in \mathbb{N} \setminus M$.
 - The set of gaps is denoted by G(M).
 - The maximum of G(M), denoted by $\mathcal{F}(M)$, is called the Frobenius number of M.

Example (1)

- $M = \langle 8, 9, 19 \rangle$ is a numerical monoid because gcd(8, 9, 19) = 1.
- *M* has embedding dimension 3.

•
$$\mathcal{F}(M) = 39$$
.

Example (2)

- M_n = ⟨n, n + 3, n + 5⟩ is a numerical monoid for every n ∈ N since gcd(n, n + 3, n + 5) = 1.
- *M* has embedding dimension 3.

Arithmetic Monoid:

Definition

A numerical monoid $M = \langle a, a + d, ..., a + kd \rangle$ where $a, k, d \in \mathbb{N}$ such that $1 \leq k < a$ and gcd(a, d) = 1 is called *arithmetic monoid*.

Examples (Arithmetic Monoid)

- $M = \langle 3, 8, 13 \rangle$. Here a = 3, d = 5, and k = 2.
- Any embedding dimension 2 numerical monoid *M* = ⟨*x*, *y*⟩ is an arithmetic monoid, where *d* = *y* − *x* and *k* = 1
- An arithmetic monoid with d = 1 is called numerical monoid generated by an interval.

Families of Numerical Semigroups (continuation)

Generalized Arithmetic Monoid:

Definition

A numerical monoid $M = \langle a, ha + d, ..., ha + kd \rangle$ where $a, h, k, d \in \mathbb{N}$ such that $1 \leq k < a$ and gcd(a, d) = 1 is called generalized arithmetic monoid.

Example (Generalized Arithmetic Monoid)

•
$$M = \langle 3, 8, 10 \rangle = \langle 3, 2 \cdot 3 + 2, 2 \cdot 3 + 2 \cdot 2 \rangle$$
.
So $a = 3$, $h = 2$, $d = 2$, and $k = 2$.

•
$$\langle 5, 52, 59 \rangle = \langle 5, 5 \cdot 9 + 7, 5 \cdot 9 + 2 \cdot 7 \rangle$$
.
So $a = 5$, $h = 9$, $d = 7$, and $k = 2$.

• Any arithmetic monoid is a generalized arithmetic monoid where *h* = 1.

Factorizations

Let $M = \langle a_1, \ldots, a_k \rangle$ be a minimally generated numerical monoid.

- The factorization map of M is $\varphi : \mathbb{N}^k \to M$ defined by
- $\varphi(z_1, \ldots, z_k) = z_1 a_1 + \cdots + z_k a_k.$ • $z = (z_1, \ldots, z_k) \in \mathbb{N}^k$ is said to be a *factorization* of $a \in M$ if $\varphi(z) = a$.
- The set of factorizations of $a \in M$ is defined by

$$\mathsf{Z}(\mathsf{a}) := \varphi^{-1}(\mathsf{a}) = \{ (z_1, \ldots, z_k) \mid \varphi(z_1, \ldots, z_k) = \mathsf{a} \}.$$

Example (Factorizations)

Let $M = \langle 3, 8, 13 \rangle$ and $30 \in M$.

- $30 = 10 \cdot 3 + 0 \cdot 8 + 0 \cdot 13$, then $z_1 = (10, 0, 0) \in \mathsf{Z}(30)$.
- $30 = 2 \cdot 3 + 3 \cdot 8 + 0 \cdot 13$, then $z_2 = (2, 3, 0) \in Z(30)$.
- $30 = 3 \cdot 3 + 1 \cdot 8 + 1 \cdot 13$, then $z_3 = (3, 1, 1) \in Z(30)$.
- Actually, $Z(30) = \{ z_1, z_2, z_3 \}.$

Length and Distance

Let $M = \langle a_1, \ldots, a_k \rangle$ be a minimally generated numerical monoid.

- If $z = (z_1, ..., z_k)$ is a factorization of a, the *length* of z is $|z| = z_1 + \cdots + z_k$. The set of all lengths of a is defined L(a).
- For $z = (z_1, \ldots, z_k)$, $z' = (z'_1, \ldots, z'_k) \in Z(a)$ we set $gcd(z, z') = (min\{z_1, z'_1\}, \ldots, min\{z_p, z'_p\}).$
- The distance between z and z is defined by $d(z, z') = \max\{|z - \gcd(z, z')|, |z' - \gcd(z, z')|\}.$

Examples (Length and Distance)

Let $M = \langle 3, 8, 13 \rangle$ and $30 \in M$.

• $Z(30) = \{ z_1 = (10, 0, 0), z_2 = (2, 3, 0), z_3 = (3, 1, 1) \}$

•
$$|z_1| = 10$$
, $|z_2| = 5$, and $|z_3| = 5$.

- $gcd(z_1, z_2) = (2, 0, 0)$ and $gcd(z_2, z_3) = (2, 1, 0)$.
- $d(z_1, z_2) = 8$ and $d(z_2, z_3) = 2$.

Set of Lengths

Definition (Set of Lengths)

Let M be a minimally generated numerical monoid. The set of lengths of $a \in M$ is the set

$$\mathsf{L}(a) = \{ |z| \mid z \in \mathsf{Z}(a) \}.$$

Example (Set of Lengths)

For $M = \langle 3, 8, 13 \rangle$ and $30 \in M$, we have seen that

$$\mathsf{Z(30)} = \{\, (10,0,0), (2,3,0), (3,1,1) \,\}.$$

Therefore

$$L(30) = \{5, 10\}.$$

Felix Gotti felixgotti@berkeley.edu

Friendly Introduction to the Factorization Theory of Numerical Semigroups

Let *M* be a numerical monoid, and let $a \in M$. Given $z, z' \in Z(a)$ and $N \ge 1$, an *N*-chain from *z* to *z'* is a sequence $z_0, \ldots, z_n \in Z(a)$ of factorizations of *a* such that $z_0 = z$, $z_n = z'$, and $d(z_{i-1}, z_i) \le N$ for every $i = 1, \ldots, n$.

Definition (Catenary Degree)

The catenary degree of a, denoted c(a), is the smallest non-negative integer N such that there exists an N-chain between any two factorizations of a. The catenary degree of M is the number

$$\mathsf{c}(M) = \sup\{\,\mathsf{c}(a) \mid a \in M\,\}.$$

Computing Catenary Degree

Let M = (3, 8, 10) and a = 36.

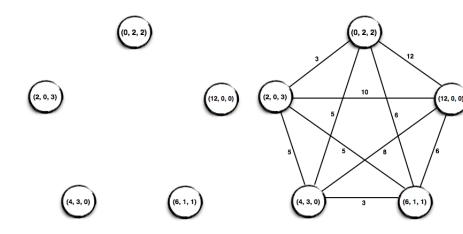


Figure: Catenary Graph of a = 36

Felix Gotti felixgotti@berkeley.edu

Friendly Introduction to the Factorization Theory of Numerical Semigroups

Let M be a numerical monoid.

Definition (Betti Graph)

For each nonzero $a \in M$ consider the graph ∇_a whose set of vertices is Z(a), in which two vertices $z, z' \in Z(a)$ share an edge if $gcd(z, z') \neq 0$.

Definition (Betti Element)

Let $\beta \in M$. If ∇_{β} is not connected, then β is called a *Betti* element of *M*. We write

 $\mathsf{Betti}(M) = \{ \beta \in M \mid \nabla_{\beta} \text{ is disconnected } \}$

for the set of Betti elements of M.

The following theorems give evidence of the importance of the set of Betti elements.

Theorem

If M is a numerical monoid then Betti(M) is finite.

Theorem

If M is a numerical monoid then the following hold.

- There exists $\beta \in Betti(M)$ such that $c(\beta) = c(M)$.
- There exists β' ∈ Betti(M) such that c(β') ≤ c(a) for every a ∈ M.

Testing Betti Elements

Let $M = \langle 5, 18, 21, 24, 27 \rangle$ and a = 54. It is a Betti element.

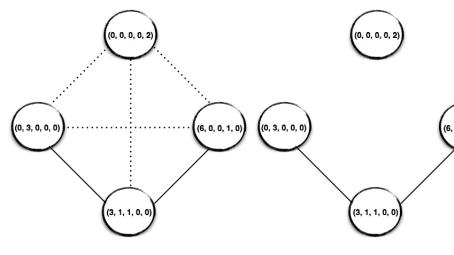


Figure: Betti Graph of a = 54

Felix Gotti felixgotti@berkeley.edu

Friendly Introduction to the Factorization Theory of Numerical Semigroups

Testing Betti Elements

Let $M = \langle 5, 18, 21, 24, 27 \rangle$ and a = 60. It is NOT a Betti element.

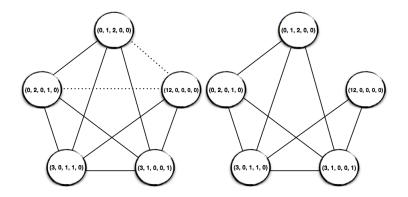


Figure: Betti Graph of a = 60

References

- P. A. Garcia-Sanchez and J. C. Rosales. Numerical Semigroups.
- S. Chapman, N. Kaplan, T. Lemburg, A. Niles, C. Zlogar. Shifts of Generators and Delta Sets of Numerical Semigroup.
- S. Chapman, P. Garcia-Sanchez, D. Llena, V. Ponomarenko, J. Rosales. The Catenary and Tame Degree in Finitely Generated Commutative Cancellative Monoids. Manuscripta Math. 120 (2006), no. 3, 253–264.
- A. Geroldinger and F. Halter-Koch. Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory. Chapman & Hall/CRC, Boca Raton, 2006.
- T. Barron, C. O'Neill, and R. Pelayo. *On the Set of Elasticities in Numerical Monoids*, 2015, arXiv:1409.3425v2.