On Realizable Delta Sets of Block Monoids of Finite Cyclic Groups

Felix Gotti felixgotti@ufl.edu

University of Florida

Residents Symposium, PURE Math 2013

Felix Gotti felixgotti@ufl.edu

On Realizable Delta Sets of Block Monoids of Finite Cyclic Groups

Basic Notations: Free Abelian Monoid

For $n \in \mathbb{N}$, we denote the cyclic group of order n by \mathbb{Z}_n , and write a generic element of \mathbb{Z}_n as follows:

$$[k] := \{ z \in \mathbb{Z} : n \mid z - k \}.$$

Definition of $\mathcal{F}(\mathbb{Z}_n)$

For a given $n \in \mathbb{N}$,

$$\mathcal{F}(\mathbb{Z}_n) := \left\{ \prod_{k=1}^{n-1} [k]^{\alpha_k} : \alpha_1, \alpha_2, \dots, \alpha_{n-1} \in \mathbb{N}_0 \right\}$$

will denote the free abelian monoid on $\mathbb{Z}_n \setminus \{[0]\}$. We denote the identity element of $\mathcal{F}(\mathbb{Z}_n)$ by *e*.

Consider the following elements of $\mathcal{F}(\mathbb{Z}_5)$:

- a = [1][1][3] and 5 divides 1 + 1 + 3 = 5
- $c = [1]^8 [2] [4]^5$ and 5 divides 8 * 1 + 2 + 5 * 4 = 30
- d = [4] and 5 does NOT divides 4
- $e = [3]^2[5][4][2]$ does NOT divides 2 * 3 + 5 + 4 + 2 = 17.

Definition of block

For a given $n \in \mathbb{N}$, we say that $x = \prod_{k=1}^{n-1} [k]^{\alpha_k} \in \mathcal{F}(\mathbb{Z}_n)$ is a *block* if $\sum_{k=1}^{n-1} \alpha_k k$ is divisible by n.

Definition of $\mathcal{B}(\mathbb{Z}_n)$

For $n \in \mathbb{N}$ define eval: $\mathcal{F}(\mathbb{Z}_n) \to \mathbb{Z}_n$ by

$$\mathsf{eval}\left(\prod_{k=1}^{n-1}[k]^{\alpha_k}\right) = \sum_{k=1}^{n-1} \alpha_k[k]$$

where the addition takes place in \mathbb{Z}_n . The set

$$\mathcal{B}(\mathbb{Z}_n) := \{x \in \mathcal{F}(\mathbb{Z}_n) : \operatorname{eval}(x) = [0]\}$$

is a submonoid of $\mathcal{F}(\mathbb{Z}_n)$ called the *block monoid* of the cyclic group \mathbb{Z}_n .

Definition of $\mathcal{A}(\mathbb{Z}_n)$

An element $x \in \mathcal{B}(\mathbb{Z}_n) \setminus \{e\}$ is said to be an atom if x = ab where $a, b \in \mathcal{B}(\mathbb{Z}_n)$ implies that either a = e or b = e. We denote by $\mathcal{A}(\mathbb{Z}_n)$ the set of all atoms of $\mathcal{B}(\mathbb{Z}_n)$.

- The atoms of $\mathcal{B}(\mathbb{Z}_3)$ are $[1]^3, [2]^3$, and [1][2].
- Notice that $[2]^2$ is NOT an atom of $\mathcal{B}(\mathbb{Z}_3)$.
- Computing $\mathcal{A}(\mathbb{Z}_n)$ gets harder when *n* is larger.

• [2]⁵

As an example, we show the list of atoms of $\mathcal{B}(\mathbb{Z}_5)$.

- $[1]^5$ $[2]^3[4]$ • $[1]^3[2]$ • [2][3]• $[1]^2[3]$ • $[2][4]^2$ • $[1][2]^2$ • $[3]^5$ • $[1][3]^3$ • $[3]^2[4]$ • [1][4] • $[3][4]^3$
 - [3][4 • [4]⁵

There are some basic properties of atoms that we use frequently in this project. Some of them are the following.

$$\ \, [a][n-a] \in \mathcal{A}(\mathbb{Z}_n) \ \text{for any} \ 1 \leq a < n.$$

2
$$[a]^n \in \mathcal{A}(\mathbb{Z}_n)$$
 if and only if $gcd(a, n) = 1$.

- **3** If $\prod_{k=1}^{n-1} [k]^{\alpha_k} \in \mathcal{A}(\mathbb{Z}_n)$ then $\alpha_1 + \alpha_2 + \cdots + \alpha_{n-1} \leq n$.
- If $\prod_{k=1}^{n-1} [k]^{\alpha_k} \in \mathcal{A}(\mathbb{Z}_n)$ and $\alpha_1 + \alpha_2 + \cdots + \alpha_{n-1} = n$ then there exists $1 \le i < n$ such that $\alpha_i = n$ and $\alpha_j = 0$ for any $j \ne i$.

Let us consider the element $x = [1]^8 [2] [4]^5 \in \mathcal{B}(\mathbb{Z}_5)$.

Which are the possible decompositions of x as product of atoms?

- $([2][1]^3)([1][4])^5$, having 6 atoms
- $([2][1]^3)([1]^5)([4]^5)$, having 3 atoms
- $([2][4]^2)([1]^5)([1][4])^3$, having 5 atoms

For any $x \in \mathcal{B}(\mathbb{Z}_n) \setminus \{[0]\}\)$ we denote by Z(x) the set of all factorizations of x as product of atoms. The elements of Z(x) are also called *irreducible factorizations* of x.

Definition of Length and Set of Lengths

Let $x \in \mathcal{B}(\mathbb{Z}_n)$ and $z \in Z(x)$. We call *length* of z to the number of atoms that appears in z, and we denote the length of z by |z|. We define the *set* of *lengths* of x by

$$L(x) = \{ |z| : z \in Z(x) \}.$$

Given an element $x \in \mathcal{B}(\mathbb{Z}_n)$, we would like to measure how far from one to another are the lengths of the irreducible factorizations of x.

Definition of set of deltas

Let $n \in \mathbb{N}$, $x \in \mathcal{B}(\mathbb{Z}_n)$, and $L(x) = \{l_1, l_2, \dots, l_k\}$ where $l_1 < l_2 < \dots < l_k$. If |L(x)| > 1, the *delta set* of x is defined to be the set

$$\Delta(x) = \{ I_{i+1} - I_i : 1 \le i < k \}.$$

If |L(x)| = 1 then we define $\Delta(x)$ as the empty set. In addition, we define the delta set of $\mathcal{B}(\mathbb{Z}_n)$ to be

$$\Delta(\mathbb{Z}_n) = \bigcup_{x \in \mathcal{B}(\mathbb{Z}_n)} \Delta(x).$$

Returning to the example of $x = [1]^8 [2] [4]^5 \in \mathcal{B}(\mathbb{Z}_5)$, we can find now its set of lengths and its delta set.

• $Z(x) = \{([2][1]^3)([1][4])^5, ([2][1]^3)([1]^5)([4]^5), ([2][4]^2)([1]^5)([1][4])^3\}.$

• $L(x) = \{3, 5, 6\}$

• $\Delta(x) = \{1, 2\}$

Now we introduce the arithmetic invariant of the block monoid $\mathcal{B}(\mathbb{Z}_n)$ that we wish to study.

Definition of D-set

We say that $S \subseteq \Delta(\mathbb{Z}_n)$ is a *realizable delta set* of $\mathcal{B}(\mathbb{Z}_n)$ if there exists $x \in \mathcal{B}(\mathbb{Z}_n)$ such that $S = \Delta(x)$. Also we use the following notation for the set of all realizable delta sets of $\mathcal{B}(\mathbb{Z}_n)$:

$$\mathcal{D}(\mathbb{Z}_n) := \{ \Delta(x) : x \in \mathcal{B}(\mathbb{Z}_n) \}.$$

We say that $\mathcal{D}(\mathbb{Z}_n)$ is the *D*-set of $\mathcal{B}(\mathbb{Z}_n)$.

The following result fully describes $\Delta(\mathbb{Z}_n)$.

Motivation Theorem

For
$$n \in \mathbb{N}$$
 we have $\Delta(\mathbb{Z}_n) = \{1, 2, \dots, n-2\}.$

Because

- the previous theorem shows that Δ(Z_n) is a very convenient subset of N (an interval starting at 1) and
- nothing has been study so far about $\mathcal{D}(\mathbb{Z}_n)$

it seems reasonable attempt to describe the *D*-set of $\mathcal{B}(\mathbb{Z}_n)$.

Project

For $n \in \mathbb{N}$, we carefully studied $\mathcal{D}(\mathbb{Z}_n)$, the *D*-set of $\mathcal{B}(\mathbb{Z}_n)$.

Why is important to study $\mathcal{D}(\mathbb{Z}_n)$?

- The block monoid naturally arises in Algebraic Number Theory; for example, when proving the Number Class Theorem.
- By giving a partial description of D(Z_n), we can offer a useful tool for the study of factorizations in the commutative cancellative monoid B(Z_n) and the Krull monoid it determines.

One of the inclusions of the Motivation Theorem is proved by showing that any singleton subset of $\{1, 2, ..., n-2\}$ is a realizable delta set of $\mathcal{B}(\mathbb{Z}_n)$.

Singleton Realizable Delta Sets

If $n \in \mathbb{N}$ then $\{j\} \in \mathcal{D}(\mathbb{Z}_n)$ for $1 \leq j \leq n-2$.

The above result is a piece of information we can use when describing $\mathcal{D}(\mathbb{Z}_n)$.

What we know about $\mathcal{D}(\mathbb{Z}_5)$?

- $\mathcal{D}(\mathbb{Z}_5) \subseteq \mathcal{P}(\Delta(\mathbb{Z}_5)) = \mathcal{P}(\{1,2,3\})$ by the Motivation Theorem.
- $\{1\},\{2\},\{3\}\in\mathcal{D}(\mathbb{Z}_5)$ by the previous result.
- $\{1,2\} \in \mathcal{D}(\mathbb{Z}_5)$ because $\Delta([1]^8[2][4]^5) = \{1,2\}.$

What can we say about $\{1,3\}$ and $\{1,2,3\}$?

Now we present the generalized version of the result we used to complete the description of $\mathcal{D}(\mathbb{Z}_5)$.

Main Theorem

Let $n \in \mathbb{N}$ and $x \in \mathcal{B}(\mathbb{Z}_n)$ such that $n-2 \in \Delta(x)$. Then $|\Delta(x)| = 1$ (i.e., $\Delta(x) = \{n-2\}$).

The following corollary follows immediately from the theorem.

Corollary

If $n \in \mathbb{N}$ then $\Delta(\mathbb{Z}_n) \notin \mathcal{D}(\mathbb{Z}_n)$.

As an application of the Main Theorem, we obtain

- $\{1,3\} \notin \mathcal{D}(\mathbb{Z}_n)$
- $\{1,2,3\} \notin \mathcal{D}(\mathbb{Z}_n).$

Therefore, we can complete the description of $\mathcal{D}(\mathbb{Z}_5)$.

Proposition

 $\mathcal{D}(\mathbb{Z}_5) = \{\{1\}, \{2\}, \{3\}, \{1,2\}\}.$

After seeing the description of $\mathcal{D}(\mathbb{Z}_5)$, we might think that the only realizable delta sets of $\mathcal{B}(\mathbb{Z}_n)$ have cardinality less or equal than 2, or maybe small (bounded above).

- By the Main Theorem, we know that Δ(Z_n) is not a realizable delta set of B(Z_n); therefore we might believe in the existence of a uniform bound M for the lengths of all elements in D(Z_n) for all n.
- However, we could prove that there exists a sequence {x_n}_{n∈ℕ} of elements in B(Z_n) such that the sequence {|Δ(x_n)|}_{n∈ℕ} tends to infinity, as the following theorem indicates.

Theorem (Archimedean Property)

For any $M \in \mathbb{N}$ there exist $n \in \mathbb{N}$ and $x \in \mathcal{B}(\mathbb{Z}_n)$ such that $|\Delta(x)| > m$.

- The previous results suggest that a full classification of D(Z_n) might be a very arduous task. However, there are several steps that can be helpful when trying to give a deeper description of D(Z_n).
- For example, we can try to find bounds for the cardinality of the elements of D(Z_n).

Definition of Principal Delta

Let G be a finite abelian group. We call

$$\eta(G) = \max\{ |S| : S \in \mathcal{D}(G) \}$$

the principal delta of $\mathcal{B}(G)$.

Some observations:

• Based on the results of this project, we have

$$4 \leq \eta(\mathbb{Z}_n) \leq n-3.$$

• However, the Archimedean Property shows that 4 is not a good lower bound. An accurate lower bound should depend on *n*.

Future Work

As an extension of this project, we can try to find better bounds for $\eta(\mathbb{Z}_n)$.

- P. Baginski and S. T. Chapman, Factorizations of Algebraic Integers, Block Monoids, and Additive Number Theory, Mathematical Association of America, Wash., DC, 2011.
- S. T. Chapman & A. Geroldinger, *Krull Domains and Monoids, their Sets of Length and Associated Combinatorial Problems*, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 189(1997), 73-112.
- A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory, Chapman and Hall/CRC, Boca Raton, Florida, 2006.
- A. Schmid, Arithmetical characterization of class groups of the form Z/nZ ⊕ Z/nZ via the system of sets of lengths, Abh. Math. Sem. Univ. Hamburg 79 (2009), 25–35.