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Basic Notations: Free Abelian Monoid

For n ∈ N, we denote the cyclic group of order n by Zn, and write a
generic element of Zn as follows:

[k] := { z ∈ Z : n | z − k }.

Definition of F(Zn)

For a given n ∈ N,

F(Zn) :=

{
n−1∏
k=1

[k]αk : α1, α2, . . . , αn−1 ∈ N0

}

will denote the free abelian monoid on Zn \ {[0]}. We denote the identity
element of F(Zn) by e.
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Basic Notations: Block

Consider the following elements of F(Z5):

a = [1][1][3] and 5 divides 1 + 1 + 3 = 5

c = [1]8[2][4]5 and 5 divides 8 ∗ 1 + 2 + 5 ∗ 4 = 30

d = [4] and 5 does NOT divides 4

e = [3]2[5][4][2] does NOT divides 2 ∗ 3 + 5 + 4 + 2 = 17.

Definition of block

For a given n ∈ N, we say that x =
∏n−1

k=1[k]αk ∈ F(Zn) is a block if∑n−1
k=1 αkk is divisible by n.
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The Block Monoid

Definition of B(Zn)

For n ∈ N define eval : F(Zn)→ Zn by

eval

(
n−1∏
k=1

[k]αk

)
=

n−1∑
k=1

αk [k]

where the addition takes place in Zn. The set

B(Zn) := {x ∈ F(Zn) : eval(x) = [0]}

is a submonoid of F(Zn) called the block monoid of the cyclic group Zn.
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Atoms

Definition of A(Zn)

An element x ∈ B(Zn) \ {e} is said to be an atom if x = ab where
a, b ∈ B(Zn) implies that either a = e or b = e. We denote by A(Zn) the
set of all atoms of B(Zn).

The atoms of B(Z3) are [1]3, [2]3, and [1][2].

Notice that [2]2 is NOT an atom of B(Z3).

Computing A(Zn) gets harder when n is larger.
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Listing A(Z5)

As an example, we show the list of atoms of B(Z5).

[1]5

[1]3[2]

[1]2[3]

[1][2]2

[1][3]3

[1][4]

[2]5

[2]3[4]

[2][3]

[2][4]2

[3]5

[3]2[4]

[3][4]3

[4]5
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Some Facts About Atoms

There are some basic properties of atoms that we use frequently in this
project. Some of them are the following.

1 [a][n − a] ∈ A(Zn) for any 1 ≤ a < n.

2 [a]n ∈ A(Zn) if and only if gcd(a, n) = 1.

3 If
∏n−1

k=1[k]αk ∈ A(Zn) then α1 + α2 + · · ·+ αn−1 ≤ n.

4 If
∏n−1

k=1[k]αk ∈ A(Zn) and α1 + α2 + · · ·+ αn−1 = n then there
exists 1 ≤ i < n such that αi = n and αj = 0 for any j 6= i .
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Factorizations, Lengths, and Delta Sets

Let us consider the element x = [1]8[2][4]5 ∈ B(Z5).

Which are the possible decompositions of x as product of atoms?

([2][1]3)([1][4])5, having 6 atoms

([2][1]3)([1]5)([4]5), having 3 atoms

([2][4]2)([1]5)([1][4])3, having 5 atoms
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Factorizations, Lengths, and Delta Sets

For any x ∈ B(Zn) \ {[0]} we denote by Z(x) the set of all factorizations
of x as product of atoms. The elements of Z(x) are also called irreducible
factorizations of x .

Definition of Length and Set of Lengths

Let x ∈ B(Zn) and z ∈ Z(x). We call length of z to the number of atoms
that appears in z , and we denote the length of z by |z |. We define the set
of lengths of x by

L(x) = { |z | : z ∈ Z(x) }.
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Factorizations, Lengths, and Delta Sets

Given an element x ∈ B(Zn), we would like to measure how far from one
to another are the lengths of the irreducible factorizations of x .

Definition of set of deltas

Let n ∈ N, x ∈ B(Zn), and L(x) = {l1, l2, . . . , lk} where l1 < l2 < · · · < lk .
If |L(x)| > 1, the delta set of x is defined to be the set

∆(x) = { li+l − li : 1 ≤ i < k }.

If |L(x)| = 1 then we define ∆(x) as the empty set. In addition, we define
the delta set of B(Zn) to be

∆(Zn) =
⋃

x∈B(Zn)

∆(x).
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Examples: Factorizations, Set of Lengths, and Delta Set

Returning to the example of x = [1]8[2][4]5 ∈ B(Z5), we can find now its
set of lengths and its delta set.

Z(x) = {([2][1]3)([1][4])5, ([2][1]3)([1]5)([4]5), ([2][4]2)([1]5)([1][4])3}.

L(x) = {3, 5, 6}

∆(x) = {1, 2}
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Realizable Delta Sets and the D-set

Now we introduce the arithmetic invariant of the block monoid B(Zn) that
we wish to study.

Definition of D-set

We say that S ⊆ ∆(Zn) is a realizable delta set of B(Zn) if there exists
x ∈ B(Zn) such that S = ∆(x). Also we use the following notation for the
set of all realizable delta sets of B(Zn):

D(Zn) := {∆(x) : x ∈ B(Zn) }.

We say that D(Zn) is the D-set of B(Zn).
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Motivation

The following result fully describes ∆(Zn).

Motivation Theorem

For n ∈ N we have ∆(Zn) = {1, 2, . . . , n − 2}.

Because

the previous theorem shows that ∆(Zn) is a very convenient subset
of N (an interval starting at 1) and

nothing has been study so far about D(Zn)

it seems reasonable attempt to describe the D-set of B(Zn).

Felix Gotti felixgotti@ufl.edu On Realizable Delta Sets of Block Monoids of Finite Cyclic Groups



Project and its Importance

Project

For n ∈ N, we carefully studied D(Zn), the D-set of B(Zn).

Why is important to study D(Zn)?

The block monoid naturally arises in Algebraic Number Theory; for
example, when proving the Number Class Theorem.

By giving a partial description of D(Zn), we can offer a useful tool for
the study of factorizations in the commutative cancellative monoid
B(Zn) and the Krull monoid it determines.
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Realizable Delta Sets of Cardinality One

One of the inclusions of the Motivation Theorem is proved by showing that
any singleton subset of {1, 2, . . . , n − 2} is a realizable delta set of B(Zn).

Singleton Realizable Delta Sets

If n ∈ N then {j} ∈ D(Zn) for 1 ≤ j ≤ n − 2.

The above result is a piece of information we can use when describing
D(Zn).
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The Case n = 5

What we know about D(Z5)?

D(Z5) ⊆ P(∆(Z5)) = P({1, 2, 3}) by the Motivation Theorem.

{1}, {2}, {3} ∈ D(Z5) by the previous result.

{1, 2} ∈ D(Z5) because ∆([1]8[2][4]5) = {1, 2}.

What can we say about {1, 3} and {1, 2, 3}?
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Where does n − 2 live?

Now we present the generalized version of the result we used to complete
the description of D(Z5).

Main Theorem

Let n ∈ N and x ∈ B(Zn) such that n − 2 ∈ ∆(x). Then |∆(x)| = 1 (i.e.,
∆(x) = {n − 2}).

The following corollary follows immediately from the theorem.

Corollary

If n ∈ N then ∆(Zn) /∈ D(Zn).
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Returning to the Case n = 5

As an application of the Main Theorem, we obtain

{1, 3} /∈ D(Zn)

{1, 2, 3} /∈ D(Zn).

Therefore, we can complete the description of D(Z5).

Proposition

D(Z5) = {{1}, {2}, {3}, {1, 2}}.

After seeing the description of D(Z5), we might think that the only
realizable delta sets of B(Zn) have cardinality less or equal than 2, or
maybe small (bounded above).
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Archimedean-type Property for D(Zn)

By the Main Theorem, we know that ∆(Zn) is not a realizable delta
set of B(Zn); therefore we might believe in the existence of a uniform
bound M for the lengths of all elements in D(Zn) for all n.

However, we could prove that there exists a sequence {xn}n∈N of
elements in B(Zn) such that the sequence {|∆(xn)|}n∈N tends to
infinity, as the following theorem indicates.

Theorem (Archimedean Property)

For any M ∈ N there exist n ∈ N and x ∈ B(Zn) such that |∆(x)| > m.
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Future Work and Conclusions

The previous results suggest that a full classification of D(Zn) might
be a very arduous task. However, there are several steps that can be
helpful when trying to give a deeper description of D(Zn).

For example, we can try to find bounds for the cardinality of the
elements of D(Zn).

Definition of Principal Delta

Let G be a finite abelian group. We call

η(G ) = max{ |S | : S ∈ D(G ) }

the principal delta of B(G ).
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Future Work and Conclusions

Some observations:

Based on the results of this project, we have

4 ≤ η(Zn) ≤ n − 3.

However, the Archimedean Property shows that 4 is not a good lower
bound. An accurate lower bound should depend on n.

Future Work

As an extension of this project, we can try to find better bounds for η(Zn).
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