PROBLEM SET 9: AREA OF A SURFACE OF REVOLUTION

Note: Most of the problems were taken from the textbook [1].

Problem 1. Find the total area of of the surface resulting from rotating the curve

- a) $y = x^3$, $0 \le x \le 2$ about the x-axis;
- b) $y = \cos(\frac{1}{2}x)$, $0 \le x \le \pi$ about the x-axis;
- c) $y = \frac{x^3}{6} + \frac{1}{2x}$, $1/2 \le x \le 1$ about the x-axis;
- d) $x^{2/3} + y^{2/3} = 1$, 0 < y < 1 about the y-axis;
- e) $x = \frac{1}{4}y^2 \frac{1}{2} \ln y$, $1 \le y \le 2$ about the y-axis.

Problem 2. Show that the total area of the surface of revolution obtained by rotating the curve y = 1/x with $x \ge 1$ about the x-axis is infinite.

Problem 3. Show that the total area of the surface of revolution obtained by rotating the curve $y = e^{-x}$ with $x \ge 0$ about the x-axis is finite.

Problem 4. Show that the area of the sphere of radius r is $4\pi r^2$.

Problem 5. Find the total area of of the surface resulting from rotating the circle $x^2 + y^2 = r^2$ about the line y = r.

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.