
MOCK QUIZ 2

Note: Most of the problems were taken from the textbook [1].

Problem 1. If a, b ∈ R such that a, b > 0, compute the limit of the sequence {an},
where
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Solution 1: We can compute the limit of {an} as follows:
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Solution 2: We can compute the limit of {an} as follows:
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Problem 2. Decide whether the series

(0.1)
∞∑
n=2

ln

(
n+ 1

n

)
converges. If it is convergent, then find the limit.

Solution: Denoting the n-th partial sum of (0.1) by sn, we can observe that

sn =
n∑

k=2
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)
=

n∑
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ln(k + 1)− ln k

)
= ln(n+ 1)− ln 2.

Therefore
∞∑
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= lim

n→∞
ln(n+ 1)− ln 2 =∞.
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