PROBLEM SET 9: MEAN VALUE THEOREM AND L'HOPITAL'S RULE

Note: Most of the problems were taken from the textbook [1].

Problem 1. Show that the following equations have exactly one root:

 $2x + \cos x = 0$ and $x^3 + e^x = 0$.

Problem 2. Show that a polynomial of degree 3 has at most three real roots.

Problem 3. Does there exist a function f such that f(0) = -1, f(2) = 4, and $f'(x) \le 2$ for all x?

Problem 4. Show that $\sin x < x$ if $0 < x < 2\pi$.

Problem 5. Argue that $|\sin a - \sin b| \le |a - b|$ for all $a, b \in \mathbb{R}$.

Problem 6. Prove that if f is a differentiable function such that $f'(x) \neq 1$ for all real numbers x, then there exists at most one $x \in \mathbb{R}$ such that f(x) = x.

Problem 7. Find the following limits.

a)
$$\lim_{x\to\infty} \frac{e^{x/10}}{x^3};$$

b) $\lim_{x\to\infty} \frac{(\ln x)^2}{x};$
c) $\lim_{x\to0} \frac{x+\sin x}{x+\cos x};$
d) $\lim_{x\to\infty} x \tan(1/x);$
e) $\lim_{x\to\infty} x^{1/x};$

$$f) \lim_{x \to 0} (\csc x - \cot x);$$

$$g$$
 $\lim_{x\to\infty} \left(\frac{2x-3}{2x+5}\right)^{2x+1}$

Problem 8. Evaluate

$$\lim_{x \to \infty} \left[x - x^2 \ln\left(\frac{1+x}{x}\right) \right].$$

Problem 9. Suppose that f is a positive function such that $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$. Show that $\lim_{x\to a} f(x)^{g(x)} = 0$.

References

[1] J. Stewart: Single Variable Calculus 8th Edition, Cengage Learning, Boston 2015.