VECTOR FUNCTIONS

Problem 1 (Stewart, Exercise 13.1.50). Two particle travel along the space curves

$$r_1(t) = \langle t, t^2, t^3 \rangle$$
 $t_2(t) = \langle 1 + 2t, 1 + 6t, 1 + 14t \rangle.$

Do the particles collide? Do their paths intersect?

Problem 2 (Stewart, Exercise 13.2.41). Find r(t) if $r'(t) = \langle 2t, 3t^2, \sqrt{t} \rangle$ and $r(1) = \langle 1, 1, 0 \rangle$.

Problem 3 (Stewart, Exercise 13.2.53). Show that if r is a vector function such that r'' exists, then

$$\frac{d}{dt}[r(t) \times r'(t)] = r(t) \times r''(t).$$

Problem 4 (Stewart, Exercise 13.2.55). If $r(t) \neq 0$, show that

$$\frac{d}{dt}|r(t)| = \frac{1}{|r(t)|}r(t) \cdot r'(t).$$

[*Hint*: $|r(t)|^2 = r(t) \cdot r(t)$.]

Problem 5 (Stewart, Exercise 13.2.55). If a curve has the property that the position vector r(t) is always perpendicular to the tangent vector r'(t), show that the curve lies on a sphere with center the origin. [Hint: Show that |r(t)| and $r(t) \cdot a$ are constant.]

Problem 6 (Berkeley Midterm 1). The position vector r(t) of a particle moving in three dimensions satisfies $r' = r \times a$, where a is a fixed vector. Show that the particle moves withing a circle.

Problem 7 (Stewart, Exercise 13.3.24). Find the curvature of $r(t) = \langle t^2, \ln t, t \ln t \rangle$ at the point (1, 0, 0).

Problem 8 (Stewart, Exercise 13.3.48). Find the vectors T, N, and B of the curve $r(t) = \langle \cos t, \sin t, \ln(\cos t) \ at \ (1,0,0).$

Problem 9 (Stewart, Exercise 13.3.51). Find equations of the osculating circles of the ellipse $9x^2 + 4y^2 = 36$ at the points (2,0) and (0,3).

Problem 10 (Stewart, Exercise 13.3.55). Find equations of the normal and osculating planes of the curve of intersection of the parabolic cylinders $x = y^2$ and $z = x^2$ at the point (1, 1, 1).

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.