Vector Functions

Problem 1 (Stewart, Exercise 13.1.50). Two particle travel along the space curves

$$
r_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle \quad t_{2}(t)=\langle 1+2 t, 1+6 t, 1+14 t\rangle .
$$

Do the particles collide? Do their paths intersect?
Problem 2 (Stewart, Exercise 13.2.41). Find $r(t)$ if $r^{\prime}(t)=\left\langle 2 t, 3 t^{2}, \sqrt{t}\right\rangle$ and $r(1)=$ $\langle 1,1,0\rangle$.

Problem 3 (Stewart, Exercise 13.2.53). Show that if r is a vector function such that $r^{\prime \prime}$ exists, then

$$
\frac{d}{d t}\left[r(t) \times r^{\prime}(t)\right]=r(t) \times r^{\prime \prime}(t)
$$

Problem 4 (Stewart, Exercise 13.2.55). If $r(t) \neq 0$, show that

$$
\frac{d}{d t}|r(t)|=\frac{1}{|r(t)|} r(t) \cdot r^{\prime}(t)
$$

[Hint: $|r(t)|^{2}=r(t) \cdot r(t)$.]
Problem 5 (Stewart, Exercise 13.2.55). If a curve has the property that the position vector $r(t)$ is always perpendicular to the tangent vector $r^{\prime}(t)$, show that the curve lies on a sphere with center the origin. [Hint: Show that $|r(t)|$ and $r(t) \cdot a$ are constant.]

Problem 6 (Berkeley Midterm 1). The position vector $r(t)$ of a particle moving in three dimensions satisfies $r^{\prime}=r \times a$, where a is a fixed vector. Show that the particle moves withing a circle.
Problem 7 (Stewart, Exercise 13.3.24). Find the curvature of $r(t)=\left\langle t^{2}, \ln t, t \ln t\right\rangle$ at the point $(1,0,0)$.

Problem 8 (Stewart, Exercise 13.3.48). Find the vectors T, N, and B of the curve $r(t)=\langle\cos t, \sin t, \ln (\cos t)$ at $(1,0,0)$.

Problem 9 (Stewart, Exercise 13.3.51). Find equations of the osculating circles of the ellipse $9 x^{2}+4 y^{2}=36$ at the points $(2,0)$ and $(0,3)$.
Problem 10 (Stewart, Exercise 13.3.55). Find equations of the normal and osculating planes of the curve of intersection of the parabolic cylinders $x=y^{2}$ and $z=x^{2}$ at the point $(1,1,1)$.

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

