Cylinders and Quadric Surfaces

Problem 1 (Stewart, Exercises 12.6.(5,6,8)). Sketch the following surfaces.

(1) $z = 1 - y^2;$ (2) $x = z^2;$ (3) $z = \sin y.$

Problem 2 (Stewart, Exercises 12.6.(11,12,15,18,20)). Sketch and identify the surfaces.

(1) $x = y^2 + 4z^2;$ (2) $4x^2 + 9y^2 + 9z^2 = 36;$ (3) $9y^2 + 4z^2 = x^2 + 36;$ (4) $3x^2 - y^2 + 3z^2 = 0;$ (5) $x = y^2 - z^2.$

Problem 3 (Stewart, Exercise 12.6.43). Sketch the region bounded by the surfaces $z = \sqrt{x^2 + y^2}$ and $x^2 + y^2 = 1$ for $1 \le z \le 2$.

Problem 4 (Stewart, Exercise 12.6.47). Find the equation of the surface consisting of all points that are equidistant from the point (-1, 0, 0) and the plane x = 1. Identify the surface.

Problem 5 (Stewart, Exercise 12.6.48). Find the equation of the surface consisting of all points P for which the distance from P to the x-axis is twice the distance from P to the yz-plane. Identify the surface.

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.