Lines and Planes

Problem 1 (Stewart, Exercise 12.4.45). Let P be a point not on the line ℓ that passes through the point Q and R. Show that the distance d from the point P to the line ℓ is

$$
d=\frac{|a \times b|}{|a|}
$$

where a and b are the vectos $Q R$ and $Q P$, respectively. Use this formula to find the distance from $(1,1,1)$ to the line that passes through the points $(0,6,8)$ and $(-1,4,7)$.
Problem 2 (Stewart, Exercise 12.5.70). Find the distance from the point $(0,1,3)$ to the line

$$
\frac{x}{2}=\frac{6-y}{2}=z-3 .
$$

Problem 3 (Stewart, Exercises 12.5.(27,31, 37, 39)). Find the equation of the plane:
(1) through the point $(2,0,1)$ and parallel to the plane $5 x-y-z=6$;
(2) through the points $(0,1,1),(1,0,1)$, and $(1,1,0)$;
(3) that passes through the points $(3,1,4)$ and contains the line of intersection of the planes $x+2 y+3 z=1$ and $2 x-y+z=-3$;
(4) that passes through the point $(1,5,1)$ and is perpendicular to the planes $2 x+$ $y-2 z=2$ and $x+3 z=4$.
Problem 4 (Stewart, Exercises 12.5.(41, 44)). Sketch the plane
(1) $2 x+5 y+z=10$;
(2) $3 x+2 y=12$;
(3) $z=7 x$;
(4) $6 x+5 y-3 z=15$.

Problem 5 (Stewart, Exercises 12.5.(75, 76)). Show that the distance between the parallel planes $a x+b y+c z=d_{1}$ and $a x+b y+c z=d_{2}$ is

$$
D=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

Find the equation of the planes that are parallel to the plane $x+2 y-2 z=1$ and two units away from it.
Problem 6 (Stewart, Exercise 12.5.77). Show that the lines with symmetric equations $x=y=z$ and $x+1=y / 2=z / 3$ are skew. Find the distance between these lines.

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

