\mathbb{R}^3 -Geometry, Inner Product and Cross Product

Problem 1 (Stewart, Exercise 12.1.22). Find an equation of a sphere if one of its diameters has endpoints (5, 4, 3) and (1, 6, -9).

Problem 2 (Stewart, Exercise 12.1.45). Find an equation of the set of all points equidistant from the points (-1, 5, 3) and (6, 2, -2). Describe the set.

Problem 3 (Stewart, Exercise 12.1.47). Find the distance between the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 4x + 4y + 4z - 11$.

Problem 4 (Stewart, Exercise 12.2.41). Find the unit vectors that are parallel to the tangent line of the parabola $y = x^2$ at the point (2, 4).

Problem 5 (Stewart, Exercise 12.2.48). If $r = \langle x, y \rangle$, $r_1 = \langle x_1, y_1 \rangle$, and $r_2 = \langle x_2, y_2 \rangle$, describe the set of all points (x, y) such that $|r - r_1| + |r - r_2| = k$, where $k > |r_1 - r_2|$. Find an equation for such a set of points in rectangular coordinates.

Problem 6 (Stewart, Exercise 12.3.56). *Find the angle between a diagonal of a cube and a diagonal of one of its faces.*

Problem 7 (Stewart, Exercises 12.3.(61,62)). For any two vectors a and b in \mathbb{R}^3 ,

(1) show that $|a \cdot b| \le |a| |b|$ (Cauchy-Schwarz Inequality);

(2) show that $|a+b| \le |a| + |b|$ (Triangular Inequality).

Problem 8 (Stewart, Exercise 12.3.64). Show that if u + v and u - v are orthogonal, then the vectors u and v must have the same lengths. Interpret such a result geometrically.

Problem 9 (Stewart, Exercise 12.4.43). If $a \cdot b = \sqrt{3}$ and $a \times b = \langle 1, 2, 2 \rangle$, find the angle between a and b.

Problem 10 (Stewart, Exercise 12.4.44). (1) Find all vectors v such that $\langle 1, 2, 1 \rangle \times v = \langle 3, 1, -5 \rangle$.

(2) Explain why there is no vector v such that $\langle 1, 2, 1 \rangle \times v = \langle 3, 1, 5 \rangle$.

Problem 11 (Stewart, Exercise 12.4.47). Show that $|a \times b|^2 = |a|^2 |b|^2 - (a \cdot b)^2$.

Problem 12 (Math W53, Quiz). Let $a = \langle 0, -2, 0 \rangle$ and let $b = \langle b_1, b_2, 0 \rangle$ be a threedimensional vector such that |b| = 4.

- (1) Find all such b for which $a \cdot b$ is maximized.
- (2) Find all such b for which $|a \times b|$ is maximized.

Problem 13 (Math W53, Quiz). Find all $t \in \mathbb{R}$ such that the vectors $a = \langle 1, 2, 3 \rangle$, $b = \langle 3, 5, 7 \rangle$, and $c = \langle t, 1, 1 \rangle$ are coplanar.

Problem 14 (Math W53, Quiz). Calculate the area of the triangle whose vertices are A = (2, 2, 0), B = (0, 2, 2), and C = (2, 0, 2).

Problem 15 (Math W53, Quiz). Let $a = \langle a_1, a_2 \rangle$ and $b = \langle b_1, b_2 \rangle$ be two different vectors.

- (1) Show that $r = \langle x, y \rangle$ satisfies the equation $(r a) \cdot (r b) = 0$ if and only if (x, y) lies on a certain circle O. Find the equation of O.
- (2) Find the center and radius of O in terms of a and b (without involving the components of a and b).

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.