\mathbb{R}^{3}-Geometry, Inner Product and Cross Product

Problem 1 (Stewart, Exercise 12.1.22). Find an equation of a sphere if one of its diameters has endpoints $(5,4,3)$ and $(1,6,-9)$.
Problem 2 (Stewart, Exercise 12.1.45). Find an equation of the set of all points equidistant from the points $(-1,5,3)$ and $(6,2,-2)$. Describe the set.
Problem 3 (Stewart, Exercise 12.1.47). Find the distance between the spheres $x^{2}+$ $y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=4 x+4 y+4 z-11$.

Problem 4 (Stewart, Exercise 12.2.41). Find the unit vectors that are parallel to the tangent line of the parabola $y=x^{2}$ at the point $(2,4)$.
Problem 5 (Stewart, Exercise 12.2.48). If $r=\langle x, y\rangle, r_{1}=\left\langle x_{1}, y_{1}\right\rangle$, and $r_{2}=\left\langle x_{2}, y_{2}\right\rangle$, describe the set of all points (x, y) such that $\left|r-r_{1}\right|+\left|r-r_{2}\right|=k$, where $k>\left|r_{1}-r_{2}\right|$. Find an equation for such a set of points in rectangular coordinates.

Problem 6 (Stewart, Exercise 12.3.56). Find the angle between a diagonal of a cube and a diagonal of one of its faces.
Problem 7 (Stewart, Exercises 12.3. $(61,62)$). For any two vectors a and b in \mathbb{R}^{3},
(1) show that $|a \cdot b| \leq|a||b| \quad$ (Cauchy-Schwarz Inequality);
(2) show that $|a+b| \leq|a|+|b| \quad$ (Triangular Inequality).

Problem 8 (Stewart, Exercise 12.3.64). Show that if $u+v$ and $u-v$ are orthogonal, then the vectors u and v must have the same lengths. Interpret such a result geometrically.
Problem 9 (Stewart, Exercise 12.4.43). If $a \cdot b=\sqrt{3}$ and $a \times b=\langle 1,2,2\rangle$, find the angle between a and b.
Problem 10 (Stewart, Exercise 12.4.44). (1) Find all vectors v such that $\langle 1,2,1\rangle \times$ $v=\langle 3,1,-5\rangle$.
(2) Explain why there is no vector v such that $\langle 1,2,1\rangle \times v=\langle 3,1,5\rangle$.

Problem 11 (Stewart, Exercise 12.4.47). Show that $|a \times b|^{2}=|a|^{2}|b|^{2}-(a \cdot b)^{2}$.
Problem 12 (Math W53, Quiz). Let $a=\langle 0,-2,0\rangle$ and let $b=\left\langle b_{1}, b_{2}, 0\right\rangle$ be a threedimensional vector such that $|b|=4$.
(1) Find all such b for which $a \cdot b$ is maximized.
(2) Find all such b for which $|a \times b|$ is maximized.

Problem 13 (Math W53, Quiz). Find all $t \in \mathbb{R}$ such that the vectors $a=\langle 1,2,3\rangle$, $b=\langle 3,5,7\rangle$, and $c=\langle t, 1,1\rangle$ are coplanar.

Problem 14 (Math W53, Quiz). Calculate the area of the triangle whose vertices are $A=(2,2,0), B=(0,2,2)$, and $C=(2,0,2)$.

Problem 15 (Math W53, Quiz). Let $a=\left\langle a_{1}, a_{2}\right\rangle$ and $b=\left\langle b_{1}, b_{2}\right\rangle$ be two different vectors.
(1) Show that $r=\langle x, y\rangle$ satisfies the equation $(r-a) \cdot(r-b)=0$ if and only if (x, y) lies on a certain circle O. Find the equation of O.
(2) Find the center and radius of O in terms of a and b (without involving the components of a and b).

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

