Stokes' Theorem and Divergence Theorem

Problem 1 (Stewart, Example 16.8.1). Find the line integral of the vector field $F=$ $\left\langle-y^{2}, x, z^{2}\right\rangle$ over the curve C of intersection of the plane $x+z=2$ and the cylinder $x^{2}+y^{2}=1$ knowing that C is oriented counterclockwise when viewed from above. [Answer: π]

Problem 2 (Stewart, Example 16.8.1). Find the flux of the vector field $F=\langle x z, y z, x y\rangle$ across the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=1$ and above the $x y$-plane.

Problem 3 (Exercise 16.8.10). Evaluate $\int_{C} F \cdot d r$ below if C is oriented counterclockwise as viewed from above.
(1) $F(x, y, z)=\langle x y, y z, z x\rangle$ and C is the boundary of the part of the paraboloid $z=1-x^{2}-y^{2}$ in the first octant.
(2) $F(x, y, z)=\langle 2 y, x z, x+y\rangle$ and C is the intersection of the plane $z=y+2$ and the cylinder $x^{2}+y^{2}=1$.

Problem 4 (Stewart, Exercise 16.8.16). Let C be a simple closed smooth curve that lies in the plane $x+y+z=1$. Show that the line integral

$$
\int_{C} z d x-2 x d y+3 y d z
$$

depends only on the area of the region enclosed by C and not on the shape of C or its location in the plane.

Problem 5 (Stewart, Exercise 16.8.17). A particle moves along line segments from the origin to the points $(1,0,0),(1,2,1),(0,2,1)$, and back to the origin under the influence of the force field

$$
F(x, y, z)=\left\langle z^{2}, 2 x y, 4 y^{2}\right\rangle .
$$

Find the work done.
Problem 6 (Stewart, Exercise 16.8.18). Evaluate

$$
\int_{C}(y+\sin x) d x+\left(z^{2}+\cos y\right) d y+x^{3} d z
$$

where C is the curve with parametrization $r(t)=(\sin t, \cos t, \sin 2 t)$ for $0 \leq t \leq 2 \pi$.
Problem 7 (Stewart, Example 16.9.1). Fin the flux of the vector field $F(x, y, z)=$ $\langle z, y, x\rangle$ over the unit sphere $x^{2}+y^{2}+z^{2}=1$. [Answer: $4 \pi / 3$]

Problem 8 (Stewart, Example 16.9.2). Find the flux of the vector field

$$
F(x, y, z)=\left\langle x y,\left(y^{2}+e^{x z^{2}}, \sin (x y)\right\rangle\right.
$$

over the surface of the region bounded by $z=1-x^{2}$ and the planes $z=0, y=0$, and $y+z=2$. [Answer: 184/35]

Problem 9 (Stewart, Exercise 16.9.24). Use the Divergence Theorem to evaluate

$$
\iint_{S}\left(2 x+2 y+z^{2}\right) d S
$$

where S is the sphere $x^{2}+y^{2}+z^{2}=1$.
Problem 10 (Stewart, Exercise 16.9.18). Find the flux of the vector field

$$
F(x, y, z)=\left\langle z \tan ^{-1}\left(y^{2}\right), z^{3} \ln \left(x^{2}+1\right), z\right\rangle
$$

across the part of the paraboloid $z^{2}+y^{2}+z=2$ that lies above the plane $z=1$ and is oriented upward.

Problem 11 (Stewart, Exercises 16.9.(26,29)). Argue the following identities assuming that S and E satisfy the conditions of the Divergence Theorem and the scalar functions and the vector fields have continuous second-order partial derivatives.
(1) $V(E)=\frac{1}{3} \iint_{S} F \cdot d S$, where $F(x, y, z)=\langle x, y, z\rangle$.
(2) $\iint_{S}(f \nabla g) \cdot n d S=\iiint_{E}\left(f \nabla^{2} g+\nabla f \cdot \nabla g\right) d V$.

Problem 12 (UC Berkeley Final). Evaluate the flux

$$
\iint_{S} F \cdot d S
$$

where

$$
F(x, y, z)=\left\langle z^{2} x+e^{z^{2}-y^{2}}, y^{3} / 3+x^{2} y+\sin \left(z+x^{2}\right), x^{2}\right\rangle
$$

and S is the top half of the sphere $x^{2}+y^{2}+z^{2}=1$ oriented upward. [Answer: 13/20]
Problem 13 (UC Berkeley Final). A fisherman's net has a rim, which is a circle of radius 5. He fixes it in the sea in such a way that the rim is in the $x z$-plane with center at the origin. The velocity of water is given by the vector field

$$
F(x, y, z)=\left\langle x^{4}+2 y^{2}, 3-y^{2}, 2 y z-4 x^{3} z\right\rangle .
$$

Find the flux of the water across the net. [Answer: 75π]
Problem 14 (UC Berkeley Final). Let S_{r} denote the sphere of radius r with the center at the origin and outward orientation. Suppose that E is a vector field well-defined on all of \mathbb{R}^{3} and such that

$$
\iint_{S_{r}} E d S=a r+b,
$$

for some fixed constant a and b.
(1) Compute in terms of a and b the following integral

$$
\iiint_{D} \operatorname{div} E d V
$$

where $D=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 25 \leq x^{2}+y^{2}+z^{2} \leq 49\right\}$. [Answer: 2a]
(2) Suppose that in the above situation $E=\operatorname{curl} F$ for some vector field F. What conditions, if any, does this place on a and b ?
[Answer: $a=b=0$]
Problem 15 (Stewart, Exercise 16.9.31). Suppose that S and E satisfy the conditions of the Divergence Theorem and f is a scalar function having second-partial derivatives. Prove that

$$
\iint_{S} f n d S=\iiint_{E} \nabla f d V
$$

These surface and triple integrals of vector functions are vectors defined by integrating each component function. [Hint: Start by applying the Divergence Theorem to $F=f c$, where c is an arbitrary constant vector.]
Problem 16 (UC Berkeley Final). Let C be the curve of intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $z=2 x+3 y$, oriented counterclockwise when viewed from above. Let

$$
F=\left\langle x^{2018}+y, y^{2018}+z, z^{2018}+x\right\rangle .
$$

Calculate $\int_{C} F \cdot d r$.
Problem 17 (UC Berkeley Final). Calculate the flux $\iint_{S} F \cdot d S$, where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$ oriented upwards, and $F=\langle x+\sin y, y+\cos z, z+1\rangle$.

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

