Surface Integrals and Flux

Problem 1 (Stewart, Exercises 16.5.(13,15,18)). Determine whether or not the following vector fields are conservative. For each conservative, find a function f such that $F=\nabla f$.
(1) $F(x, y, z)=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$.
(2) $F(x, y, z)=\left\langle z \cos y, 2 x y z^{3}, x z \sin y, x \cos y\right\rangle$.
(3) $F(x, y, z)=\left\langle e^{x} \sin y z, z e^{x} \cos y z, y e^{x} \cos y z\right\rangle$.

Problem 2 (Stewart, Exercises 16.5.(19,20)). Is there a vector field G on \mathbb{R}^{3} satisfying the following condition.
(1) $\operatorname{curl}(G)=\langle x \sin y, \cos y, z-x y\rangle$. Explain why?
(2) $\operatorname{curl}(G)=\langle x, y, z\rangle$. Explain why?

The Laplace operator ∇^{2} is defined by $\nabla^{2} f=f_{x x}+f_{y y}+f_{z z}$, where f is a function having continuous second partial derivatives. The Laplace operator can be applied also to a vector field $F=\langle P, Q, R\rangle$ as follows: $\nabla^{2} F=\left\langle\nabla^{2} P, \nabla^{2} Q, \nabla^{2} R\right\rangle$.
Problem 3 (Stewart, Exercises 16.5.(27,28,29)). For vector fields F and G on \mathbb{R}^{3}, argue the following identities:
(1) $\operatorname{div}(F \times G)=G \cdot \operatorname{curl} F-F \cdot \operatorname{curl} G$,
(2) $\operatorname{div}(\nabla F \times \nabla G)=0$,
(3) $\operatorname{curl}(\operatorname{curl} F)=\operatorname{grad}(\operatorname{div} F)-\nabla^{2} F$.

Problem 4 (Stewart, Exercises 16.5.(30,31)). For the vector field $r=\langle x, y, z\rangle$, argue the following identities:
(1) $\nabla \cdot(|r| r)=4|r|$,
(2) $\nabla^{2}\left(|r|^{3}\right)=12 r$,
(3) $\nabla(1 /|r|)=-r /|r|^{3}$,
(4) $\nabla(\ln |r|)=r /\left|r^{2}\right|$.

Problem 5 (Stewart, Exercises 16.5.(33,34)). Let C be a positively-oriented, piecewisesmooth, simple closed curve in \mathbb{R}^{2} given by $r(t)=\langle x(t), y(t)\rangle$ with $a \leq t \leq b$, and let $n(t)=1 /\left|r^{\prime}(t)\right|\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle$.
(1) Use Green's Theorem to argue that

$$
\oint_{C} F \cdot n d s=\iint_{\operatorname{int}(C)} \operatorname{div} F(x, y) d A
$$

for any smooth vector field F on \mathbb{R}^{2}.
(2) Use the previous part to argue Green's First Identity:

$$
\iint_{\operatorname{int}(C)} f \nabla^{2} g d A=\oint_{C} f(\nabla g) \cdot n d s-\iint_{\operatorname{int}(C)} \nabla f \cdot \nabla g d A,
$$

for any functions f and g whose appropriate partial derivatives exist and are continuous.
(3) Use the previous part to argue Green's Second Identity:

$$
\iint_{\operatorname{int}(C)}\left(f \nabla^{2} g-g \nabla^{2} f\right) d A=\oint_{C}(f \nabla g-g \nabla f) \cdot n d s,
$$

for any functions f and g whose appropriate partial derivatives exist and are continuous.

Problem 6 (Stewart, Exercise 16.6.34). Find the equation of the tangent plane to the surface parameterized by $r(u, v)=\left(u^{2}+1, v^{3}+1, u+v\right)$ at $(5,2,3)$.
Problem 7 (Cal Final, Summer 2018W). Find the tangent plane to the parametrized surface $r(u, v)=\left\langle u^{2}-1, u v, v^{3}\right\rangle$ at the point $(3,4,8)$.

Problem 8 (Stewart, Exercise 16.6.61). Find the area of the part of the sphere $x^{2}+$ $y^{2}+z^{2}=4 z$ that lies inside the paraboloid $z=x^{2}+y^{2}$.

Problem 9. Deduce the formula for the flux of a vector field $F=\langle P, Q, R\rangle$ across a surface S that is the graph of a smooth function $g: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
Problem 10 (Stewart, Exercises 16.7.(15,26)). Evaluate the following surface integrals.
(1) $\iint_{S} y d S$, where S is the surface $y=x^{2}+4 z$ for $(x, z) \in[0,1] \times[0,1]$.
(2) $\iint_{S} F \cdot d S$, where $F(x, y, z)=\langle y,-x, 2 z\rangle$ and S is the hemisphere $x^{2}+y^{2}+z^{2}=4$ and $z \geq 0$ oriented downward.

Problem 11 (Stewart, Exercise 16.7.43). A fluid has density $870 \mathrm{~kg} / \mathrm{m}^{3}$ and flows with velocity $v(x, y, z)=\left\langle z, y^{2}, x^{2}\right\rangle$, where x, y, and z are measured in meters and the components of v in meters per second. Find the rate of flow outward through the cylinder $x^{2}+y^{2}=4$ for $0 \leq z \leq 1$. [Hint: the rate of flow outward is the flux $\left.\iint_{S}(\rho v) \cdot n d S.\right]$
Problem 12 (Stewart, Exercise 16.7.49). Let F be an inverse square field, that is, $F(r)=c r /|r|^{3}$ for some constant c, where $r=\langle x, y, z\rangle$. Show that the flux of F across a sphere S with center the origin is independent of the radius of S.
Problem 13 (Cal Final, Fall 09). Evaluate the surface integral

$$
\iint_{S} z d S
$$

where S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=1$ and above the $x y$-plane. [Answer: 2π]

Problem 14 (UC Berkeley Final). Evaluate the flux

$$
\iint_{T} F \cdot d S
$$

of the vector field $F(x, y, z)=\langle-x, x y, z x\rangle$ across the triangle T with vertices $(1,0,0)$, $(0,2,0)$, and $(0,0,2)$ with downward orientation. [Answer: 1/3]
Problem 15 (UC Berkeley Final). Let S be a surface which is contained in the plane $z=x+y$, oriented upward. Suppose that S has area 2018. Consider the constant vector field $F=\langle 3,4,5\rangle$. Calculate the flux of F across the surface S. [Answer: $-4036 / \sqrt{3}$]

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

