SURFACE INTEGRALS AND FLUX

Problem 1 (Stewart, Exercises 16.5.(13,15,18)). Determine whether or not the following vector fields are conservative. For each conservative, find a function f such that $F = \nabla f$.

- (1) $F(x, y, z) = \langle y^2 z^3, 2xyz^3, 3xy^2 z^2 \rangle.$
- (2) $F(x, y, z) = \langle z \cos y, 2xyz^3, xz \sin y, x \cos y \rangle.$
- (3) $F(x, y, z) = \langle e^x \sin yz, ze^x \cos yz, ye^x \cos yz \rangle.$

Problem 2 (Stewart, Exercises 16.5.(19,20)). Is there a vector field G on \mathbb{R}^3 satisfying the following condition.

(1) $\operatorname{curl}(G) = \langle x \sin y, \cos y, z - xy \rangle$. Explain why? (2) $\operatorname{curl}(G) = \langle x, y, z \rangle$. Explain why?

The **Laplace operator** ∇^2 is defined by $\nabla^2 f = f_{xx} + f_{yy} + f_{zz}$, where f is a function having continuous second partial derivatives. The Laplace operator can be applied also to a vector field $F = \langle P, Q, R \rangle$ as follows: $\nabla^2 F = \langle \nabla^2 P, \nabla^2 Q, \nabla^2 R \rangle$.

Problem 3 (Stewart, Exercises 16.5.(27,28,29)). For vector fields F and G on \mathbb{R}^3 , argue the following identities:

(1) $\operatorname{div}(F \times G) = G \cdot \operatorname{curl} F - F \cdot \operatorname{curl} G$,

(2) div
$$(\nabla F \times \nabla G) = 0$$
,

(3) $\operatorname{curl}(\operatorname{curl} F) = \operatorname{grad}(\operatorname{div} F) - \nabla^2 F.$

Problem 4 (Stewart, Exercises 16.5.(30,31)). For the vector field $r = \langle x, y, z \rangle$, argue the following identities:

(1) $\nabla \cdot (|r|r) = 4|r|,$ (2) $\nabla^2(|r|^3) = 12r,$ (3) $\nabla(1/|r|) = -r/|r|^3,$ (4) $\nabla(\ln |r|) = r/|r^2|.$

Problem 5 (Stewart, Exercises 16.5.(33,34)). Let C be a positively-oriented, piecewisesmooth, simple closed curve in \mathbb{R}^2 given by $r(t) = \langle x(t), y(t) \rangle$ with $a \leq t \leq b$, and let $n(t) = 1/|r'(t)| \langle y'(t), -x'(t) \rangle$.

(1) Use Green's Theorem to argue that

$$\oint_C F \cdot n \, ds = \iint_{\operatorname{int}(C)} \operatorname{div} F(x, y) \, dA,$$

for any smooth vector field F on \mathbb{R}^2 .

(2) Use the previous part to argue Green's First Identity:

$$\iint_{\operatorname{int}(C)} f \nabla^2 g \, dA = \oint_C f(\nabla g) \cdot n \, ds - \iint_{\operatorname{int}(C)} \nabla f \cdot \nabla g \, dA,$$

for any functions f and g whose appropriate partial derivatives exist and are continuous.

(3) Use the previous part to argue Green's Second Identity:

$$\iint_{\operatorname{int}(C)} (f\nabla^2 g - g\nabla^2 f) \, dA = \oint_C (f\nabla g - g\nabla f) \cdot n \, ds,$$

for any functions f and g whose appropriate partial derivatives exist and are continuous.

Problem 6 (Stewart, Exercise 16.6.34). Find the equation of the tangent plane to the surface parameterized by $r(u, v) = (u^2 + 1, v^3 + 1, u + v)$ at (5, 2, 3).

Problem 7 (Cal Final, Summer 2018W). Find the tangent plane to the parametrized surface $r(u, v) = \langle u^2 - 1, uv, v^3 \rangle$ at the point (3, 4, 8).

Problem 8 (Stewart, Exercise 16.6.61). Find the area of the part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$.

Problem 9. Deduce the formula for the flux of a vector field $F = \langle P, Q, R \rangle$ across a surface S that is the graph of a smooth function $g: U \subset \mathbb{R}^2 \to \mathbb{R}$.

Problem 10 (Stewart, Exercises 16.7.(15,26)). Evaluate the following surface integrals.

- (1) $\iint_{S} y \, dS$, where S is the surface $y = x^2 + 4z$ for $(x, z) \in [0, 1] \times [0, 1]$.
- (2) $\iint_S F \cdot dS$, where $F(x, y, z) = \langle y, -x, 2z \rangle$ and S is the hemisphere $x^2 + y^2 + z^2 = 4$ and $z \ge 0$ oriented downward.

Problem 11 (Stewart, Exercise 16.7.43). A fluid has density 870 kg/m³ and flows with velocity $v(x, y, z) = \langle z, y^2, x^2 \rangle$, where x, y, and z are measured in meters and the components of v in meters per second. Find the rate of flow outward through the cylinder $x^2 + y^2 = 4$ for $0 \le z \le 1$. [Hint: the rate of flow outward is the flux $\iint_{S}(\rho v) \cdot n \, dS$.]

Problem 12 (Stewart, Exercise 16.7.49). Let F be an inverse square field, that is, $F(r) = cr/|r|^3$ for some constant c, where $r = \langle x, y, z \rangle$. Show that the flux of F across a sphere S with center the origin is independent of the radius of S.

Problem 13 (Cal Final, Fall 09). Evaluate the surface integral

$$\iint_{S} z \, dS,$$

where S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy-plane. [Answer: 2π] **Problem 14** (UC Berkeley Final). Evaluate the flux

$$\iint_T F \cdot dS$$

of the vector field $F(x, y, z) = \langle -x, xy, zx \rangle$ across the triangle T with vertices (1, 0, 0), (0, 2, 0), and (0, 0, 2) with downward orientation. [Answer: 1/3]

Problem 15 (UC Berkeley Final). Let S be a surface which is contained in the plane z = x+y, oriented upward. Suppose that S has area 2018. Consider the constant vector field $F = \langle 3, 4, 5 \rangle$. Calculate the flux of F across the surface S. [Answer: $-4036/\sqrt{3}$]

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.