Line Integrals and Green's Theorem

Problem 1 (Stewart, Exercise 16.1.(25,26)). Find and sketch the gradient vector field of the following functions:

$$
\begin{array}{ll}
\text { (1) } f(x, y)=\frac{1}{2}(x-y)^{2} & \text { (2) } f(x, y)=\frac{1}{2}\left(x^{2}-y^{2}\right) \text {. }
\end{array}
$$

Problem 2 (Stewart, Exercise 16.2.(5,11,14)). Evaluate the following line integrals:
(1) $\int_{C}\left(x^{2} y+\sin x\right) d y$, where C is the arc of the parabola $y=x^{2}$ from $(0,0)$ to $\left(\pi, \pi^{2}\right)$;
(2) $\int_{C} x e^{y z} d s$, where C is the line segment from $(0,0,0)$ to $(1,2,3)$;
(3) $\int_{C} y d x+z d y x d z$, where $C=\left(\sqrt{t}, t, t^{2}\right)$ for $1 \leq t \leq 4$.

Problem 3 (Stewart, Exercise 16.2.41). Find the work done by the force field

$$
F(x, y, z)=\left\langle x-y^{2}, y-z^{2}, z-x^{2}\right\rangle
$$

on a particle that moves along the line segment from $(0,0,1)$ to $(2,1,0)$.
Problem 4 (Stewart, Exercise 16.2.(5,11,14)). Let C be a smooth curve given by a vector function $r(t)$ for $a \leq t \leq b$, and let v be a constant vector
(1) Show that $\int_{C} v \cdot d r=v \cdot(r(b)-r(a))$.
(2) Show that $\int_{C} r \cdot d r=\frac{1}{2}\left(|r(b)|^{2}-|r(a)|^{2}\right)$.

Problem 5 (Stewart, Exercise 16.3. $(14,18)$). Find a function f such that $F=\nabla f$ and use it to evaluate $\int_{C} F \cdot d r$ along the given curve.
(1) $F(x, y)=\left\langle(1+x y) e^{x y}, x^{2} e^{x y}\right\rangle$, where $C: r(t)=\langle\cos t, 2 \sin t\rangle$ for $0 \leq t \leq \pi / 2$.
(2) $F(x, y, z)=\langle\sin y, x \cos y+\cos z,-y \sin z\rangle$, where $C: r(t)=\langle\sin t, t, 2 t\rangle$ for $0 \leq t \leq \pi / 2$.
Problem 6 (Stewart, Exercise 16.3.(19,20)). Show that the following line integrals are independent of paths evaluate them.
(1) $\int_{C} 2 x e^{-y} d x+\left(2 y-x^{2} e^{-y}\right) d y$, where C is any path from $(1,0)$ to $(2,1)$.
(2) $\int_{C} \sin y d x+(x \cos y-\sin y) d y$, where C is any path from $(2,0)$ to $(1, \pi)$.

Problem 7 (Stewart, Exercise 16.3.(19,20)). Determine whether or not the given subsets of \mathbb{R}^{2} are open, connected, and/or simply connected:
(1) $\{(x, y) \mid 0<y<3\}$;
(2) $\{(x, y)|1<|x|<y\}$;
(3) $\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4, y \geq 0\right\}$;
(4) $\{(x, y) \mid(x, y) \neq(2,3)\}$.

Problem 8 (UC Berkeley Final). Suppose a parametrized curve

$$
r(t)=\langle x(t), y(t), z(t)\rangle \quad \text { for } \quad 0 \leq t \leq 1
$$

satisfies the equation $x x^{\prime}(t)+y y^{\prime}(t)+z z^{\prime}(t)=0$ for all t. If $x(0)=y(0)=z(0)=3$ and $x(1)=y(1)=2$, find $|z(1)|$.

Problem 9 (Stewart, Exercises 16.4.(1,7)). Evaluate the following integral via Green's Theorem:
(1) $\oint_{C} y^{2} d x+x^{2} y d y$, where C is the rectangle with vertices $(0,0),(5,0),(5,4)$, and $(0,4)$;
(2) $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$, where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.

Problem 10 (Stewart, Exercises 16.4.18). A particle starts at the origin, move along the x-axis to $(5,0)$, then along the quarter-circle $x^{2}+y^{2}=25$ where $x \geq 0$ and $y \geq 0$ to the point $(0,5)$, and then down to the y-axis back to the origin. Find the work done on this particle by the force field $F=\left\langle\sin x, \sin y+x y^{2}+\frac{1}{3} x^{3}\right\rangle$.

Problem 11 (Stewart, Exercises 16.4.19). Let D be the region bounded by a positivelyoriented, piecewise-smooth, simple closed curve C.
(1) Argue that $\operatorname{Area}(D)=\oint_{C} x d y=-\oint_{C} y d x=1 / 2 \oint_{C} x d y-y d x$.
(2) Use the previous part to find the area under one arch of the cycloid $(t-\sin t, 1-$ $\cos t)$.

If the density of a solid occupying the region E is given by $\rho(x, y, z)$, then its mass can be computed by

$$
m=\iiint_{E} \rho(x, y, z) d V
$$

and its center of mass is $(\bar{x}, \bar{y}, \bar{z})$, where

$$
\bar{x}=\iiint_{E} x \rho(x, y, z) d V ; \quad \bar{y}=\iiint_{E} y \rho(x, y, z) d V ; \quad \bar{z}=\iiint_{E} z \rho(x, y, z) d V .
$$

If the density is constant, the center of mass is also called centroid.
Problem 12 (Stewart, Exercises 16.4.22). Let D be a region bounded by a simple closed path C in the xy-plane. Argue that the coordinate of the centroid (\bar{x}, \bar{y}) of D are

$$
\bar{x}=\frac{1}{2 A} \oint_{C} x^{2} d y \quad \text { and } \quad \bar{y}=\frac{1}{2 A} \oint_{C} y^{2} d x
$$

where A is the area of D. [Hint: Use Green's Theorem and $\rho=m / A$.]

Problem 13 (UC Berkeley Final). Let f be a differentiable function on \mathbb{R}^{2} such that

$$
\frac{\partial f}{\partial x}(x, y)=\frac{\partial f}{\partial y}(x, y)
$$

for all x, y. Suppose also that $f(2,3)=6$. Compute $f(4,1)$.

References

[1] J. Stewart: Calculus 8th Edition, Cengage Learning, Boston 2016.

