
MULTIVARIABLE CALCULUS

1. Line Integrals and Green’s Theorem

Problem 1 (Stewart, Exercise 16.1.(25,26)). Find and sketch the gradient vector field
of the following functions:

(1 ) f(x, y) =
1

2
(x− y)2 (2 ) f(x, y) =

1

2
(x2 − y2).

Problem 2 (Stewart, Exercise 16.2.(5,11,14)). Evaluate the following line integrals:

(1)
∫
C

(x2y + sinx) dy, where C is the arc of the parabola y = x2 from (0, 0) to
(π, π2);

(2)
∫
C
xeyz ds, where C is the line segment from (0, 0, 0) to (1, 2, 3);

(3)
∫
C
y dx+ z dyx dz, where C = (

√
t, t, t2) for 1 ≤ t ≤ 4.

Problem 3 (Stewart, Exercise 16.2.41). Find the work done by the force field

F (x, y, z) = 〈x− y2, y − z2, z − x2〉
on a particle that moves along the line segment from (0, 0, 1) to (2, 1, 0).

Problem 4 (Stewart, Exercise 16.2.(5,11,14)). Let C be a smooth curve given by a
vector function r(t) for a ≤ t ≤ b, and let v be a constant vector

(1) Show that
∫
C
v · dr = v · (r(b)− r(a)).

(2) Show that
∫
C
r · dr = 1

2

(
|r(b)|2 − |r(a)|2

)
.

Problem 5 (Stewart, Exercise 16.3.(14,18)). Find a function f such that F = ∇f and
use it to evaluate

∫
C
F · dr along the given curve.

(1) F (x, y) = 〈(1 + xy)exy, x2exy〉, where C : r(t) = 〈cos t, 2 sin t〉 for 0 ≤ t ≤ π/2.

(2) F (x, y, z) = 〈sin y, x cos y + cos z,−y sin z〉, where C : r(t) = 〈sin t, t, 2t〉 for
0 ≤ t ≤ π/2.

Problem 6 (Stewart, Exercise 16.3.(19,20)). Show that the following line integrals are
independent of paths evaluate them.

(1)
∫
C

2xe−y dx+ (2y − x2e−y) dy, where C is any path from (1, 0) to (2, 1).

(2)
∫
C

sin y dx+ (x cos y − sin y) dy, where C is any path from (2, 0) to (1, π).

Problem 7 (Stewart, Exercise 16.3.(19,20)). Determine whether or not the given sub-
sets of R2 are open, connected, and/or simply connected:

(1) {(x, y) | 0 < y < 3};
1



(2) {(x, y) | 1 < |x| < y};
(3) {(x, y) | 1 ≤ x2 + y2 ≤ 4, y ≥ 0};
(4) {(x, y) | (x, y) 6= (2, 3)}.

Problem 8 (Cal Final, Summer 2018W). Suppose a parametrized curve

r(t) = 〈x(t), y(t), z(t)〉 for 0 ≤ t ≤ 1

satisfies the equation xx′(t) + yy′(t) + zz′(t) = 0 for all t. If x(0) = y(0) = z(0) = 3
and x(1) = y(1) = 2, find |z(1)|.
Problem 9 (Stewart, Exercises 16.4.(1,7)). Evaluate the following integral via Green’s
Theorem:

(1)
∮
C
y2 dx+x2y dy, where C is the rectangle with vertices (0, 0), (5, 0), (5, 4), and

(0, 4);

(2)
∫
C

(y+e
√
x) dx+(2x+cos y2) dy, where C is the boundary of the region enclosed

by the parabolas y = x2 and x = y2.

Problem 10 (Stewart, Exercises 16.4.18). A particle starts at the origin, move along
the x-axis to (5, 0), then along the quarter-circle x2 + y2 = 25 where x ≥ 0 and y ≥ 0
to the point (0, 5), and then down to the y-axis back to the origin. Find the work done
on this particle by the force field F = 〈sinx, sin y + xy2 + 1

3
x3〉.

Problem 11 (Stewart, Exercises 16.4.19). Let D be the region bounded by a positively-
oriented, piecewise-smooth, simple closed curve C.

(1) Argue that Area(D) =
∮
C
x dy = −

∮
C
y dx = 1/2

∮
C
x dy − y dx.

(2) Use the previous part to find the area under one arch of the cycloid (t−sin t, 1−
cos t).

If the density of a solid occupying the region E is given by ρ(x, y, z), then its mass
can be computed by

m =

∫∫∫
E

ρ(x, y, z) dV

and its center of mass is (x̄, ȳ, z̄), where

x̄ =

∫∫∫
E

xρ(x, y, z) dV ; ȳ =

∫∫∫
E

yρ(x, y, z) dV ; z̄ =

∫∫∫
E

zρ(x, y, z) dV.

If the density is constant, the center of mass is also called centroid.

Problem 12 (Stewart, Exercises 16.4.22). Let D be a region bounded by a simple closed
path C in the xy-plane. Argue that the coordinate of the centroid (x̄, ȳ) of D are

x̄ =
1

2A

∮
C

x2 dy and ȳ =
1

2A

∮
C

y2 dx,

where A is the area of D. [Hint: Use Green’s Theorem and ρ = m/A.]



Problem 13 (Cal Final, Summer 2018W). Let f be a differentiable function on R2

such that
∂f

∂x
(x, y) =

∂f

∂y
(x, y)

for all x, y. Suppose also that f(2, 3) = 6. Compute f(4, 1).

2. Surface Integrals and Flux

Problem 14 (Stewart, Exercises 16.5.(13,15,18)). Determine whether or not the fol-
lowing vector fields are conservative. For each conservative, find a function f such that
F = ∇f .

(1) F (x, y, z) = 〈y2z3, 2xyz3, 3xy2z2〉.
(2) F (x, y, z) = 〈z cos y, 2xyz3, xz sin y, x cos y〉.
(3) F (x, y, z) = 〈ex sin yz, zex cos yz, yex cos yz〉.

Problem 15 (Stewart, Exercises 16.5.(19,20)). Is there a vector field G on R3 satis-
fying the following condition.

(1) curl(G) = 〈x sin y, cos y, z − xy〉. Explain why?
(2) curl(G) = 〈x, y, z〉. Explain why?

The Laplace operator ∇2 is defined by ∇2f = fxx+fyy +fzz, where f is a function
having continuous second partial derivatives. The Laplace operator can be applied also
to a vector field F = 〈P,Q,R〉 as follows: ∇2F = 〈∇2P,∇2Q,∇2R〉.

Problem 16 (Stewart, Exercises 16.5.(27,28,29)). For vector fields F and G on R3,
argue the following identities:

(1) div(F ×G) = G · curlF − F · curlG,

(2) div(∇F ×∇G) = 0,

(3) curl(curlF ) = grad(divF )−∇2F .

Problem 17 (Stewart, Exercises 16.5.(30,31)). For the vector field r = 〈x, y, z〉, argue
the following identities:

(1) ∇ · (|r|r) = 4|r|,
(2) ∇2(|r|3) = 12r,

(3) ∇(1/|r|) = −r/|r|3,
(4) ∇(ln |r|) = r/|r2|.

Problem 18 (Stewart, Exercises 16.5.(33,34)). Let C be a positively-oriented, piecewise-
smooth, simple closed curve in R2 given by r(t) = 〈x(t), y(t)〉 with a ≤ t ≤ b, and let
n(t) = 1/|r′(t)|〈y′(t),−x′(t)〉.



(1) Use Green’s Theorem to argue that∮
C

F · n ds =

∫∫
int(C)

divF (x, y) dA,

for any smooth vector field F on R2.

(2) Use the previous part to argue Green’s First Identity:∫∫
int(C)

f∇2g dA =

∮
C

f(∇g) · n ds−
∫∫

int(C)

∇f · ∇g dA,

for any functions f and g whose appropriate partial derivatives exist and are
continuous.

(3) Use the previous part to argue Green’s Second Identity:∫∫
int(C)

(f∇2g − g∇2f) dA =

∮
C

(f∇g − g∇f) · n ds,

for any functions f and g whose appropriate partial derivatives exist and are
continuous.

Problem 19 (Stewart, Exercise 16.6.34). Find the equation of the tangent plane to
the surface parameterized by r(u, v) = (u2 + 1, v3 + 1, u+ v) at (5, 2, 3).

Problem 20 (Cal Final, Summer 2018W). Find the tangent plane to the parametrized
surface r(u, v) = 〈u2 − 1, uv, v3〉 at the point (3, 4, 8).

Problem 21 (Stewart, Exercise 16.6.61). Find the area of the part of the sphere x2 +
y2 + z2 = 4z that lies inside the paraboloid z = x2 + y2.

Problem 22. Deduce the formula for the flux of a vector field F = 〈P,Q,R〉 across a
surface S that is the graph of a smooth function g : U ⊂ R2 → R.

Problem 23 (Stewart, Exercises 16.7.(15,26)). Evaluate the following surface integrals.

(1)
∫∫

S
y dS, where S is the surface y = x2 + 4z for (x, z) ∈ [0, 1]× [0, 1].

(2)
∫∫

S
F ·dS, where F (x, y, z) = 〈y,−x, 2z〉 and S is the hemisphere x2+y2+z2 = 4

and z ≥ 0 oriented downward.

Problem 24 (Stewart, Exercise 16.7.43). A fluid has density 870 kg/m3 and flows
with velocity v(x, y, z) = 〈z, y2, x2〉, where x, y, and z are measured in meters and
the components of v in meters per second. Find the rate of flow outward through the
cylinder x2 + y2 = 4 for 0 ≤ z ≤ 1. [Hint: the rate of flow outward is the flux∫∫

S
(ρv) · n dS.]

Problem 25 (Stewart, Exercise 16.7.49). Let F be an inverse square field, that is,
F (r) = cr/|r|3 for some constant c, where r = 〈x, y, z〉. Show that the flux of F across
a sphere S with center the origin is independent of the radius of S.



Problem 26 (Cal Final, Fall 09). Evaluate the surface integral∫ ∫
S

z dS,

where S is the part of the sphere x2+y2+z2 = 4 that lies inside the cylinder x2+y2 = 1
and above the xy-plane. [Answer: 2π]

Problem 27 (Cal Final, Fall 09). Evaluate the flux∫ ∫
T

F · dS

of the vector field F (x, y, z) = 〈−x, xy, zx〉 across the triangle T with vertices (1, 0, 0),
(0, 2, 0), and (0, 0, 2) with downward orientation. [Answer: 1/3]

Problem 28 (Cal Final, Summer 2018W). Let S be a surface which is contained
in the plane z = x + y, oriented upward. Suppose that S has area 2018. Consider
the constant vector field F = 〈3, 4, 5〉. Calculate the flux of F across the surface S.
[Answer: −4036/

√
3]

3. Stokes’ Theorem and Divergence Theorem

Problem 29 (Stewart, Example 16.8.1). Find the line integral of the vector field F =
〈−y2, x, z2〉 over the curve C of intersection of the plane x + z = 2 and the cylinder
x2 + y2 = 1 knowing that C is oriented counterclockwise when viewed from above.
[Answer: π]

Problem 30 (Stewart, Example 16.8.1). Find the flux of the vector field F = 〈xz, yz, xy〉
across the part of the sphere x2 + y2 + z2 = 4 that lies inside the cylinder x2 + y2 = 1
and above the xy-plane.

Problem 31 (Exercise 16.8.10). Evaluate
∫
C
F ·dr below if C is oriented counterclock-

wise as viewed from above.

(1) F (x, y, z) = 〈xy, yz, zx〉 and C is the boundary of the part of the paraboloid
z = 1− x2 − y2 in the first octant.

(2) F (x, y, z) = 〈2y, xz, x+ y〉 and C is the intersection of the plane z = y+ 2 and
the cylinder x2 + y2 = 1.

Problem 32 (Stewart, Exercise 16.8.16). Let C be a simple closed smooth curve that
lies in the plane x+ y + z = 1. Show that the line integral∫

C

z dx− 2x dy + 3y dz

depends only on the area of the region enclosed by C and not on the shape of C or its
location in the plane.



Problem 33 (Stewart, Exercise 16.8.17). A particle moves along line segments from
the origin to the points (1, 0, 0), (1, 2, 1), (0, 2, 1), and back to the origin under the in-
fluence of the force field

F (x, y, z) = 〈z2, 2xy, 4y2〉.
Find the work done.

Problem 34 (Stewart, Exercise 16.8.18). Evaluate∫
C

(y + sinx)dx+ (z2 + cos y)dy + x3dz,

where C is the curve with parametrization r(t) = (sin t, cos t, sin 2t) for 0 ≤ t ≤ 2π.

Problem 35 (Stewart, Example 16.9.1). Fin the flux of the vector field F (x, y, z) =
〈z, y, x〉 over the unit sphere x2 + y2 + z2 = 1. [Answer: 4π/3]

Problem 36 (Stewart, Example 16.9.2). Find the flux of the vector field

F (x, y, z) = 〈xy, (y2 + exz
2

, sin(xy)〉
over the surface of the region bounded by z = 1− x2 and the planes z = 0, y = 0, and
y + z = 2. [Answer: 184/35]

Problem 37 (Stewart, Exercise 16.9.24). Use the Divergence Theorem to evaluate∫∫
S

(2x+ 2y + z2) dS,

where S is the sphere x2 + y2 + z2 = 1.

Problem 38 (Stewart, Exercise 16.9.18). Find the flux of the vector field

F (x, y, z) = 〈z tan−1(y2), z3 ln(x2 + 1), z〉
across the part of the paraboloid z2 + y2 + z = 2 that lies above the plane z = 1 and is
oriented upward.

Problem 39 (Stewart, Exercises 16.9.(26,29)). Argue the following identities assuming
that S and E satisfy the conditions of the Divergence Theorem and the scalar functions
and the vector fields have continuous second-order partial derivatives.

(1) V (E) = 1
3

∫∫
S
F · dS, where F (x, y, z) = 〈x, y, z〉.

(2)
∫∫

S
(f∇g) · n dS =

∫∫∫
E

(f∇2g +∇f · ∇g) dV .

Problem 40 (Cal Final, Fall 09). Evaluate the flux∫ ∫
S

F · dS,

where
F (x, y, z) = 〈z2x+ ez

2−y2 , y3/3 + x2y + sin(z + x2), x2〉
and S is the top half of the sphere x2 + y2 + z2 = 1 oriented upward. [Answer: 13/20]



Problem 41 (Cal Final, Fall 09). A fisherman’s net has a rim, which is a circle of
radius 5. He fixes it in the sea in such a way that the rim is in the xz-plane with center
at the origin. The velocity of water is given by the vector field

F (x, y, z) = 〈x4 + 2y2, 3− y2, 2yz − 4x3z〉.
Find the flux of the water across the net. [Answer: 75π]

Problem 42 (Cal Final, Fall 09). Let Sr denote the sphere of radius r with the center
at the origin and outward orientation. Suppose that E is a vector field well-defined on
all of R3 and such that ∫ ∫

Sr

E dS = ar + b,

for some fixed constant a and b.

(1) Compute in terms of a and b the following integral∫ ∫ ∫
D

divE dV,

where D = {(x, y, z) ∈ R3 | 25 ≤ x2 + y2 + z2 ≤ 49}. [Answer: 2a]
(2) Suppose that in the above situation E = curlF for some vector field F . What

conditions, if any, does this place on a and b?

[Answer: a = b = 0]

Problem 43 (Stewart, Exercise 16.9.31). Suppose that S and E satisfy the conditions
of the Divergence Theorem and f is a scalar function having second-partial derivatives.
Prove that ∫∫

S

fn dS =

∫∫∫
E

∇f dV.

These surface and triple integrals of vector functions are vectors defined by integrating
each component function. [Hint: Start by applying the Divergence Theorem to F = fc,
where c is an arbitrary constant vector.]

Problem 44 (Cal Final, Summer 2018W). Let C be the curve of intersection of the
cylinder x2 + y2 = 1 and the plane z = 2x+ 3y, oriented counterclockwise when viewed
from above. Let

F = 〈x2018 + y, y2018 + z, z2018 + x〉.
Calculate

∫
C
F · dr.

Problem 45 (Cal Final, Summer 2018W). Calculate the flux
∫∫

S
F · dS, where S is

the hemisphere x2 + y2 + z2 = 1 with z ≥ 0 oriented upwards, and F = 〈x+ sin y, y +
cos z, z + 1〉.
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